锌空气电池与锂空气电池PPT课件

合集下载

金属空气电池

金属空气电池

化学反应
铝空气电池的特点
中性电解质体系由于电导率较低且铝酸盐不可 溶,因此功率难 以提高。碱性体系能够溶解一定的铝 酸盐且电导率高,因此应 用于相对较高功率的需求。 一般盐性条件下的铝-空气电池与 碱性铝-空气电池 的区别主要体现在反应产物、电压及功率上。 盐性条 件下电压低,适用于中小功率应用,而碱性条件下电 池电压高,既可适用于小功率应用,也可适用于中高 功率应用如 作电动汽车电源等。盐性条件下,反应产 物为不可溶的三水铝 石凝胶。由于凝胶状物质的产 生,它会粘附在阳极的表面阻止 电极反应,从而降低 了反应速率及阳极效率,通过加入特殊的 抑制剂如 SnO32-于电解液中[3],以抑制剂为晶核,使三水铝 石以 晶状粉末形式存在,这样自然沉淀于电解液的底层, 从而消 除了凝胶物质的不良影响。碱性条件下反应 产物为可溶的 Al(OH)4-,没有沉淀问题(铝酸盐在溶 液中达到饱和会析出), 但会使电解液的电导率下 降,从而影响电池性能。另外由于铝 的腐蚀反应生成 氢气并放出热,以及电池对外做功也放出热, 因此必 须对电池系统进行安全处理(如除氢,换热)。
锂空气电池
电池的构造 化学原理 锂空气电池使用及性 能
电池的构造
电池通过放电反应生成的不是固体氧化锂(Li2O), 而是易溶于水性电解液的氢氧化锂(LiOH),这样就 不会引起空气极的碳孔堵塞。另外,由于水和氮等无 法通过固体电解质隔膜,因此不存在和负极的锂金属 发生反应的危险。此外,配置了充电专用的正极,可 防止充电时空气极发生腐蚀和劣化。 负极采用金属锂条,负极的电解液采用含有锂盐 的有机电解液。中间设有用于隔开正极和负极的锂离 子固体电解质。正极的水性电解液使用碱性水溶性凝 胶,与由微细化碳和廉价氧化物催化剂形成的正极组 合。
简介

新能源材料-金属空气电池ppt课件

新能源材料-金属空气电池ppt课件

7.3 锌空气电池
7.3.3 基本特性
(1)充电特性
锌空气电池的充电模式,打破了普通蓄电池的常规充电 模式,采用机械式更换电池的锌板或锌粒的"充电"模式,整 体更换锌空气电池的活性物质,将整个锌空气电池进行更换 ,电池不再需要花很长的时间来充电,更换一块20kWh的电 池块只需要1分40秒。只要在公路沿线设置锌板或锌粒匣以及 电解质器匣的机械式整体更换站,其效果如同现在内燃机汽 车的加油站,直接"充电",可以为用户提供很大的方便。
金属/空气电池由具有反应活性的负极和空气电极经电化 学反应偶合而成,它的正极反应物用之不尽。在某些情况 下,金属/空气电池具有很高的质量比能量和体积比能量。 这一体系的极限容量取决于负极的安时容量和反应产物的 贮存与处理技术。
已经研究和开发过的金属/空气电池有原电池、贮备电 池、可充电电池和机械再充式电池等。在机械充电电池设 计(即更换放完电的金属负极)中,电池在本质上相当于原电 池,它的空气电极为相对简单的“单功能”电极,只需要 在放电模式下工作。常规可充电金属/空气电池需要一个第 三电极(用来维持充电时放出氧气)或者一个“双功能”电极 (一个既可以还原氧又可以析氧的电极) 。
7.2 空气电极
7.2.2 外界环境的影响
(1)空气中的CO2的影响
在碱性环境中,二氧化碳会形成碱式碳酸盐而沉积在电 极的微孔结构中,故应使空气中的CO2始终维持在10010-6 以下。
(2)其他影响
锌电极中合金元素的特性和电解液都有可能影响空气电 极的性能和寿命。此外,活性物质中有害物质、隔膜的稳定 性与抗氧化性等因素对锌空气电池性能均有不同程度的影响 。
7.3 锌空气电池
7.3.2 结构
糊状的锌粉在阳极端,起催化作用的碳在阴极。电池壳体上的孔可 让空气中的氧进入腔体附着在阴极的碳上。同时,阳极的锌被氧化。 阴极——是起催化作用的碳从空气中吸收氧。 阳极——是锌粉和电解液的混合物,成糊状。 电解液——高浓度的氢氧化钾水溶液。 隔离层——用于隔离两级间固体 粉粒的移动。 绝缘和密封衬垫——尼龙材料。 电池外表面——镍金属外 壳,具有良好的防腐性的 导体。

