滑动轴承材料研究、故障形式及其寿命预测..
12—3 滑动轴承的失效形式及常用材料

1.磨粒磨损 硬质颗粒 磨料→研磨轴和轴承表面 磨粒磨损 硬质颗粒→磨料 研磨轴和轴承表面 磨料 2.刮 伤 刮 3.咬粘(胶合) 咬粘(胶合) 咬粘 轴表面硬轮廓峰顶刮削轴承 温升+压力 油膜破裂 温升 压力+油膜破裂 焊接 压力 油膜破裂→焊接
二. 轴瓦的定位
轴瓦定位的目的——防止轴瓦相对轴承座移动 防止轴瓦相对轴承座移动 轴瓦定位的目的 轴瓦定位的方法:凸缘、紧定螺钉、销钉、 轴瓦定位的方法:凸缘、紧定螺钉、销钉、凸耳
三.油孔及油槽 油孔及油槽
开设油孔及油槽的原则: 开设油孔及油槽的原则: 将油导入整个摩擦表面而又不影响油膜承载能力 单轴向油槽→整体式 最大油膜厚度处 单轴向油槽 整体式→最大油膜厚度处 整体式 轴向油槽{ 轴向油槽{ 双轴向油槽→对开式 剖分面处 双轴向油槽 对开式→剖分面处 对开式
§12—4 轴 瓦 结 构
滑动轴承的关键零件 关键零件 轴瓦 滑动轴承的关键零件——轴瓦 影响结构的因素——材料、润滑等 材料、 影响结构的因素 材料
一. 轴瓦的型式和构造
整体轴套 整体式{ 整体式{ 轴瓦{ 轴瓦{ 对开式{ 对开式{ 厚壁轴瓦 浇铸 薄壁轴瓦 轧制 }双、多层金属 单、双、多层金属卷制轴套
4.疲劳剥落 载荷反复作用 疲劳裂纹→扩展 剥落 疲劳剥落 载荷反复作用→疲劳裂纹 扩展 疲劳裂纹 扩展→剥落 5.腐蚀 腐蚀 润滑剂氧化→酸性物质 腐蚀 润滑剂氧化 酸性物质→腐蚀 酸性物质
二. 轴承的材料 ——轴瓦和轴承衬的材料 轴瓦和轴承衬的材料
要求:良好的减摩性、耐磨性、 要求:良好的减摩性、耐磨性、抗胶合性 顺应性、磨合性、 顺应性、磨合性、工艺性 1.轴承合金 (白合金、巴氏合金 ——以锡或锑为软 轴承合金 白合金 巴氏合金) 白合金、 基体,均夹着锑锡、铜锡硬晶粒→最好,但 最好, 最好 价高、强度低→轴承衬 轴承衬。 价高、强度低 轴承衬。 2.青铜 ——锡、铝、铅青铜 青铜 3.灰铸铁、耐磨铸铁 灰铸铁、 灰铸铁 ——轻载、低速 4.粉未治金(含油轴承、陶质金属) 粉未治金(含油轴承、陶质金属 粉料 ——塑料、尼龙、橡胶、硬木
滚动轴承寿命预测技术的研究

滚动轴承寿命预测技术的研究随着工业和科技不断的发展,滚动轴承作为一种重要的机械零件,被广泛地应用于各个行业中。
但是,由于其使用寿命有限,在运行一定时期后需要更换或进行维修。
因此,如何准确地预测滚动轴承的寿命,合理地进行维护和更换,已成为行业内的一个重要课题。
近年来,滚动轴承寿命预测技术的研究取得了不少进展。
本文主要介绍其中的一些研究成果和发展趋势。
一、寿命预测方法目前,滚动轴承的寿命预测方法大致可以分为三类:经验法、应力分析法和状态监测法。
经验法是通过历史数据,统计分析求得寿命的一种方法。
这种方法的优点是简单易行,适用于已有历史数据或样机的情况。
但是,经验法忽略了轴承的工作环境因素,寿命预测的精度较低。
应力分析法是根据轴承的材料、结构和工作环境等因素,对轴承在使用过程中所受到的载荷和应力进行计算分析,并预测其寿命。
