专训1 用二次函数解决问题的四种类型
二次函数应用题分类解析

二次函数应用题分类解析二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类: 第一类、利用待定系数法对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。
解答的关键是熟练运用待定系数法,准确求出函数关系式。
例1. 某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。
根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?析解:(1)因为题中给出了y 是x 的二次函数关系,所以用待定系数法即可求出y与x 的函数关系式为1x 53x 101y 2++=(2)由题意得S=10y(3-2)-x 10x 5x 2++-=(3)由(2)465)25x (10x 5x S 22+--=++-=及二次函数性质知,当1≤x ≤2.5,即广告费在10—25万元之间时,S 随广告费的增大而增大。
二、分析数量关系型题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。
解答的关键是认真分析题意,正确写出数量关系式。
例2. 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。
在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。
设销售单价为x 元,日均获利为y 元。
二次函数的几种解析及求法

O
解:(1)B(10,0),D(5,3) (2)设抛物线的函数解析式为
y ax 2 c(a 0)
y
C D O
由题意可得:
100a c 0 25a c 3
解得:
A
B x
1 2 ∴抛物线的函数解析式为: y x 4 25
a 1 25 c 4
一、二次函数常用的几种解析式的确定
1、一般式
已知抛物线上三点的坐标,通常选择一般式。 2、顶点式
已知抛物线上顶点坐标(对称轴或最值),通常选择顶点式。 3、交点式 已知抛物线与x轴的交点坐标,选择交点式。 4、平移式 将抛物线平移,函数解析式中发生变化的只有顶点坐 标, 可将原函数先化为顶点式,再根据“左加右减, 上加下减”的法则,即可得出所求新函数的解析式。
∴ 船不能通过拱桥。
三、应用举例
例3、将抛物线 向左平移4个单位, 再向下平移3个单位,求平移后所得抛物线的解析式。 解法:将二次函数的解析式 转化为顶点式得: (1)、由 向左平移4个单位得: (左加右减)
(2)、再将
向下平移3个单位得
(上加下减)
即:所求的解析式为
四、尝试练习
1、已知二次函数的图像过原点,当x=1时,y有最小值为 -1,求其解析式。 解:设二次函数的解析式为 ∵ x = 1, y= -1 , ∴顶点(1,-1)。 ∴ 又(0,0)在抛物线上, ∴ ∴ a =1 ∴ 即:
∴ OE = BF =(12-8)÷2 = 2。 ∴O(0,0),B(-12,0),A(-2,2)。 设解析式为 又 ∵A(-2,2)点在图像上,
∴ ∴ 即:
a = -0.1
F
E
三、应用举例
解决二次函数题目的常用方法

解决二次函数题目的常用方法二次函数是高中数学中重要的内容之一,解决二次函数题目需要掌握一些常用的方法。
本文将介绍常见的解题思路和方法,帮助读者更好地理解和解决二次函数题目。
一、二次函数的基本形式一般来说,二次函数的基本形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
解决二次函数题目的关键是确定函数的图像特征和方程的解。
二、求解二次函数的零点零点是二次函数图像与x轴的交点,在解决题目中常常需要求解二次函数的零点。
我们可以通过以下步骤求解二次函数的零点:1. 将二次函数恒等于零,得到方程ax^2 + bx + c = 0;2. 使用公式x = (-b ±√(b^2-4ac))/(2a)求解方程的解;3. 判断方程的解个数和性质。
当b^2-4ac>0时,方程有两个不相等的实数根;当b^2-4ac=0时,方程有两个相等的实数根;当b^2-4ac<0时,方程没有实数根。
三、求解二次函数的顶点二次函数的顶点是图像的最高点或最低点,常常需要求解顶点坐标来确定函数的极值。
求解二次函数的顶点可以按照以下步骤进行:1. 将二次函数写成顶点形式f(x) = a(x-h)^2 + k,其中(h,k)为顶点坐标;2. 通过配方法将二次函数转化为顶点形式,得到顶点坐标。
四、求解二次方程的倒数倒数是指函数图像在某一点处的斜率,求解二次函数的倒数可以帮助我们研究函数的变化趋势。
求解二次函数的倒数可以按照以下步骤进行:1. 求解二次函数的导函数f'(x);2. 将导函数写成一般形式f'(x) = 2ax + b。
五、拓展题及解法在解决二次函数题目时,常常会遇到一些拓展的题目。
以下是几个常见的拓展题及解法:1. 求解包含二次函数的方程组:通过联立方程组求解两个二次函数的交点,可以得到方程组的解;2. 求解经过顶点的二次函数:已知顶点坐标和一个点的坐标,可以利用顶点形式求解经过这两个点的二次函数;3. 求解与坐标轴交点的二次函数:已知二次函数经过两个点的坐标,可以利用插值法求解与x轴和y轴的交点。
二次函数应用题分类解析

10.一座隧道的截面由抛物线和长方形构成,长方形的长为8 m,宽为2 m,隧道最高点P位于A B的中央且距地面6 m,建立如图所示的坐标系.