金属空气电池

金属空气电池

的最佳选择。
(2)铝空气电池的正极活性物质来源于空气中的氧气,其正极是一种透气、不透液、
能导电、有催化活性的薄膜,它在整个电池中所占的比例很小,余下的空间可以用来充
填阳极材料。因此在现有的小型电池系统中具有最高的比能量。铝空气电池由于空气电
极很薄,使得电池很轻巧,适用于便携式设备。
(3)铝空气电池可携带燃料长距离行驶,节约能源,元件可快速更换,是电动自行
1 正极(空气电极)
一个空气电极一般由三层组成:催化层、防水透气层及用 来增加电极机械强度的金属集流导电网。空气中的氧在电极 参加反应时,首先通过扩散溶入溶液,然后在液相中扩散, 在电极表面进行化学吸附,最后在催化层进行电化学还原。 因此,催化层的性能和催化剂的选择直接关系到空气电极性 能的好坏。而空气电极反应是在气、液、固三相界面上进行 的,电极内部能否形成尽可能多的有效三相界面,将影响催 化剂的利用率和电极的传质过程。在放电过程中,氧气在三 相界面上被电化学催化还原为氢氧根离子。
项目一
项目二
项目三
项目四
项目五
项目六
任务一 任务二 任务三 任务四 任务五 任务六 任务七
任务6 金属空气电池
任务引入
金属空气电池是用金属燃料代替氢能源形成的一种新概念 电池,有望成为新一代绿色能源。它发挥了燃料电池的众多 优点,将锌、铝等金属像氢气一样提供到电池中的反应位置 ,与氧气一起构成一个连续的电能产生装置,金属空气电池 既有丰富的廉价资源,又能再生利用,而且比氢燃料电池结 构简单,是很有发展和应用前景的新能源。下面我们一起进 入金属空气电池的学习吧。
越性:
实际可达到450W·h/kg,比能量密度小于铅酸蓄电池,比功率为50~200W/kg,

锌空气电池与锂空气电池

锌空气电池与锂空气电池
找比能量更高、更便宜的正极材料一直是锂电池发展的方向。
3.金属空气电池提供了很好的电化学性能,包括锌空气电池、镁空气电池、铁空 气电池、钙空气电池、锂空气电池等。在这些金属空气电池中,金属负极储存 能量,正极空气电极只是作为能量转换的工具,氧气来自空气中,取之不尽,这
样也就带来巨大的比能量,通常金属空气电池的理论比能量均在1000mAh.g-1
锌空气电池与锂空气电池
———从电池的工作原理与组成等方面介绍了锌空气 电池与锂空气电池的研究进展
报告人:赵啸宇,端木凡朋
精品课件
锌-空气电池
研究背景 :锌-空气电池的开发过程分为四代 工作原理 :基本的电极反应 电池结构 :以纽扣电池为例介绍基本结构 工作特性 :锌-空气电池工作时的特殊性质
步骤)
O2+H2O+2e→O2H-+OH-
O2H-→OH-+1∕2O2( 速控
精品课件
简化电池截面图
金属氧化物纽扣电池
负极壳 绝缘垫圈 锌负极
隔膜 正极 正极壳
锌空气纽扣电池
精品课件
电池结构
正极
隔膜 催化层 金属网 疏水膜 扩散膜 空气分散膜
精品课件
电池结构
负极内部将会预留15%-20%的体积为负极自由体积 催化层组分为碳与锰的氧化物混合所形成的导电介质 正极通过添加很细的聚四氟乙烯微粒,增加疏水性 金属网构成结构支架,并且作为集流体 疏水膜保持空气和电解液之间的界面,能防止气体透过和防止
精品课件
研究背景
精品课件
第二代锌-空气电池——纽扣电池
体积小,从纽扣到硬币大小 上世纪七十年代曾被作为助听器商业化
精品课件
工作原理
锌-空气电池直接使用空气中的氧气参与产生电能的化学反应 负极:Zn→Zn2++2e