这种方法的优点是计算精度高,对于新轴承的寿命预测较为准确。
但是,应力分析法需要大量的材料力学和应力分析知识,且对轴承材料的特性了解不够全面,因此在某些工作环境下预测结果难以准确。
状态监测法是通过监测轴承内部的振动、温度、油液清洁度等状态指标来判断轴承的工作状态和寿命,它是一种目前应用较广泛的寿命预测方法。
状态监测法的优点是操作简便,能够实时监测,反应灵敏,而且对于现场检测和实际应用情况具有很强的适应性。
但是,状态监测法的缺点是受监测指标的影响较大,准确性存在一定问题。
二、寿命预测技术的研究演进随着科技的进步和工业发展的需要,滚动轴承寿命预测技术也在不断地得到改进和完善。
下面简要介绍一下寿命预测技术的研究演进过程。
1. 经典寿命预测法经典寿命预测法是基于滚动轴承的材料和结构来进行寿命预测的方法。
这种方法主要考虑滚动体与架的接触和变形,通过计算轴承的应力和变形来预测其寿命。
2. 动态寿命预测法动态寿命预测法是根据对轴承实际运行情况的监测和分析,使用自适应控制技术来进行寿命预测的方法。
这种方法可以更精准地预测轴承的寿命,减少轴承寿命预测误差。
关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状

自润滑关节轴承由于具有结构简单、承载能力强、适应温度范围广、在服役过程中无需添加润滑剂等特点,被广泛应用在航空航天、水利电力、军工机械等行业。
与此同时,高端、精密、大型装备的发展对自润滑关节轴承的摩擦学性能、使用寿命和可靠性提出了更高的要求。
自润滑关节轴承所使用的自润滑材料性能直接决定了轴承的寿命和性能水平,因此开展对自润滑材料性能的研究成为提高自润滑关节轴承质量和延长其寿命的关键。
自润滑关节轴承通过在轴承外圈内侧粘结、镶嵌固体润滑材料或者表面改性生成润滑膜层等方式形成润滑结构,该部分润滑结构与轴承内圈形成自润滑摩擦面。
图1所示为轴承分别以内侧粘结PTFE衬垫、表面溅射沉积碳基薄膜的方式实现自润滑。
图1 自润滑关节轴承结构:(a) 衬垫类自润滑关节轴承;(b) 碳基薄膜型自润滑关节轴承目前,自润滑衬垫材料大致分为三种,即金属背衬层状复合材料、聚合物及其填充复合材料和PTFE纤维织物复合材料。
自润滑衬垫材料的摩擦学性能、衬垫粘结前的处理方式、粘结方式、编织纹路等因素影响着自润滑关节轴承的使用性能。
关节轴承自润滑衬垫材料摩擦学性能衬垫类关节轴承利用粘结剂将织物衬垫粘结到轴承外圈内表面作为润滑层,将轴承内外圈之间的钢对钢摩擦转化为编织物对钢的摩擦,在保证轴承自润滑的同时降低摩擦系数。
目前,国内外学者对衬垫类关节轴承的摩擦磨损性能研究大都集中在衬垫材料性能的优化方面,通过对织物衬垫复合材料改性、优化编织结构、改变纤维的捻制方式和衬垫层数,以及对摩擦对偶面进行表面织构等手段提高关节轴承的减摩耐磨性能。
01衬垫材料的组分衬垫类自润滑关节轴承大都以低摩擦聚合物为主要成分,如聚四氟乙烯(PTFE)、聚酰胺(PA)、聚酰亚胺(PI)等。
目前国内外轴承企业大都以PTFE作为衬垫材料的主要成分,同时填充其他功能性纤维。