(1)求抛物线的解析式;
4
…
EMBED Equation.DSMT4
…
3
-1
3
…
(1)请在表内的空格中填入适当的数;
(2)设EMBED Equation.DSMT4 EMBED Equation.DSMT4,则当EMBED Equation.DSMT4取何值时,y>0?
(3)请说明经过怎样平移函数EMBED Equation.DSMT4 EMBED Equation.DSMT4的图象得到函数EMBED Equation.DSMT4的图象.
在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
.解:(1)由题意,设y=kx+b,图象过点(70,5),(90,3),
∴ EMBED Equation.DSMT4解得EMBED Equation.DSMT4 ∴y= EMBED Equation.DSMT4 x+12.…………………………………………3分
再向上平移1个单位,所得图象的函数表达式为 ;
(2)函数EMBED Equation.DSMT4的图象可由EMBED Equation.DSMT4的图象向 平移 个单位得到;EMBED Equation.DSMT4的图象可由哪个反比例函数的图象经过怎样的变换得到?
(3)一般地,函数EMBED Equation.DSMT4(EMBED Equation.DSMT4,且EMBED Equation.DSMT4)的图象可由哪个反比例函数的图象经过和怎样的变换得到?
二次函数应用题分类与解析汇报

二次函数应用题分类解析二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类:第一类、利用待定系数法对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。
解答的关键是熟练运用待定系数法,准确求出函数关系式。
例1. 某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。
根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?析解:(1)因为题中给出了y 是x 的二次函数关系,所以用待定系数法即可求出y 与x 的函数关系式为1x 53x 101y 2++=(2)由题意得S=10y(3-2)-x 10x 5x 2++-=(3)由(2)465)25x (10x 5x S 22+--=++-=及二次函数性质知,当1≤x ≤2.5,即广告费在10—25万元之间时,S 随广告费的增大而增大。
二、分析数量关系型题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。
解答的关键是认真分析题意,正确写出数量关系式。
例2. 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。
在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。
设销售单价为x 元,日均获利为y 元。
专题训练(五) 求二次函数解析式的四种常见类型

专题训练(五)求二次函数解析式的四种常见类型►类型一已知三点求解析式1.已知:如图5-ZT-1,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.图5-ZT-12.如图5-ZT-2①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).图5-ZT-2►类型二已知顶点或对称轴求解析式3.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:则该二次函数的解析式为____________________.4.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.5.已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.6.如图5-ZT-3,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.图5-ZT-3►类型三已知抛物线与x轴的交点求解析式7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-3图5-ZT-48.如图5-ZT-4,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则此抛物线的解析式为__________________.9.已知抛物线的顶点坐标为(1,9),它与x轴有两个交点(交点的横坐标均为整数),两交点间的距离为6,求此抛物线的解析式.►类型四根据图形平移求解析式10.2017·义乌矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为() A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+311.2017·天津已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B的左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线的解析式为()A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-112.把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT-5所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.图5-ZT-5 13.2018·苏州如图5-ZT-6,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数解析式.