锌空气电池结构图

锌空气电池结构图
据国家“863”项目一位车用电池专家介绍,目前世界上有若干种金属空气电池,包括锌空气电池、铝空气电池和锂空气电池等。他告诉记者,前两种已经进入我国研发范围,与产业化最接近的只有锌空气电池。
以锌空气电池为主要产品的中航长力联合能源科技有限公司相关负责人介绍,锌空气金属燃料电池的主要优势表现在,锌空气金属燃料电池的正极活性物质是空气中的氧气,不占用电池体积。因此电池内部可以携带更多的锌,比能量更高,目前已达到每千克180瓦时,作为汽车动力电池,续驶里程长。锌空气金属燃料电池中的锌为循环使用,对环境零污染。生产电池的原材料丰富,成本低,是锂电池的五分之一。
此外,在实验中,研究人员分别用碱性水溶性凝胶和碱性水溶液作正极的电解液,结果发现,这种新型锂空气电池的放电性能比以往该类型电池大幅提高,特别是如果用碱性水溶液作正极电解液,使电池在空气中以0.1安培/克的放电率放电,电池可连续放电20天。
据了解,这种新型锂空气电池无需充电,只需更换正极的水性电解液,通过卡盒等方式更换负极的金属锂就可以连续使用。正极生成的氢氧化锂可以从使用过的水性电解液中回收,再提炼出金属锂,金属锂则可再次作为燃料循环使用。
破解锂电池成本、容量难题
随着纯电动汽车、燃料电池汽车被作为国家相关政策的鼓励方向,制约它产业化的电池问题越发突出。“目前大家看好的锂离子电池成本太高,容量不大。电动汽车如要突破,必须研发更理想的电池。”近日,国内某汽车企业新能源汽车研发部门相关人士对记者说。
金属空气电池(metal-air battery)被寄予厚望。据了解,这类电池是特殊的燃料电池,是新一代绿色蓄电池,构造原理与干电池相同,所不同的只是它的去极剂取自空气中的氧。它的制造成本低、无毒、无污染、比功率高、比能量高、原材料可回收再生利用,与燃料电池汽车(FCHV)所用氢燃料电池相比,结构简单,价格十分便宜,并且性能优越。

