解决锅炉减温水压力低的问题的办法(一)

合集下载

300MW锅炉再热器汽温不足问题分析及对策

300MW锅炉再热器汽温不足问题分析及对策

300MW锅炉再热器汽温不足问题分析及对策赵振宁;程亮;朱宪然【摘要】某300 MW机组HG-1025/17.5-YM33型锅炉投运以来,一直存在再热汽温度达不到设计值、屏式过热器壁温超温报警和过热器减温水量大的突出问题,严重影响机组的经济性和安全性.经分析,根本原因在于过热器设计偏大、再热器设计偏小且过分强调辐射特性,同时一级过热器减温器容量设计太小,而日常生产中煤质变差又大大加剧了这个问题的严重性.提出了增加再热器受热面和加大减温水容量的解决方案来解决此问题,改造后的锅炉在过热器不超温的情况下,再热汽温达到530℃以上,取得了初步的效益.【期刊名称】《华北电力技术》【年(卷),期】2013(000)001【总页数】5页(P59-62,70)【关键词】再热汽温;墙式辐射再热器;安全性;经济性【作者】赵振宁;程亮;朱宪然【作者单位】华北电力科学研究院有限责任公司,北京100045;华北电力科学研究院有限责任公司,北京100045;华北电力科学研究院有限责任公司,北京100045【正文语种】中文【中图分类】TK223.30 问题的提出河北某热电厂2台300 MW机组分别于2009年底到2010年初投入商业运营,锅炉为哈尔滨锅炉厂生产的HG-1025/17.5-YM33亚临界自然循环汽包锅炉,采用四角切圆燃烧方式,设计燃料为河北蔚县烟煤。

该锅炉自投产以来,一直存在再热汽温不足的问题,在低负荷(150 MW)情况下再热蒸汽的欠温可达30℃以上,两侧再热汽温偏差也大,最高也可达30℃。

除此之外,该锅炉还经常发生后屏过热器超温的问题,为保证后屏过热器不超温,运行中需降低摆动火嘴角度,给燃烧调整工作带来很大的局限性。

同时过热器减温水量高出设计值20~37 t/h。

这些因素严重影响机组的经济性,使机组的供电煤耗增大了约3 g/kWh。

本文针对以上问题对锅炉进行了分析并开展了受热面的改造工作,通过增加壁式再热器的面积,并采用有针对性的燃烧调整工作使增加受热面发挥最大的作用,取得了良好的效果。

锅炉运行的老大难问题及解决方法

锅炉运行的老大难问题及解决方法

1.锅炉启动时省煤器发生汽化的原因与危害有哪些?如何处理?锅炉点火初期,省煤器只是间断进水时,其内的水温将发生波动。

在停止进水时,省煤器内不流动的水温度升高,特别是靠近出口端,则可能发生汽化。

进水时,水温又降低,这样使其管壁金属产生突变热应力,影响金属及焊口的强度,日久产生裂纹损坏。

当省煤器出口处汽化时,会引起汽包水位大幅度波动和进水发生困难,此时应加大给水量将汽塞冲入汽包,待汽包水位正常后,尽量保持连续进水或在停止进水的情况下开启省煤器再循环门。

2.水位计的平衡容器及汽、水连通管为什么要保温?保温的目的主要是为了防止平衡器及连通管受大气的冷却散热,使其间的水温下降,与汽包内的水相比产生较大的重度差,而这种重度差越大,水位计的指示与汽包内的真实水位误差越大,所以要在这些部位保温,以减小指示误差。

3.锅炉运行中为什么要控制一、二次汽温稳定?锅炉运行中控制稳定的一、二次汽温对机组的安全经济运行有着极其重要的意义。

当汽温过高时,将引起过热器、再热器、蒸汽管道及汽轮机汽缸、转子等部分金属强度降低,导致设备的使用寿命缩短。

严重超温时,还将使受热面管爆破。

若汽温过低,则影响热力循环效率,并使汽轮机未级叶片处蒸汽湿度过大,严重时可能产生水击,造成叶片断裂损坏事故。

若汽温大幅度突升突降,除对锅炉各受热面焊口及连接部分产生较大的热应力外,还将造成汽轮机的汽缸与转子间的相对位移增加,即膨胀差增加,严重时甚至发生叶轮与隔板的动静摩擦,造成剧烈振动。

