高性能计算HPC

合集下载

高性能计算(HPC)概况及应用介绍

高性能计算(HPC)概况及应用介绍

【一】高性能计算概述
计算机发展时间线:
➢ 第二代计算机,1959-1964,大量 采用晶体管和印刷电路板,体积 不断减小,功能不断增强,并出 现大量应用软件;
➢ 第三代计算机,1964-1972,大量 使用集成电路,以IBM360系列为代 表;
【一】高性能计算概述
计算机发展时间线:
➢ 第四代计算机,1972-至今,基于大规模集成电路及超大规模集成电路。1976年, Cray-1,第一台商用高性能计算机问世,集成了20万个晶体管,每秒可进行1.5 亿次浮点运算。
1、能耗分析 相同节点浸没液冷服务器方案功耗比风冷服务器方案低80%,其节能效果明显。 通过计算,其PUE值也明显低于风冷服务器方案。 浸没式液冷服务器PUE=1.046 风冷服务器PUE=1.361 2、占地面积分析 以上表格所指面积为投影面积,由此可见,同等节点服务器部署,浸没液冷服务 器方案比风冷服务器方案节约用地约85%。
2013年5月14日,安吉丽娜·朱莉在自 己写的文章《我的医疗选择》中称自己通 过基因检测确定带遗传缺陷基因BRCA1,医 生估测她患乳腺癌和卵巢癌的几率颇高, 分别为87%和50%,朱莉选择双侧乳腺切除 术保留乳房,降低患癌风险。2015年3月24 日,安吉丽娜·朱莉宣布,由于担心罹患卵 巢癌,她已经切除了卵巢和输卵管。
【三】高性能计算应用与展望
高性能计算之气象学研究:
气候环境研究是高性能计算领域的 传统应用,世界上第一台电子计算机 ENIAC就曾被用来进行天气预报,由于 气象相关预报往往关系到农业、工业、 军事、交通等众多核心关键业务,同时 预报天气所需要的计算能力非常高,因 此世界上最先进的高性能计算机通常都 被用来运行大规模的数值计算与气候模 拟应用。

高性能计算(HPC)资源管理和调度系统解决方案

高性能计算(HPC)资源管理和调度系统解决方案
优势—安全性
网络安全:整个系统只需要在防火墙上针对特定服务器开放特定端口,就可以实现正常的访问和使用,保证了系统的安全性。数据安全性:通过设定ACL(访问控制列表)实现数据访问的严格控制,不同单位、项目、密级用户的数据区严格隔离,保证了数据访问的安全性。用户任务的安全性。排他性调度策略,虚拟机隔离用户账户的安全性。三员管理:系统管理员、安全管理员、审计管理员三个权限分离,互相监督制约,避免权限过大。审计系统。保证所有与系统安全性相关的事件,如:用户管理(添加、删除、修改等)、用户登录,任务运行,文件操作(上传,下载,拷贝,删除,重命名,修改属性)等都能被记录,并通过统计分析,审查出异常。密级管理。支持用户和作业的密级定义。
基于数据库的开放式调度接口
案例 用户自定义调度策略:需要根据用户余额来对其作业进行调度,如果用户余额不足,该用户的作业将不予调度。 解决方案: 针对上述需求可以自定义作业的准备阶段,在数据库中为该阶段定义一存储过程用来检测用户余额信息表,根据作业所对应的用户余额来返回结果,例如: Step 1. 根据数据库开放schema配置该自定义调度策略 表 POLICY_CONF:POLICY_NAME | POLICY_ENABLEmy_policy_01 | true Step 2. 为自定义调度策略my_policy_01自定义作业准备阶段 表JOB_PREPARE_PHASE: POLICY_NAME | READY_FUNC | REASON_IDX my_policy_01 | check_user_balance | 4 check_user_balance 为方案中所描述的存储过程,其接口需要满足作业准备阶段自定义的接口要求,其实现细节如下:
现有的LSF集群系统不用作任何改动,包括存储、操作系统、LSF、应用程序和二次开发的集成脚本等。大大降低了系统的整合的难度和工作量。也有利于保护现有的投资。同时考虑到了作业以及相关数据的转发。降低了跨集群作业管理的难度。数据传输支持文件压缩和断点续传,提高了作业远程投送的效率和稳定性。支持https加密传输,安全性更强。