锌空电池PPT

锌空电池PPT

O2H- →OH-+½O2 。
阳极工作原理
金属电极或阳极(Zn) 金属空气电池阳 极有多种,真正实用的商品电池是中性或碱 性锌空气电池。 锌在碱性溶液中产生氧化锌:
Zn+2OH̄ → ZnO+H2O+2ē
。④
在过量的碱中,形成可溶性的锌酸根离 子: → Zn+4OH ̄ → ZnO 2-+2H化当量较 高,价格较低,供应方便。
反应式及理论电压
阳极: Zn + 2OH̄→ ZnO + H2O + 2ē 阴极: O2 + 2H2O + 4ē→ 4OH̄ 综合: 2Zn + O2– + 2ē– → 2ZnO 通常这种反映产生的电压是1.4伏,但放电电流和放电深 度可引起电压变化。空气必须能不间断地进入到阳极,在 正极壳体上开有小孔以便氧气源源不断地进入才能是电池 产生化学反映。 锌空电池保存的关键在封条,除非电池准备立刻使用,否 则不能取下电池正极封条。模拟试验表明,在室温条件下 ,存放一年后电量下降到95%,存放两年后电量下降到 90%,存放四年后电量仍有85%。撕下封条后,电池被 激活并开始工作,在室温环境并不接负载时,根据不同的 电池大小规格,3到12周后电池电量下降50%,超过20周 电量下降到0-10%。因此锌空电池适用于在很少几周内耗 用完电池的场合。如果一旦锌空电池的封条被撕下,空气 就进入内部激活电化学反应,此时即使再贴上封条,电化 学反应也会继续下去直到电量耗尽。
而是按产生中间产物过氧根离子的另一路线进行如下
离子又在电极表面经化学分解 :
4ē+O2+2H2O → 4OH̄ 。 2ē+O2+H2O → O2H̄+OH̄

锌空气电池PPT课件

锌空气电池PPT课件

.
11
二、工作原理
1.电池组成及原理
组成:(–) Zn|KOH|空气(+)
负极为金属Zn;正极为空气中的氧;电解液为KOH
原理:
正极:1 2
O2
Hale Waihona Puke H2O2e2OH E
0.4V
负极:Zn Zn2+ +2e
Zn2+ +2OH Zn(OH)2E 1.25V
Zn(OH)2 ZnO H2O
总反应:Zn+1 2
锌空气电池
➢主要内容: ➢锌空气电池概述 ➢电池工作原理 ➢氧电极催化剂 ➢氧电极性能及制造工艺
.
1
➢本章重点:
氧电极:反应机理﹑氧电极的特点及存在的问题 电池结构原理:工作原理﹑组成结构 制造工艺原理:氧电极的制备
.
2
一、概述
1.锌空气电池定义
以空气作为阴极活性物质,金属作为阳极活性 物质的电池统称为金属空气电池。研究的金属一般 有镁、铝、锌、镉、铁等。其中碱性锌空气电池性 能最好,并且成本低和环境友好,因而受到人们的 广泛关注,被认为是大有希望的能量储存装置。
.
7
5.发展历史
锌空气电池的发明已经有上百年的历史,1995 年以色列电燃料(Electric Fuel)有限公司首次将锌 空气电池用于EV上,使得空气电池进入了实用化阶 段。
美国Dreisback Electromotive公司以及德国、 法国、瑞典、荷兰、芬兰、西班牙和南非等多个国 家也都在EV上积极地推广应用锌空气电池。
.
13
▪ 过氧化物分解成为羟基和氧气的过程是整个反应的 速率控制步骤。
▪ 为了加速预氧化物的还原和整个反应的速率, 在空 气正极中使用了催化剂来提升过程2 的反应速率。