图5-ZT-6详解详析1.解:把(-1,0),(0,-3),(4,5)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,c =-3,16a +4b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.所以此抛物线的解析式为y =x 2-2x -3.2.解:(1)把(0,3),(3,0),(4,3)代入y =ax 2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x 2-4x +3. (2)因为y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2. 3.[答案] y =x 2-4x +5[解析] 从表格中的数据可以看出,当x =1和x =3时,函数值y =2,可见,抛物线的顶点坐标为(2,1),故可设二次函数解析式为y =a (x -2)2+1,再由二次函数图象过点(1,2),得2=a (1-2)2+1,解得a =1,故二次函数的解析式为y =(x -2)2+1,即y =x 2-4x +5.4.解:∵二次函数图象的顶点为A (1,-4),∴设该二次函数的解析式为y =a (x -1)2-4.将(3,0)代入解析式,得a =1, 故y =(x -1)2-4,即该二次函数的解析式为y =x 2-2x -3. 5.解:∵抛物线的对称轴是直线x =2且经过点A (1,0), ∴由抛物线的对称性可知,抛物线还经过点(3,0). 设抛物线的解析式为y =a (x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3), 即该抛物线的解析式为y =x 2-4x +3. 6.解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的解析式为y =a (x -1)2+4. ∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P ,此时P A +PB 的值最小.设直线AE 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3, ∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当P A +PB 的值最小时,点P 的坐标为(37,0).7.B [解析] 由抛物线与x 轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a (x +1)(x -3).又因为抛物线与y 轴交于点(0,-3),把x =0,y =-3代入y =a (x +1)(x -3),得-3=a (0+1)(0-3),即-3a =-3,解得a =1,故此抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3.故选B.8.[答案] y =-x 2+2x +39.解:由抛物线的对称性可知抛物线与x 轴的两个交点分别为(-2,0)和(4,0), 所以设其解析式为y =a (x +2)(x -4). 将(1,9)代入解析式,得9=a (1+2)(1-4), 解得a =-1,所以y =-(x +2)(x -4),即此抛物线的解析式为y=-x2+2x+8.10.A[解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.11.A[解析] 令y=0可得x2-4x+3=0,解得x1=1,x2=3,可得A(1,0),B(3,0),根据抛物线顶点坐标公式可得M(2,-1),由点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,可知抛物线向左平移了3个单位长度,向上平移了1个单位长度,根据抛物线平移规律,可知平移后的抛物线的解析式为y=(x+1)2=x2+2x+1,故选A.12.解:(1)此二次函数的解析式为y=(x+1)2-4,即y=x2+2x-3.(2)∵当y=0时,x2+2x-3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4.设点M的坐标为(m,n).∵△ABM的面积为20,∴12AB·|n|=20,解得n=±10.当n=10时,m2+2m-3=10,解得m=-1+14或m=-1-14,∴点M的坐标为(-1+14,10)或(-1-14,10);当n=-10时,m2+2m-3=-10,此方程无解.故点M的坐标为(-1+14,10)或(-1-14,10).13.解:(1)由x2-4=0解得x1=2,x2=-2.∵点A位于点B的左侧,∴A(-2,0).∵直线y=x+m经过点A,∴-2+m=0,m=2.∴D(0,2).∴AD=OA2+OD2=2 2.(2)∵直线CC′平行于直线AD,并且经过点C(0,-4),∴直线CC′的函数解析式为y=x-4.∵新抛物线的顶点C′在直线y=x-4上,∴设顶点C′的坐标为(n,n-4),∴新抛物线对应的函数解析式为y=(x-n)2+n-4.∵新抛物线经过点D(0,2),∴n2+n-4=2.解得n1=-3,n2=2.∴新抛物线对应的函数解析式为y=(x+3)2-7或y=(x-2)2-2,即y=x2+6x+2或y=x2-4x+2.。
高中二次函数常见考题类型与解题方法

高中二次函数常见考题类型与解题方法常见题型1. 求函数的顶点、对称轴、焦点、直线方程和图像在解这类题目时,需要把二次函数的标准式转化成顶点式或者焦点式。
然后用函数图像的对称性质、交点、顶点等信息,求出函数的相关信息并画出图像。
2. 解方程二次方程求解,首先需要化标准式,然后根据b²-4ac的大小确定根的类型。
对于有理根,可以用因式分解法,求根公式等方法求解;对于无理根,则需要用配方法或求根公式。