高性能计算(HPC)PPT课件

高性能计算(HPC)PPT课件

如何做好HPC的销售工作之应用 篇
•4、流体力学/分子动力学
主要应用软件:CFD(Ansys、Fluent)工程计算 软件
了解用户研究方向:流体材料、空气动力、 化学反应
了解关键词:并行效果高,动态负载均衡
CPU选型:advanced
内存选型:1、根据CPU
2、需要大内. 存
10
如何做好HPC的销售工作之应用 篇
支持GPGPU 的生物计算软件-GROMACS
支持GPGPU 的生物计算软件-NAMD 支持GPGPU 的生物计算软件-HMMER 支持GPGPU 的生物计算软件-MUMmerGPU
支持GPGPU 的生物计算软件-AxRecon
.
15
.
6
如何做好HPC的销售工作之应用 篇
•1、计算物理
•主要应用软件:VASP 了解用户研究方向:物理计算方向有金属、半导体、绝缘体 了解关键词:Kpoint 4X4X4 8X8X8 CPU选型:advanced 内存选型:1、根据CPU
2、CPU及Kpoint 硬盘选型:I/O量小,SATA 网络选型:跟进Kpoint 软件线性比:高
•5、量子化学 主要应用软件:ADF
了解用户研究方向:物理光谱、分子计算、 材料计算
了解关键词:并行效果高,动态负载均衡
CPU选型:advanced
内存选型:1、根据CPU
2、不需要大内存
硬盘选型:I/O量小,SA. TA
11
如何做好HPC的销售工作之应用 篇
•6、材料计算 主要应用软件:wien2k 了解用户研究方向:材料计算、电导率
.
7
如何做好HPC的销售工作之应用 篇
•2、计算材料
•主要应用软件:Materials Studio

高性能计算中的并行编程模型介绍

高性能计算中的并行编程模型介绍

高性能计算中的并行编程模型介绍高性能计算(High-Performance Computing,HPC)是一种利用大规模计算机系统进行高效计算和解决复杂问题的技术。

在高性能计算中,为了提高计算效率和处理大规模数据,使用并行编程模型是必不可少的。

并行编程模型是一种在多个处理单元(如CPU、GPU等)上同时执行代码的方法,能够实现任务的分解和并发执行,提高计算速度和系统的整体性能。

并行编程模型主要有以下几种:共享内存模型、分布式内存模型以及混合模型。

共享内存模型是指多个处理单元共享同一个内存空间,在该模型中,所有的处理单元可以同时访问和修改共享内存中的数据。

共享内存模型的最大优势在于简单易用,程序员只需要在编写代码时考虑数据的同步和互斥。

常用的共享内存编程模型包括OpenMP和POSIX线程。

OpenMP(Open Multi-Processing)是一种支持并行编程的API,可以通过在代码中添加一些特殊的指令来实现并行化。

通过使用OpenMP,程序员可以简单地将串行代码转化为并行代码。

OpenMP使用的指令主要包括#pragma omp并行指令、#pragmaomp for指令以及#pragma omp critical指令等。

这些指令可以指定代码块并行执行、循环并行化以及实现临界区保护等。

OpenMP适用于共享内存系统,对于多核CPU和SMP(Symmetric Multi-Processing)系统,具有较好的扩展性。

POSIX线程(Pthreads)是一种标准的共享内存并行编程模型,可以在多线程环境下创建和管理线程。

Pthreads使用的函数库包括pthread_create、pthread_join和pthread_mutex等,可以创建线程、等待线程结束并实现互斥和同步。

使用Pthreads编写的并行程序可以同时利用多个CPU核心进行计算,有效地提高了程序的执行速度。

分布式内存模型是指多个处理单元之间通过消息传递来共享数据,每个处理单元拥有自己的本地内存。

什么是高性能计算,涉及哪些技术和知

什么是高性能计算,涉及哪些技术和知

什么是高性能计算,涉及哪些技术和知识高性能计算(HPC指通常使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计算资源操作)的计算系统和环境。

高性能集群上运行的应用程序一般使用并行算法,把一个大的普通问题根据一定的规则分为许多小的子问题,在集群内的不同节点上进行计算,而这些小问题的处理结果,经过处理可合并为原问题的最终结果。