锌空气电池与锂空气电池PPT课件

锌空气电池与锂空气电池PPT课件

17
2. 双性电解液锂空气电池
隔膜
催化剂
CHENLI
基本反应如下:
2Li+1/2O2+2H+ → 2Li+H2O (3) 2Li+1/2O2+H2O → 2LiOH (4)
其中反应式(3)为酸性溶液中的
反应方程式,反应式(4)为中性
或碱性溶液中的反应方程式。 反应平衡电位均高于非水性电 解液反应的平衡电位,分别为
负极金属锂在放电过程中氧化为锂离 子,溶于电解液,电解液中的锂离子 扩散到正极,与被还原的氧气反应生
成产物Li2O2或Li2O沉积在正极上。
(1)为主反应,Li2O2为主产物。当放
电达到一定深度(1V左右),会有
CHENLI
Li2O放电产物出现。
16
2. 双性电解液锂空气电池
反应产物Li2O2不溶于非
19 二、原理&结构——结构组成
1. 阳极
典型阳极是集流体承载的金属 锂,制备简单,性能良好。进 一步的设计采用了保护层,保 护层常采用陶瓷或玻璃锂离子 导体,这种保护金属锂电极在 水性、非水性溶液中都很稳定 。
CHENLI
20 2.阴极&催化剂
空气电极典型制备是 把碳、黏结剂、催化 剂通过涂膜、浸渍或 压制等方法承载在集 流体上。更进一步, 也可用衬底来提高表 面积,或在阴极外表 面放上透气膜防止水 分进入电池内。
CHENLI
25
CHENLI
CHENLI
13
一、研究背景
1.近几十年来,以金属锂为基础的电池主导了高性能电池的发展,这是因为在所有 的电池负极材料中,金属锂具有最低的密度,高的电压,较好的电子电导及最高 的电化学当量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CHENLI
13
一、研究背景
1.近几十年来,以金属锂为基础的电池主导了高性能电池的发展,这是因为在所有 的电池负极材料中,金属锂具有最低的密度,高的电压,较好的电子电导及最高 的电化学当量。
2.金属锂的比容量虽高达3860mAh.g-1 ,但大部分锂离子电池正极材料的电 化学容量只有200mAh.g-1 左右。由于价格、安全性、比能量等方面的影响
负极金属锂在放电过程中氧化为锂离 子,溶于电解液,电解液中的锂离子 扩散到正极,与被还原的氧气反应生
成产物Li2O2或Li2O沉积在正极上。
(1)为主反应,Li2O2为主产物。当放
电达到一定深度(1V左右),会有
CHENLI
Li2O放电产物出现。
16
ห้องสมุดไป่ตู้
2. 双性电解液锂空气电池
反应产物Li2O2不溶于非
1
锌空气电池与锂空气电池
———从电池的工作原理与组成等方面介绍了锌空气 电池与锂空气电池的研究进展
报告人:赵啸宇,端木凡朋
CHENLI
2
锌-空气电池
研究背景 :锌-空气电池的开发过程分为四代 工作原理 :基本的电极反应 电池结构 :以纽扣电池为例介绍基本结构 工作特性 :锌-空气电池工作时的特殊性质
CHENLI
9
工作特性
1)电池尺寸选择性灵活 从纽扣、硬币电池到大型方形电池, 用于助听设备的纽扣电池和军用方形电池较多。
2)电压稳定 额定开路电压为1.4V,终止电压一般为0.9-1.1V
3)体积比能量高 在所有纽扣电池中,锌-空气电池体积比能量 最高。
CHENLI
10
工作特性
4)放电特性:放电曲线平稳,放电电流越大,电压越低
水性电解液,逐步堵塞 正极的孔隙,减少反应 界面面积,阻碍反应物 扩散至反应界面,从而 阻止反应的进一步进行 ,使实际获得的比容量 低于其理论值,同时还 导致锂空电池循环性能 较差等不良结果。
CHENLI
于是催生出双性电解液锂空 气电池,将电池正极侧的非 水性电解液以水性电解液替 代,而负极侧仍采用非水性 电解液,从而在不影响负极 的同时,解决了正极反应产 物不溶于电解液的问题,
17
2. 双性电解液锂空气电池
隔膜
催化剂
CHENLI
基本反应如下:
2Li+1/2O2+2H+ → 2Li+H2O (3) 2Li+1/2O2+H2O → 2LiOH (4)