3. 求两条直线或曲线的交点在解这类题目时,需要将两个方程式联立,然后通过求解联立的方程组,得出两个函数的交点坐标或交点坐标式。
4. 求实数解的范围二次函数的实数解范围可以通过求判别式b²-4ac的符号,来判断是否有实数根,并且可以通过求对称轴的截距来确定实数解的范围。
解题方法1. 预处理公式在解题前,需要预处理一些与二次函数相关的公式和基础知识,例如二次函数的顶点、对称轴、焦点、离心率等等。
2. 分类讨论对于不同的题目,需要根据已知条件和求解目标,将问题进行分类讨论。
对于不同的情况,需要采用不同的方法来解题。
3. 推导式子对于某些比较困难的题目,需要通过一些推导来简化问题。
例如,通过配方法来化简二次函数的标准式,或者通过勾股定理来求解两个不同方程的交点坐标。
4. 绘制函数图像在解题过程中,需要绘制出函数的图像,并用图像来验证计算结果。
同时,函数图像的形态也可以提供很多有用的信息,例如对称轴的位置、顶点的坐标、焦点的位置等等。
5. 思考问题本质在解题时,需要思考问题的本质,找到问题的关键点,并寻找最简单、最直接的方法来解决问题。
对于一些比较抽象或比较难理解的概念,也可以通过具体的问题来加深理解。
结论二次函数是高中数学中的重要内容,掌握好二次函数的基本知识和求解方法,对于应对高考和日常生活都非常有用。
在解题时,需要预处理公式、分类讨论、推导式子、绘制函数图像,并思考问题的本质。
通过反复练习和思考,相信大家都可以轻松掌握二次函数的相关知识和技巧。
二次函数应用题分类与解析

二次函数应用题分类解析二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类:第一类、利用待定系数法对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。
解答的关键是熟练运用待定系数法,准确求出函数关系式。
例1. 某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。
根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?析解:(1)因为题中给出了y 是x 的二次函数关系,所以用待定系数法即可求出y 与x 的函数关系式为1x 53x 101y 2++=(2)由题意得S=10y(3-2)-x 10x 5x 2++-=(3)由(2)465)25x (10x 5x S 22+--=++-=及二次函数性质知,当1≤x ≤2.5,即广告费在10—25万元之间时,S 随广告费的增大而增大。
二、分析数量关系型题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。
解答的关键是认真分析题意,正确写出数量关系式。
例2. 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。
在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。
设销售单价为x 元,日均获利为y 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1用二次函数解决问题的四种类型名师点金:利用二次函数解决实际问题时,要注意数形结合,巧妙地运用二次函数解析式实行建模,从而达到应用二次函数的某些性质来解决问题的目的.建立平面直角坐标系解决实际问题题型1拱桥(隧道)问题1.如图是某地区一条公路上隧道入口在平面直角坐标系中的示意图,点A和A1、点B 和B1分别关于y轴对称.隧道拱部分BCB1为一段抛物线,最高点C离路面AA1的距离为8 m,点B离路面AA1的距离为6 m,隧道宽AA1为16 m.(1)求隧道拱部分BCB1对应的函数解析式.(2)现有一大型货车,装载某大型设备后,宽为4 m,装载设备的顶部离路面均为7 m,问:它能否安全通过这个隧道?并说明理由.(第1题)题型2建筑物问题2.某公园草坪的防护栏由100段形状相同的抛物线组成,为了牢固,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点到底部距离为0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度为()(第2题)A.50 mB.100 mC.160 mD.200 m题型3物体运动类问题3.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上的落点为B.有人在直线AB上点C(靠点B一侧)处竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶,网球能不能落入桶内?(2)当竖直摆放多少个圆柱形桶时,网球可以落入桶内?(第3题)建立二次函数模型解决几何最值问题题型1利用二次函数解决图形高度的最值问题(第4题)4.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的高度为________米.题型2利用二次函数解决图形面积的最值问题5.如图所示,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,B,E,C,G在一条直线上.(1)若BE=a,求DH的长.(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.(第5题)建立二次函数模型解决动点探究问题6.如图所示,直线y=12x-2与x轴、y轴分别交于点A,C,抛物线过点A,C和点B(1,0).(1)求抛物线的解析式;(2)在x轴上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D 的坐标,并求出最大距离.(第6题)建立二次函数模型作决策问题题型1几何问题中的决策7.如图,有长为24 m的围栏,一面利用墙(墙的最大可用长度为10 m),围成中间隔有一道栅栏的长方形鸡舍.设鸡舍的一边AB为x m,面积为S m2.