由于这些小问题的计算一般是可以并行完成的,从而可以缩短问题的处理时间。

高性能集群在计算过程中,各节点是协同工作的,它们分别处理大问题的一部分,并在处理中根据需要进行数据交换,各节点的处理结果都是最终结果的一部分。

高性能集群的处理能力与集群的规模成正比,是集群内各节点处理能力之和,但这种集群一般没有高可用性。

高性能计算的分类方法很多。

这里从并行任务间的关系角度来对高性能计算分类。

一、高吞吐计算(High-throughput Computing)有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。

因为这种类型应用的一个共同特征是在海量数据上搜索某些特定模式,所以把这类计算称为高吞吐计算,而且算力也比较大。

所谓的In ternet计算都属于这一类。

按照Fly nn的分类,高吞吐计算属于SIMDSinglelnstruction/Multiple Data,单指令流-多数据流)的范畴。

二、分布计算(Distributed Computing)另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。

按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/MultipleData ,多指令流-多数据流)的范畴。

有许多类型的HPC系统,其范围从标准计算机的大型集群,到高度专用的硬件。

大多数基于集群的HPC系统使用高性能网络互连,基本的网络拓扑和组织可以使用一个简单的总线拓扑。

通用计算 异构计算 高性能计算

通用计算 异构计算 高性能计算

通用计算(GPC):这种类型的计算是指使用计算机或计算系统来执行范围广泛的任务,例如文字处理、互联网浏览和多媒体播放。

这种类型的计算需要一个通用的计算机体系结构,该体系结构足够灵活以处理不同类型的任务和应用程序。

异构计算:异构计算是指使用多种类型的处理单元(例如CPU 和GPU)来执行范围广泛的任务的系统。

这种类型的计算可以更好地利用可用资源,因为可以将不同的任务分配给最合适的处理单元。

与同类计算系统相比,这种方法可以提高性能和效率。

高性能计算(HPC):HPC 是指使用专门的计算系统和算法来解决需要大量计算能力的复杂问题。

这种类型的计算通常用于科学和工程应用,例如天气预报、药物发现和模拟。

HPC 系统通常由许多互连的计算机组成,通常具有专门的硬件和软件,旨在处理高性能计算所需的大量数据和复杂计算。

宝德HPC高性能计算服务器集群系统简介

宝德HPC高性能计算服务器集群系统简介

宝德HPC高性能计算服务器集群系统简介HPC高性能计算服务器集群系统是高性能计算和高可用技术有机结合的性能强大、高可用的集群系统。

在实际应用中,许多科学研究和商业企业的计算问题都可以通过HPC系统来解决。

HPC可以在下列领域能够帮助开发和研究人员进行建模和模拟,同时,以最快的速度计算出模拟的结果,为下一步开发和最终结构的确定提供及时可靠的依据:⎫⎫天气预报气象⎫制药企业的药理分析⎫科研人员的大型科学计算问题⎫石油勘探中对石油储量的分析⎫航空航天企业的设计和模拟⎫化工企业中对分子结构的分析计算⎫制造业中的CAD/CAM系统和模拟试验分析⎫银行和金融业对经济情况的分析生物/生命科学中生物分子研究和基因工程计算宝德HPC系统由高性能并行计算应用系统,集群控制节点、通信库以及管理服务器,数据库存储系统,各节点操作系统,节点通信系统,各计算节点,以及系统运行环境等组成。

★高性能计算应用系统各种并行计算的应用程序,针对不同的应用对象和问题而设计的软件系统。

★集群控制节点、通信库及管理服务器集群控制节点是HPC的核心设备,担任着运行主控程序和作业分发的任务。

其上的集群管理软件是整个高性能计算系统的管理者。

HPC控制节点通过集群控制、管理及通讯库将整个系统紧密联系在一起。

同时,还要负责初始化集群节点、在所需数量的节点上安装应用程序、并监视集群节点和互连的当前运行状况。

★数据库存储系统数据库存储系统是高性能计算的后端存储系统,与主控节点相连,高性能计算的结果通过主控节点统一送到该系统进行集中存储。

该系统可以一个RAID存储阵列柜,也可以是一个存储网络,如SAN等。

★节点操作系统因为Linux操作系统具有开放源码、容易整合和再开发的特点,所以在HPC Cluster中被普遍采纳,占到操作系统的80%以上的比例。

而Windows NT受其自身的封闭环境阻碍,Linux 有大量的集群系统可供选择,适合于不同的用途和需要,保证系统可适应最新的工具,有较高的可用性。

高性能计算集群(HPC_CLUSTER)