其中反应式(3)为酸性溶液中的
反应方程式,反应式(4)为中性
或碱性溶液中的反应方程式。 反应平衡电位均高于非水性电 解液反应的平衡电位,分别为
正极:O2+2H2O+4e→4OHO2+H2O+2e→O2H-+OH- O2H-→OH-+1∕2O2( 速控步骤)
CHENLI
6
简化电池截面图
金属氧化物纽扣电池
负极壳 绝缘垫圈 锌负极
隔膜 正极 正极壳
CHENLI
锌空气纽扣电池
7
电池结构
正极
隔膜 催化层 金属网 疏水膜 扩散膜 空气分散膜
CHENLI
,寻找比能量更高、更便宜的正极材料一直是锂电池发展的方向。
3.金属空气电池提供了很好的电化学性能,包括锌空气电池、镁空气电池、铁空 气电池、钙空气电池、锂空气电池等。在这些金属空气电池中,金属负极储存 能量,正极空气电极只是作为能量转换的工具,氧气来自空气中,取之不尽,这样
也就带来巨大的比能量,通常金属空气电池的理论比能量均在1000mAh.g-1
4.274V 和3.446V。
18
隔膜 催化剂
CHENLI
充电时电极反应如下:
(1)Li负++极e反-应→Li
通过导线供应电子,锂离子Li+ 由正极的水性电解液穿过隔膜 到达负极表面,在负极表面发 生反应生成金属锂。
(24)O正H极-→反O应2+2H2O+4e-
反应生成氧,产生的电子供应 给导线。
CHENLI
3
研究背景
CHENLI
4
第二代锌-空气电池——纽扣电池
体积小,从纽扣到硬币大小 上世纪七十年代曾被作为助听器商业化
CHENLI
5
工作原理
锌-空气电池直接使用空气中的氧气参与产生电能的化学反应 负极:Zn→Zn2++2e
Zn+2OH-→Zn(OH)2+2e Zn(OH)2→ZnO+H2O
19 二、原理&结构——结构组成
1. 阳极
典型阳极是集流体承载的金属 锂,制备简单,性能良好。进 一步的设计采用了保护层,保 护层常采用陶瓷或玻璃锂离子 导体,这种保护金属锂电极在 水性、非水性溶液中都很稳定 。
CHENLI
20 2.阴极&催化剂
空气电极典型制备是 把碳、黏结剂、催化 剂通过涂膜、浸渍或 压制等方法承载在集 流体上。更进一步, 也可用衬底来提高表 面积,或在阴极外表 面放上透气膜防止水 分进入电池内。
5)储存寿命 通常用密封标签密封住气孔,防止气体迁移进入 电池引起电池性能的衰变;电池中锌电极会发生自放电反应, 因为锌在碱性电解质中呈热力学不稳定性,反应生成ZnO和H2, H2 可以从密封签中透过,防止电池变形。高温和潮湿会显著影 响自放电速度。
CHENLI
11
总结:
CHENLI
12
锂-空气电池
CHENLI
21 3.电解质&隔膜
这里介绍几种有机电解质
锂空气电池常用隔膜有聚烯烃隔膜、玻璃纤维和固体离子导电膜。
CHENLI
22 三、设计&性能
锂空气电池有多种结构形式有软包 装型、硬币型、塑料壳型等。最普 遍的结构是采用软包装型。
CHENLI
23
CHENLI
24
这是一个大型锂空气电池的单 体设计,外壳为特殊设计,边 长5in的方形,两侧均有空气窗 口,阳极的两面均有与之层叠 的空气阴极。这些单体集成起 来可成为大型锂空气电池。
8
电池结构
负极内部将会预留15%-20%的体积为负极自由体积 催化层组分为碳与锰的氧化物混合所形成的导电介质 正极通过添加很细的聚四氟乙烯微粒,增加疏水性 金属网构成结构支架,并且作为集流体 疏水膜保持空气和电解液之间的界面,能防止气体透过和防止
水的进入 空气分散层可以把氧气均匀地分散到正极表面
以上。
CHENLI
14 几种金属空气电池的特性
可以看出在所有的金属空气电池中锂空气电池无疑具有最高的比能量 ,锂空气电池惊人的能量密度将会在航天航空和移动能源等领域起到不 可估量的作用。
CHENLI
15 二、原理&结构——锂空气电池两大体系
1.非水性电解液锂空气电池 两个基本反应如下:
2Li+O2→Li2O2 Eθ=3.10V(1) 4Li+O2→2Li2O Eθ=2.91V(2)
相关文档
最新文档