(1)求S与x的函数关系式(不必写出x的取值范围).(2)如果围成面积为45 m2的鸡舍,AB的长是多少米?(3)能围成面积比45 m2更大的鸡舍吗?如果能,请求出最大面积;如果不能,请说明理由.(第7题)题型2实际问题中的决策8.【2016·武汉】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1,y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.答案(第1题)1.解:(1)由已知得OA =OA 1=8 m ,OC =8 m ,AB =6 m .故C(0,8),B(-8,6).设抛物线BCB 1对应的函数解析式为y =ax 2+8,将B 点坐标代入,得a·(-8)2+8=6,解得a =-132,所以y =-132x 2+8(-8≤x ≤8).(2)能.若货车从隧道正中行驶,则其最右边到y 轴的距离为2 m .如图,设抛物线上横坐标为2的点为点D ,过点D 作DE ⊥AA 1于点E.当x =2时,y =-132×22+8=778,即D ⎝⎛⎭⎫2,778,所以DE =778m . 因为778>7,所以该货车能安全通过这个隧道.2.C(第3题)3.解:(1)以点O 为原点,AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立如图的直角坐标系,则有M(0,5),B(2,0),C(1,0),D ⎝⎛⎭⎫32,0.设抛物线的解析式为y =ax 2+c ,由抛物线过点M 和点B ,可得a =-54,c =5.故抛物线的解析式为y =-54x 2+5.当x =1时,y =154;当x =32时,y =3516.故⎝⎛⎭⎫1,154,⎝⎛⎭⎫32,3516两点在抛物线上.当竖直摆放5个圆柱形桶时,桶高为0.3×5=1.5=32(米).∵32<154且32<3516,∴网球不能落入桶内.(2)设竖直摆放m 个圆柱形桶时,网球可以落入桶内.由题意,得3516≤0.3m ≤154,解得7724≤m ≤1212. ∵m 为整数,∴m 的值为8,9,10,11,12.∴当竖直摆放8个,9个,10个,11个或12个圆柱形桶时,网球可以落入桶内. 4.0.55.解:(1)连接FH,∵△EGH≌△BCF,∴BC=EG,HG=FC,∠G=∠BCF,∴CG=BE,HG∥FC,∴四边形FCGH是平行四边形,∴FH=CG,∴∠DFH=∠DCG=90°.由题意可知,CF=BE=a.在Rt△DFH中,DF=3a-a=2a,FH =a,∴DH=DF2+FH2=5a.(2)设BE=x,△DHE的面积为y.依题意,得y=S△CDE+S梯形CDHG-S△EGH=12×3a×(3a-x)+12(3a+x)x-12×3a×x,∴y=12x2-32ax+92a2,即y=12⎝⎛⎭⎫x-32a2+278a2.∴当x=32a,即E是BC的中点时,y取得最小值,即△DHE的面积取得最小值,最小值是278a2.6.解:(1)在y=12x-2中,令x=0,得y=-2;令y=0,得x=4,∴A(4,0),C(0,-2).设抛物线的解析式为y=ax2+bx+c(a≠0).∵点A(4,0),B(1,0),C(0,-2)在抛物线上,∴⎩⎪⎨⎪⎧16a+4b+c=0,a+b+c=0,c=-2.解得⎩⎪⎨⎪⎧a=-12,b=52,c=-2.∴抛物线的解析式为y=-12x2+52x-2.(第6题)(2)设点D的坐标为(x,y),则y=-12x2+52x-2(1<x<4).在Rt△AOC中,OA=4,OC=2,由勾股定理得AC=2 5.如图所示,连接CD,AD.过点D作DF⊥y轴于点F,过点A作AG⊥FD交FD的延长线于点G,则FG=AO=4,FD=x,DG=4-x,OF=AG=y,FC=y+2.∴S△ACD=S梯形AGFC-S△CDF-S△ADG=12(AG+FC)·FG-12FC·FD-12DG·AG=12(y +y+2)×4-12(y+2)·x-12(4-x)·y=2y-x+4.将y=-12x2+52x-2代入,得S△ACD=2y-x +4=-x2+4x=-(x-2)2+4,当x=2时,y=1,此时S△ACD最大,且最大值为4.∴D(2,1).∵S △ACD =12AC·DE ,AC =2 5.∴当△ACD 的面积最大时,高DE 最大,则DE 的最大值为412AC =412×25=455.∴当D 与直线AC 的距离DE 最大时,点D 的坐标为(2,1),最大距离为455.7.解:(1)因为AB =x m ,所以BC =(24-3x) m ,此时S =x(24-3x)=-3x 2+24x. (2)由已知得-3x 2+24x =45,整理可得x 2-8x +15=0.解得x 1=5,x 2=3.∵0<24-3x ≤10,得143≤x <8,∴x 2=3不符合题意,故AB =5 m .(3)能.S =-3x 2+24x =-3(x 2-8x)=-3(x -4)2+48.∵143≤x <8,∴当x =143时,S最大值=4623.∴能围成面积比45 m 2更大的鸡舍.围法是:BC 的长是10 m ,AB 的长是423m ,这时鸡舍的面积最大,为4623m 2.8.解:(1)y 1=(6-a)x -20,(0<x ≤200) y 2=(20-10)x -40-0.05x 2 =-0.05x 2+10x -40.(0<x ≤80) (2)对于y 1=(6-a)x -20, ∵3≤a ≤5,∴6-a >0,∴x =200时,y 1最大值=(1 180-200a)万元. 对于y 2=-0.05(x -100)2+460, ∵0<x ≤80,∴x =80时,y 2最大值=440万元. (3)①1 180-200a =440,解得a =3.7; ②1 180-200a >440,解得a <3.7; ③1 180-200a <440,解得a >3.7. ∵3≤a ≤5,∴当a =3.7时,产销甲、乙两种产品的年利润相同; 当3≤a <3.7时,产销甲产品年利润比较高; 当3.7<a ≤5时,产销乙产品年利润比较高.。