聚四氟乙烯是有机高聚物,分子结构是C₂F₂,其中C、C原子以及C、F原子之间都以共价键结合,具有较大的结合能,如图2所示,分子链之间极易滑移,表现出低摩擦的特性。
轴承寿命预测与损伤诊断方法研究

轴承寿命预测与损伤诊断方法研究轴承是机械设备中重要的零部件,其寿命直接影响到设备的使用寿命和可靠性。
因此,轴承寿命预测和损伤诊断方法的研究具有重要意义。
本文将介绍轴承寿命预测与损伤诊断的相关方法和技术。
一、轴承寿命预测方法轴承寿命预测是通过一定的方法和技术对轴承的寿命进行估算。
常用的轴承寿命预测方法有试验法、统计法和仿真法。
试验法是通过实验数据的分析和处理来预测轴承的寿命。
试验法的优点是直观、可靠,但其缺点是耗时耗力,且结果受试验条件和环境的影响较大。
统计法是通过对大量轴承的寿命数据进行统计分析,建立数学模型来推算寿命。
统计法的优点是能够综合考虑多种因素对寿命的影响,但其缺点是建立合理的统计模型需要大量的轴承寿命数据。
仿真法是利用计算机仿真技术,基于轴承的工作条件和负载情况,建立数学模型进行仿真计算,得到轴承的寿命指标。
仿真法的优点是灵活、快速,且结果的准确性较高,但其缺点是需要准确的输入参数和模型。
二、轴承损伤诊断方法轴承损伤诊断是通过监测轴承的振动、声音、温度等信号,结合信号处理和模式识别技术,对轴承的损伤情况进行判断和预警。
振动诊断是轴承损伤诊断中常用的方法之一。
通过对轴承振动信号的采集和分析,可以判断轴承的运行状态和损伤程度。
常用的振动参数包括加速度、速度和位移等,通过对这些参数的分析,可以了解轴承的损伤情况。
声音诊断是通过对轴承工作时的声音信号进行监测和分析,判断轴承的损伤情况。
轴承在损伤状态下会产生特定频率和幅值的声音信号,通过对这些信号的分析,可以诊断轴承的损伤情况。
温度诊断是通过监测轴承的工作温度,判断轴承的运行状态和损伤程度。
轴承在损伤状态下会产生摩擦热,从而导致轴承的温度升高。
通过对轴承温度的监测和分析,可以诊断轴承的运行状态。
三、轴承寿命预测与损伤诊断方法的研究进展近年来,随着传感器技术、信号处理技术和机器学习技术的发展,轴承寿命预测和损伤诊断方法取得了一定的进展。
在轴承寿命预测方面,随着试验技术的更新和计算机仿真技术的成熟,基于试验和仿真的方法在寿命预测中得到了广泛应用。
滑动轴承的寿命测试标准

需要注意的是,以上方法只是评估滑动轴承寿命的一些常用方法,实际应用中还需要根据具体情况选择合适的 方法。同时,由于滑动轴承的寿命受到多种因素的影响,因此测试结果需要结合具体情况进行分析和评估。
根据《滑动轴承产品质量分等标准》,滑动轴承的寿命测试标准主要包括以下内容: 测试准备 (1)设计滑动轴承的几何尺寸、材料、热处理工艺等参数,并制定相应的制造工艺流程。 (2)准备测试设备,包括试验机、测量仪器、转速计、 温度计、压力计等。 (3)选择合适的润滑剂或润滑方式,确保轴承在测试过程中得到充分的润滑。 测试过程 (1)将滑动轴承安装在试验机上,调整其位置,使其轴线与试验机的轴线重合。 (2)根据标准要求,设定试验机的载荷、转速、温度等参数。 (3)启动试验机,记录滑动轴承的运行情况,包括噪音、振动、温度、压力等参数。 (4)在测试过程中,定期检查滑动轴承的表面质量、磨损情况等,记录其变化情况。 (5)在测试过程中,对滑动轴承进行多次启动、停机、反向旋转等操作,模拟实际使用中的复杂工况。 测试结果分析