高性能计算集群(HPC_CLUSTER)

高性能计算集群(HPC CLUSTER)1.1什么是高性能计算集群?简单地说,高性能计算(High-Performance Computing)是计算机科学的一个分支,它致力于开发超级计算机,研究并行算法和开发相关软件。

高性能集群主要用于处理复杂的计算问题,应用在需要大规模科学计算的环境中,如天气预报、石油勘探与油藏模拟、分子模拟、基因测序等。

高性能集群上运行的应用程序一般使用并行算法,把一个大的普通问题根据一定的规则分为许多小的子问题,在集群内的不同节点上进行计算,而这些小问题的处理结果,经过处理可合并为原问题的最终结果。

由于这些小问题的计算一般是可以并行完成的,从而可以缩短问题的处理时间。

高性能集群在计算过程中,各节点是协同工作的,它们分别处理大问题的一部分,并在处理中根据需要进行数据交换,各节点的处理结果都是最终结果的一部分。

高性能集群的处理能力与集群的规模成正比,是集群内各节点处理能力之和,但这种集群一般没有高可用性。

1.2高性能计算分类高性能计算的分类方法很多。

这里从并行任务间的关系角度来对高性能计算分类。

1.2.1高吞吐计算(High-throughput Computing)有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。

因为这种类型应用的一个共同特征是在海量数据上搜索某些特定模式,所以把这类计算称为高吞吐计算。

所谓的Internet计算都属于这一类。

按照Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data,单指令流-多数据流)的范畴。

1.2.2分布计算(Distributed Computing)另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。