此外汽轮机两侧的汽温偏差过大,将使汽轮机两侧受热不均匀,热膨胀不均匀。

因此,锅炉运行中对汽温要严密监视、分析、调整,用最合理的方法控制汽温稳定。

4.锅炉运行中引起汽温变化的主要原因是什么?(1)燃烧对汽温的影响。

炉内燃烧工况的变化,直接影响到各受热面吸热份额的变化。

如上排燃烧器的投、停,燃料品质和性质的变化,过剩空气系数的大小,配风方式及火焰中心的变化等,都对汽温的升高或降低有很大影响。

百万电厂过热器减温水调节阀故障原因分析

百万电厂过热器减温水调节阀故障原因分析

百万电厂过热器减温水调节阀故障原因分析张立德【摘要】皖能铜陵发电厂百万机组一、二级过热器减温水调节阀在运行中频繁出现填料函泄漏的问题。

对减温水调节阀进行分析,找出主要原因。

结果表明:填料函泄漏主要源于阀门结构。

通过实验找出最佳控制方案,采取相应措施后取得了很好的效果,可为处理电厂大容量机组过热器减温水系统调节阀故障提供参考借鉴。

%The one or two stage superheater desuperheating water regulating valve of the million power units has occurred the stuffing box leakage problems frequently in operation in Wenergy Tongling Power Generation Co ., Ltd..The desuperheating water regulating valves are analyzed , to find out the main rea-son .The results show that the stuffing box leakage mainly dues to the valve structure .The optimal control scheme is found through experiment .After taking corresponding measures , the good result is achieved , to provide a reference to handle the failure of the superheater desuperheating water regulating valve of large capacity units in power plant .【期刊名称】《安徽电气工程职业技术学院学报》【年(卷),期】2014(000)003【总页数】4页(P84-87)【关键词】过热器减温水系统;调节阀;填料函泄漏【作者】张立德【作者单位】皖能铜陵发电有限公司,安徽铜陵 244012【正文语种】中文【中图分类】TK223.3+20 引言火力发电厂为防止过热器系统管道超温,均在过热器系统上设置有减温水调节[1]系统,通过调节减温水流量的大小来控制过热器管内工质的温度。

如何解决锅炉主再热汽温偏低问题

如何解决锅炉主再热汽温偏低问题

如何解决锅炉主、再热汽温偏低问题张兆民(大唐安阳发电厂发电部,河南安阳455004)摘要:为了维持稳定的汽温,并保持规程规定的汽温的高点,操作人员要掌握影响汽温变动因素,根据锅炉运行工况的变动及时地做出正确的判断和处理。

本文将结合工作实际,探讨如何解决锅炉主、再热汽温偏低的问题。

关键词:锅炉;主热汽温;再热气温;偏低中图分类号:TK223文献标识码:A 文章编号:1003-5168(2012)24-0001-01本厂#9、10锅炉型号:DG1025/18.2,亚临界自然循环汽包锅炉,单炉膛、一次中间再热,平行通风、钢构架、固态排渣、燃煤锅炉,制粉系统:中间储仓式;#1、2锅炉型号:DG1025/17.4,东方锅炉厂生产,亚临界、自然循环、单炉膛四角切园燃烧、一次中间再热、摆动燃烧器调温、平衡通风、固态排渣;制粉系统:风扇磨。

过热器是将饱和蒸汽加热到额定过热温度的锅炉受热面部件,再热器则是将汽轮机高压缸的排汽重新加热到额定再热温度的锅炉受热面部件。

设计锅炉的受热面时,规定了锅炉的燃料特性、给水温度、过量空气系数和各种热损失等额定参数,但实际运行时,由于各种扰动的存在,将不能获得设计预定的工况。

因此,锅炉的蒸汽参数将发生变化[1]。

1锅炉汽温调节的目的锅炉汽温调节的目的就是要在锅炉规定的负荷范围内,维持蒸汽温度的稳定。

锅炉在运行过程中,蒸汽温度将随锅炉负荷、燃料性质、给水温度、过量空气系数、受热面清洁程度的变化而波动,运行中应设法予以调节。

汽温过高,使管壁温度高,金属材料许用应力下降,影响其安全。

如高温过热器在超温10~20℃下长期运行,其寿命将缩短一半以上;汽温过低,机组循环效率下降,并使汽轮机排汽湿度增大,汽温下降10℃,煤耗增大约0.2%,对于高压机组,汽温下降10℃,汽轮机排汽湿度约增加0.7%;再热蒸汽温度不稳定,还会引起汽缸与转子的胀差变化,甚至引起振动。