至于具体的测试标准,可以根据不同的国家和行业标准进行制定。例如,我国制定的《滑动轴承产品质量分等 标准》就对滑动轴承的寿命测试方法、评估标准等进行了详细的规定。此外,国际上也有一些知名的滑动轴承标准
,如IS。、ASTM等,他们制定了一系列的滑动轴承测试标准和规范,为滑动轴承的生产和使用提供了指导和 依据。
(1)根据测试记录的数据,分析滑动轴承的寿命表现,包括运行稳定性、表面质量、磨损情况等。
(2)将测试结果与标准要求进行对比,评估滑动轴承的质量等级。
发动机滑动轴承的早期损坏及预防

发动机滑动轴承的早期损坏及预防发动机滑动轴承是发动机的关键部件之一,对于发动机的运行稳定性和寿命有着至关重要的作用。
然而,在发动机运行过程中,滑动轴承常常会出现早期损坏的问题,这不仅会影响发动机的性能和寿命,同时还会增加维修成本和时间。
因此,预防滑动轴承早期损坏至关重要。
本文将从以下几个方面介绍发动机滑动轴承的早期损坏及预防措施。
一、早期损坏原因1. 润滑不良:滑动轴承需要润滑油来减小磨损并保持稳定的运行。
如果润滑不良,可能会导致轴承过早磨损或损坏。
2. 润滑油质量问题:润滑油的质量不良可能会导致轴承受到腐蚀或磨损,无法承受设计负荷。
3. 过高温度:轴承温度升高会导致轴承与衬垫之间的润滑油膜崩溃,从而导致摩擦和磨损。
4. 载荷过大:如果轴承所承受的负荷超过其设计负荷,则可能会导致轴承过早磨损或损坏。
5. 安装错误:错误的安装可能会导致压力分布不均,从而导致轴承过早磨损或损坏。
二、预防措施1. 保持润滑良好:润滑良好是防止轴承早期损坏的最重要措施。
使用质量合格的润滑油,并保证润滑系统清洁,定期更换润滑油以防止污染。
2. 确保轴承温度控制在合理范围内:保持发动机正常功率输出和燃油经济性的同时,需要保持轴承温度在合理的范围内。
可以加强散热系统的冷却效果,或者采用更耐热的材料以防止早期损坏。
3. 控制载荷:确保发动机工作在设计负荷以内,以防止轴承受到过大的负荷,从而防止早期损坏。
4. 安装正确:正确的安装轴承可以保证其承受力分配均匀,从而减小早期损坏的风险。
因此,在更换或维修轴承时,需要严格按照规定的安装顺序和技术要求进行。
5. 定期检查:对于发动机的主要部件,需要定期进行检查和维护,包括滑动轴承。
通过定期维护,可以及时发现轴承异常,避免其进一步损坏。
发动机滑动轴承的早期损坏是十分常见的问题,但通过正确的预防措施,可以有效防止这种损坏发生,延长发动机的使用寿命,减少维修成本,提高发动机的可靠性和稳定性。
滚动轴承动力学失效分析与寿命评估

滚动轴承动力学失效分析与寿命评估滚动轴承是机械传动中常用的关键元件之一,其在各种工况下都承受着巨大的载荷和转速。
由于长时间运转下的疲劳和应力集中,滚动轴承容易发生失效。
因此,对滚动轴承的动力学失效进行分析和寿命评估是非常重要的。
一、前言滚动轴承作为机械传动的关键组件之一,其稳定性和可靠性直接影响着设备的性能和寿命。