按照Flynn的分类,分布式的高性能计算属于MIMD (Multiple Instruction/Multiple Data,多指令流-多数据流)的范畴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*参与“上帝粒子”项目的28岁小伙子,计昊爽,合肥庐江人,毕业于中国科学技术大学,后 去美国威斯康辛大学读博士。他是欧洲核子研究组织(CERN)团队成员,他在计算和实验证 明出“上帝粒子”存在功不可没。他首次计算得到了5倍西格玛(Sigma)的显著度,有 99.9999%的可信度表明了该粒子的存在。这在科学界被认为已经证明了上帝粒子的存在。
7.1 计算模型的转变 7.2 系统结构的转变 7.3 编程模型的转变
3.1 大数据的采集与预处理
7.4 应用方式的转变
3.2 大数据的传输
7.5 其他方面的转变
3.3 大数据的存储 3.4 大数据的处理 3.5 大数据的展现
4. 大数据与物联网
8. 结论
8.1 从量变到质变 8.2 各领风骚十数年
计算能力。
4
1、大数据浪潮汹涌澎湃
(3) 新技术新应用催生的大数据
• 新技术:传感技术、新型通信技术、物联网技术等高速发展,让人们感知的东西很 多;人与人、人与机器、机器与机器时刻都在互联互动;新的获取、搜索、发现和 分析工具更使人们获得更丰富的数据。
• 新应用:物联网(使成千上万的网络传感器嵌入到现实世界中)和云计算(为海量 数据提供了存储空间和在线处理)等新型应用更使得数据激增。
• 大数据主要消费者是网民:近年来大数据骤增主要还是来自人们的日常生活(图片、 视频、音乐等),特别是互联网公司的服务。
• 传感网和物联网等相关技术催生了大数据的蓬勃发展。
摘要: 大数据、物联网和云计算是新一代信息技术发
展中的华彩乐章。物联网使成千上万的网络传感器 嵌入到现实世界中,云计算为物联网产生的海量数 据提供了存储空间和在线处理,而大数据则让海量 数据产生了价值。本报告,首先介绍大数据世界和 大数据潮流;其次讲解什么是大数据和大数据的一 般处理流程;接着介绍产生大数据来源之一的物联 网的产生、发展及其系统架构;然后讲述大数据与 云计算的关系和两者的异同点;最后在简介高性能 计算与高性能计算机的基础上,阐述了在大数据面 前高性能计算本身所面临的技术挑战等。
(4) 大数据发展的主要推动力
• 大数据推动者是企业界:企业界的经济效益推动了大数据的发展。IBM、Oracle、 微软、谷歌、亚马逊、Facebook等跨国巨头是大数据处理技术的主要推动者。 O’Reilly公司断言:数据是下一个“Intel Inside”,未来属于将数据转换成产品的公 司和人们。
6.
大数据引领社会、经济和科技发展
高性能计算与高性能计算机
6.1 什么是高性能计算 6.2 高性能计算机系统举例
2.1 大数据对国家社会的作用
6.3 高性能计算应用
2.2 大数据推动国民经济发展 2.3 大数据促进科技发展 2.4 大数据应用及实例
3. 大数据的处理流程
7. 高性能计算面临大数据的挑战
• 斯隆数字天空勘探(SDSS:Sloan Digital Sky Survey)计划:从2008年开始 收集天文数据,并且每晚以200GB的速率继续收集,到2012年,SDSS已积 累了超过140TB的信息。
• 基因测序:2013年全球至少有30万个人类个体基因组被全部或部分测序,
这就意味着将会产生30Pb的序列数据,至少需要相当150PB的存储和分析
3
1、大数据浪潮汹涌澎湃
(2) 大科学工程产生了大数据
• *大型强子碰撞(LHC:Large Hadron Collider)试验:美国大数据研究计划 中专门列出寻找希格斯粒子(被称为“上帝粒子”)的LHC实验。据说至 少要1万亿个事例中才可能找出一个希格斯粒子。在发生碰撞时,LHC检测 器(Detector)在一秒钟内能捕获到其临近0.4亿(40 million)个快照。当 LHC试验时,约有1.5亿个传感器(Sensor)每秒传递数据0.4亿次,大约每 秒近6.0亿碰撞。如果所有的传感器数据均记录在LHC中,则在重复之前每 天将近有500EB(E=1018)数据流量,几乎是世界上所有其他资源的200倍。
*希格斯粒子以2013年诺贝尔奖获主之一现年84岁的英国科学家彼得·希格斯命名。他在1964年 曾预言玻色子粒子的存在。时隔50年之后,被总部设在瑞士日内瓦的欧洲核子研究中心LHC实 验项目所证实。因为诺贝尔奖至多3人分享,所以欧洲核子研究中心参与发现这种粒子的数以 千计的研究人员就成了无名英
1.1 大数据世界
(1) 网络连接的世界涌现出大数据
• 互联网和社交网产生的数据:现代网络社会中,人们在通过电子邮件、维基、微 博、博客、娱乐节目、网上购物、银行交易、股票数据等进行互动和交易,每个 人在分享网上数据的同时,又在不断制造数据。
• 无线移动互联网络产生的数据:移动智能终端接入互联网就形成了移动互联网, 它虽兼具了通信网之“随时、随地、随身”和互联网之“共享、开放、交互”的 优势,但仍面临着海量数据通信对网络带宽带来的巨大负担;而移动互联网的无 线接入网络使得数据流量剧增,迫使网络运营商不断增加基站数和进一步挖掘频 谱利用率;网络应用和服务的多元化使得传统的微观小尺度(分组级和数据帧级) 的业务规律分析无法从宏观上描述业务特征规律。
• 物联网上采集和观测数据:在遍布全球各地的移动传感器、无线传感器、空间遥 感器、射频识读器和摄像、照相机等各种采集和观测数据设备,都在时时、处处 捕获大量诸如位置数据、传感数据、卫星图像数据、气象数据等。
• 社会发布的信息数据:现代社会中,政府、企事业、行业等机关部门都不断地向 社会发布政务信息、公共服务信息、卫生保健信息、社会保险信息、科技教育信 息、安全预警信息、金融服务信息、证据投资信息等数据。
1
目录
1. 大数据浪潮汹涌澎湃
4.2 物联网的发展历程
1.1 大数据世界
4.3 大数据与物联网
1.2 大数据潮流
5. 大数据与云计算
1.3 什么是大数据
5.1 什么是云计算
1.4 变革思维研究大数据
5.2 大数据与云计算的关系
1.5 大数据的价值
5.3 大数据与云计算的不同点
2.
1.6 大数据的管理 1.7 大数据时代的产业界情况
相关文档
最新文档