汽温偏离额定值,对机组运行的经济性、安全性均有不利影响,在运行中,必须采取可靠的调节手段,维持汽温与额定汽温的差值不大于+5℃和一10℃。

解决锅炉减温水压力低的问题的办法

解决锅炉减温水压力低的问题的办法

解决锅炉减温水压力低的问题的办法集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-解决锅炉减温水压力低的问题的办法对某些型式机组,在设计和调试时经常会遇到给水泵的出口压力不能在所有工况下满足锅炉减温水喷水压力要求的问题。

这些机组的锅炉燃烧方式一般前后墙对冲或垂直燃烧。

为通过两级喷水减温器将过热蒸汽温度,调整至额定值。

在不同锅炉负荷时减温喷水量变化较大。

给水系统一般按2×50%汽动给水泵+1×50%电动调速给水泵方案配置,电动泵做为启动泵和备用泵。

给水系统不设主调节阀,只设30%给水调节旁路。

当负荷在30%负荷以下时,给水流量由旁路调节阀单段调节,此时电动给水泵定速运行;当负荷高于30%时,流量调节通过改变泵的转速,实现3段调节。

此时,泵出口压力为锅炉省煤器入口压力和管道阻力及高加阻力之和。

在锅炉不同负荷时,减温喷水量变化较大。

在低负荷时,往往由于蒸汽压力较低,水蒸汽汽化潜热随汽压降低而增大,但同1台锅炉的蒸发受热面及过热受热面的配比是不变的,所以减温水量呈明显上升趋势,这样就造成了减温水系统的阻力,总趋势是随锅炉负荷的降低而相对增大。

对于变速泵给水系统,在30%~100%负荷范围内,给水泵出口压力随锅炉负荷降低而降低。

这样,在某些工况情况下给水泵的出口压力有可能满足不了减温水喷水压力要求的。

据了解,上安电厂二期、湖北鄂州发电厂、邯峰发电厂在最初设计布置时就遇到这种情况(锅炉均为FW公司的“W”形火焰燃无烟煤锅炉),西柏坡电厂一期工程(锅炉为BW公司的前后墙对冲燃烧方式)调试阶段也遇到此类问题。

此外,煤种变化及受热面积灰程度,也将会影响减温喷水量。

影响因素及解决方法首先应仔细核算各工况下,给水系统、减温水系统阻力,减温器喷嘴压降等,并对其全面评估。

设计时应要求锅炉制造商提供详细的减温器阻力数据。

即使给水泵出口压力满足不了减温水喷水压力要求,其差距通常也并不大,一般为200~300kPa左右。

锅炉燃烧调整与各项指标的控制措施

锅炉燃烧调整与各项指标的控制措施

锅炉燃烧调整及各项指标的控制措施防止锅炉结焦和降低污染排放指标措施——针对此题目进行内容的增减细化和完善,要充分发挥合力团队和专工及主任层面作用,总结经验,真正发挥指导运行人员操作的目的!而不是为完成我布置的工作去应付!建议妥否请考虑!在锅炉运行调整中,在每一个运行工况下,对每一个参数的调整及控制的好坏,直接反映出锅炉燃烧调整的水平,最终反映在整台机组运行的稳定性上。

针对我公司情况,锅炉调整主要是对燃烧系统的调整,其次是各个参数的调整及控制。

下面将详细介绍锅炉调整的每一个环节。

燃烧调整部分:一、送、引风量的调整及控制在平衡通风的燃煤锅炉风量的调整中,原则上直接采用调节送、引风机动叶或静叶开度的大小来调整。

总风量的大小,主要依据锅炉所带负荷的高低、氧量的大小以及炉膛负压来控制。

目前#1、2炉引风量的调节,在稳定工况运行时主要是投入自动调节。

送风量的调节,在负荷稳定时投入自动调节,在负荷波动大时手动调节。

在点炉前吹扫条件中规定风量大于30%所对应的风量的质量流量为280T/H,根据这一基准,在正常调整中,按照负荷高低和规定氧量的大小来控制送风量。

将炉膛负压调节在-19.8Pa~-98Pa为基准来控制引风量。

二、燃料量的调整及控制1、锅炉负荷小幅度变动时调节原则:通过调节运行着的制粉系统的出力来进行。

调节过程(以少量加负荷为例)1)在给煤量不变的情况下,首先将A磨煤机的调整做为燃烧稳定的基础,然后通过适当开B、C磨煤机容量风门开度来调整负荷,调整时不要大幅度开容量风门,根据负荷情况,可单侧或双侧调整,调整幅度控制在2%开度左右,调整后,密切注意汽包压力或主汽压力以及氧量的变化趋势,如果压力上升快,可适当对单侧容量风门回调来进行控制。