滚动轴承的失效通常分为表面失效、内圈失效和滚道失效等多种形式。
因此,对滚动轴承的动力学失效进行深入分析,并对其寿命进行评估,对于提高设备的使用寿命和可靠性具有重要意义。
二、滚动轴承的基本原理滚动轴承是通过滚动体(如钢球、滚子等)在内外圈之间滚动来实现轴与承载之间的相互分离和接触。
滚动轴承具有较高的承载能力、运转平稳、滚动阻力较小等优点,因此广泛应用于机械传动系统中。
三、滚动轴承动力学失效分析1. 表面失效表面失效是指轴承内外圈表面发生疲劳剥落或脱落等现象。
表面失效通常是由于轴承受到不均匀的载荷和周期性应力加载导致的。
在高负荷和高转速的工况下,轴承的表面往往会发生微小的裂纹,随着时间的推移,裂纹会逐渐扩展并最终导致轴承的失效。
2. 内圈失效内圈失效是指轴承内圈出现裂纹、断裂或塑性变形等失效形式。
内圈失效通常是由载荷过大、轴承材料缺陷或装配不当等原因导致的。
内圈失效一般会引起设备的停机,对生产造成严重影响。
3. 滚道失效滚道失效是指轴承滚道出现疲劳剥落、腐蚀或齿槽形成等情况。
滚道失效通常是由于滚动体在滚道上的不均匀载荷和过大的摩擦力导致的。
滚道失效会使轴承的运行不稳定,产生异常声音和振动,从而严重影响设备的正常运转。
四、滚动轴承寿命评估方法滚动轴承寿命评估是通过对轴承的动力学失效进行分析和计算,从而预测轴承的使用寿命。
常用的评估方法有以下几种:1. 经验公式法经验公式法是根据过去的实验和应用经验建立的数学模型,通过计算得到轴承的寿命。
这种方法简单快捷,但其精度较低,在实际应用中通常用于初步估算。
滑动轴承的检修

二、滑动轴承的检修工艺
2.轴瓦的刮研
轴瓦的刮研就是根据轴瓦与轴颈的配合要求来对轴瓦表面 进行刮研加工。重新浇铸乌金的轴瓦在车削之后、使用前 要进行刮研。
(1)检查轴瓦与轴颈的配合情况。将轴瓦内表面和轴颈擦 干净,在轴颈上涂薄薄一层红油(红丹粉与机油的混合物), 然后把轴瓦扣放在轴颈处,用于压住轴瓦, 同时周向对轴颈 做往复滑动,往复数次后将轴瓦取下,查看瓦面。此时瓦表 面有的地方有红油点,有的地方有黑点,有的地方呈亮光。 无红油处表明轴瓦与轴颈没有接触,间隙较大;红点表明二 者虽无接触,但间隙较小;黑点表明它比红点高,轴瓦与轴略 有接触;而亮点表明接触最重,亦即最高点,经往复研磨,发 出了金属光泽。
二、滑动轴承的检修工艺
一、轴瓦的检查及刮研
1.轴瓦缺陷的检查
轴承解体后,用煤油、毛刷和破布将轴瓦表面清洗干净, 然后对轴瓦表面做外观检查,看乌金层有无裂纹、砂眼、重 皮和乌金剥落等缺陷。 将手指放到乌金与瓦壳结合处,用小锤轻轻敲打轴瓦,如结 合处无振颤感觉且敲打声清脆无杂音,则表明乌金与瓦亮无 分离。还可用渗油法进行检查,即将轴瓦浸于煤油中3~ 5min,取出擦干后在乌金与瓦衬结合缝处涂上粉笔末,过一 会儿观察粉末处是否有渗出的油线,如无则表明结合良好, 钨金与瓦壳没有分离。
二、滑动轴承的检修工艺
(2)根据配合情况刮削轴瓦。现场多用手工方法对轴瓦进行 刮削,使用工具为柳叶刮刀或三角刮刀。刮削是针对瓦面上 的亮点、黑点及红点,无红油瓦无须刮削。对亮点下刀要重 而不僵,刮下的乌金厚且呈片状;对黑点下刀要轻,刮下的乌 金片薄且细长;对红点则轻轻刮挑,挑下的乌金薄且小刮刀 的刀痕下一遍要与上一遍呈交叉状态,形成网状,使轴承运 行时润滑油的流动不致倾向一方,这就完成轴瓦的第一次刮 削。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、滑动轴承材料研究
理想的滑动轴承材料应该具有的性能: (1)减摩性:材料要具有较低摩擦阻力的性质,与轴颈材料和 润滑剂有关。 (2)耐磨性:材料抵抗磨损的能力,与材料的显微组织、屈服 强度和硬度有关。 (3)抗咬合性:轴承工作时防止轴承和轴颈表面互相咬粘或防 止轴承和轴颈烧伤的能力,与材料的显微组织、剪切强度、 亲油性和表面氧化等有关,而且还与匹配轴的材质有关。 (4)可嵌入性:材料嵌入外来异物或污物,避免表面划伤或磨 损的能力,也即材料在硬颗粒作用下产生局部塑性变形的 能力,与材料的显微组织、屈服强度、硬度、合金层和镀 层的厚度有关。
2、铜合金轴承材料
伴随着汽车工业的发展,汽车发动机的性能不 断提高,要求滑动轴承具有更高的承载能力和高的 抗疲劳性能,因而铜合金材料逐渐取代巴氏合金而 成为滑动轴承的主导材料。铜合金材料是目前使 用最多的一种轴承材料,其具有热传导性好、承载 能力强、熔点高、耐热性好,减摩性与耐磨性好 等特点。其中铅青铜、锡青铜和铝青铜是最主要 的铜合金轴承材料。锡青铜的减摩性与耐磨性最 好,但嵌入性差,适用于重载及中速场合。铅青 铜抗粘附能力强,适用于高速、重载轴承。铝青 铜强度硬度高,适用于低速,重载轴承。
3、铝合金材料
铝合金轴承材料的研究开发与使用起始于第一次世界 大战期间的德国,主要运用于一些军事装备上。后来英美 日等国相继开展了铝合金轴承材料的研究。铝合金有相当 好的耐腐蚀性和较高的疲劳强度,摩擦性能也较好。这些 优点使得其在部分领域取代了较贵的轴承合金和青铜。
4、多孔质金属材料
这是用金属粉末压制、烧结而成的轴承材料又叫含油 轴承。用粉末冶金法制作的轴承,具有多孔组织,可存储 润滑油,可用于加油不方便的场合。运转时轴瓦温度升高, 由于油的膨胀系数比金属大, 油自动进入摩擦表面起到 润滑作用。含油轴承加一次油,可使用较长时间。
滑动轴承材料研究、故障形式 及其寿命预测
2011/11/4
演讲内容
由于滑动轴承的工作环境越来越复 杂,要求更多的滑动轴承在高温、 高负荷、强腐蚀的环境中工作,这 就对材料提出了更高的要求。
研究轴承的故障形式对于弄清轴承 的失效以及对其故障诊断具有种种常见 的滑动轴承寿命预测的方法。
1.轴承合金(巴氏合金)
1839年JBabbitt发明了一种适合蒸汽发动机使用的白 色软质轴承合金,称为巴氏合金,由于其具有优良的滑动轴 承特性,广泛应用于从小型汽油发动机到大型柴油发动机 以及各种工程机械领域中,时至今日,它仍不失为一种较好 的滑动轴承材料。起初巴氏合金主要是一种以锡锑为主的 合金,后经多年发展,为了节约昂贵的锡,逐渐采用铅基取 代锡基。无论是锡基还是铅基,都是软质低熔点的材料,所 以其具有优良的减摩性、抗咬合性、可嵌入性以及跑合性, 然而其承载能力以及耐热、耐疲劳性能较差随着机械设备 向更高性能方向发展,巴氏合金还是逐渐失去了其在滑动 轴承材料中的主导地位,特别是20世纪70年代以后,采用巴 氏合金材料制作的轴承在汽车发动机中的使用量急剧减少, 尽管如此,巴氏合金在低载、高速条件下仍有广泛的应用。
5、无油润滑轴承材料
利用固体润滑剂实现自润滑的轴承称为 无油轴承。作为固体润滑剂有软质金属(Au、 Ag、In、Sn、Pb)、氧化物(PbO、PbO4)、 氟化物(BaF2、CaF2)、硫化物(MoS2、WS2), 以及石墨、氟化石墨、各种树脂材料等,但 使用较多是石墨、MoS2和聚四氟乙烯(PTFE)树脂材料。
4)烧瓦现象。在高温、高速、高载荷的运行情况下,轴颈与 轴瓦材料发生热膨胀,轴承间隙消失,金属之间直接接触, 使得润滑油燃烧。在高温下,轴瓦和轴颈表面的合金发生 局部熔化。严重时,轴瓦与轴一起旋转或者咬死。由于轴 承长时间在无润滑油条件下工作,使轴瓦温度急速上升。 5)疲劳破坏。在交变载荷的作用下,轴承表面产生往复作用 的拉应力、压应力以及剪切应力,从而在轴承表面产生细 微裂纹,在不断的运行状态下,最后形成疲劳破坏 6)腐蚀破坏。由于润滑油被氧化或者被污染,使轴承的工作 环境防腐蚀不良,轴承的工作表面有寄生电流通过,导致轴 承表面起毛及出现随机分布的不规则凹坑。另外还有气蚀 失效和油膜振荡造成的轴承失效。
(8)亲油性:指材料易被润滑油湿润和在工作表面上形成边界 膜的能力,主要与材料的成分和润滑油的性质有关。 (9)耐蚀性:指材料抵抗腐蚀的能力,主要与材料中的化学成 分、环境中的腐蚀介质的种类有关。 • 实际上没有一种材料能同时满足这些性能要求。因此,轴 承材料必须根据其使用条件进行合理的选择。尽管可采用 的工程材料范围很广,但针对滑动轴承对材料所提的要求, 现代轴承材料主要有以下几种:巴氏合金、铜合金、铝合 金、多孔质金属材料、非金属材料,如塑料、碳、橡胶和 陶瓷等。
(5)跑合性:依靠表层的弹塑性变形来补偿滑动表面 初始配合不良的性能,具有低弹性模数和好的可塑 性的软金属有良好的跑合性,在跑合过程中降低摩 擦力、温度和磨损量。 (6)承载能力:材料在低的摩擦因数和适度磨损时,能 承受最大载荷的能力,与材料的化学成分、润滑油 粘度、轴的状况和轴承工作温度有关。 (7)抗疲劳性:指材料在变载荷条件下,抵抗疲劳破坏 的能力,轴承发生疲劳破坏时,裂纹正好是从接近 材料表面受最大剪应力处开始,在多层滑动轴承材 料中,这种裂纹垂直于表面的方向往里蔓延,一直 到达背材的结合处,然后沿背材扩展并相互连接而 剥落,与材料的化学成分、轴承的表面缺陷、工作 温度、装配和润滑状况有关。
二、滑动轴承故障形式
滑动轴承的主要故障形式及形成原因: 1)正常磨损。当轴承的磨损量累积到超过许用磨损 值时,就认为轴承失效。其主要原因是超速、超载 运行,或在润滑油中含有杂质。 2)擦伤。主要是由于轴承在启动或停止时,由于轴承 的油膜压力不够、润滑油太少或者润滑油中混有 杂质,导致轴承与轴颈表面发生直接接触而产生擦 伤。 3)胶合。轴承在超负荷的运行状态下,局部的温度过 高、载荷过大或者缺少润滑油以及轴承座的振动, 使轴承与轴配合各表面直接接触而局部熔合在一 起。