2)在各台磨煤机容量风门开至40-45%时,此时应根据磨煤机料位及电流情况,来增加给煤量,根据长时间观察,每台磨煤机给煤量最稳定工况出力在54-56T/H之间,在掺烧劣质煤(如金生小窑煤)时,出力在48-50T/H之间。

锅炉缺水应急预案

锅炉缺水应急预案

锅炉缺水应急预案
一、缺水原因分析。

1. 供水管道故障或堵塞。

2. 水泵失灵或故障。

3. 水位控制系统故障。

4. 人为操作失误。

二、应急处理措施。

1. 紧急停止燃烧器,避免锅炉继续加热,造成危险。

2. 立即关闭给水阀门,防止继续流失水源。

3. 检查供水管道和水泵,排除故障并修复。

4. 检查水位控制系统,排除故障并修复。

5. 补充水源,确保锅炉正常运行。

6. 通知相关部门进行维修和检查,确保问题不再发生。

三、预防措施。

1. 定期检查供水管道、水泵和水位控制系统,发现问题及时处理。

2. 培训操作人员,提高其对锅炉运行的认识和应急处理能力。

3. 安装水位报警系统,及时发现缺水情况并采取措施。

4. 定期进行维护保养,确保锅炉设备正常运行。

以上为锅炉缺水应急预案,希望全体工作人员严格按照预案执行,确保锅炉运行安全。

过热器减温水调节阀故障分析及处理

过热器减温水调节阀故障分析及处理

过热器减温水调节阀故障分析及处理摘要:本文主要通过某1000MW超超临界机组过热器减温水调节阀在运行过程中,出现阀门泄漏、卡涩、无法开关的情况。

针对这些问题,本文对造成调节阀泄漏、卡涩的原因进行分析,结合电厂实际检修情况对该类问题展开详细分析探讨,确认该调节阀泄漏、卡涩的主要原因,通过对该阀的检修,消除了该阀泄漏、卡涩无法开关的情况。

保证了系统汽温的稳定调节,为机组的稳定运行提供了可靠的保证。

关键词:电动调节阀;故障;分析;处理某发电厂#1机组是一台1000MW超超临界燃煤直流锅炉发电机组,锅炉型号为DG3024/28.35-Ⅱ1。

机组于2013年投产。

过热器减温水调节阀是调整减温水流量大小起到对锅炉过热器系统蒸汽温度的控制阀,该阀门连接方式为焊接,驱动方式为电动。

型号为ASNI2500.SPL;WC9:通径为1.5″。

该型号阀门为平衡笼式调节阀。

在机组运行过程中,阀门出现填料涵泄漏,过热器系统温度在调节阀关闭状态下汽温仍然下降,阀门在运行时出现卡涩,导致电动执行器力矩保护动作无法开关的情况。

严重影响了机组的运行经济性以及安全性。

本文通过对造成调节阀泄漏、卡涩的一般原因结合该阀门运行工况的分析,找到了造成阀门泄漏、卡涩的原因,提出了相应解决方案。

1电动调节阀卡涩的可能原因电动调节阀卡涩是机组运行过程中的一种较易出现的故障。

故障原因多种多样,可能会有多种故障原因同时出现,一般可以从电动执行器和阀体内部两方面来查找原因。

1.1电动执行器问题1)执行器在运行过程中,蜗轮蜗杆由于过载或质量问题造成损坏。

2)执行器控制系统由于高温,出现故障。

3)推力器出现故障。

1.2阀体内部问题1)阀门内有铁锈、焊渣、污物等造成阀塞与笼套卡涩。

2)由于安装或组合不当造成各种应力。

例如,高温介质产生热应力,安装时紧固力不平衡造成应力等。

应力的不平衡作用在调节阀上,导向支架变形、偏斜,使调节阀阀杆弯曲。

阀杆材质不对或加工质量(热处理工艺)不良造成弯曲形成卡涩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决锅炉减温水压力低的问题的办法(一)
对某些型式机组,在设计和调试时经常会遇到给水泵的出口压力不能在所有工况下满足锅炉减温水喷水压力要求的问题。

这些机组的锅炉燃烧方式一般前后墙对冲或垂直燃烧。

为通过两级喷水减温器将过热蒸汽温度,调整至额定值。

在不同锅炉负荷时减温喷水量变化较大。

给水系统一般按2×50%汽动给水泵+1×50%电动调速给水泵方案配置,电动泵做为启动泵和备用泵。

给水系统不设主调节阀,只设30%给水调节旁路。

当负荷在30%负荷以下时,给水流量由旁路调节阀单段调节,此时电动给水泵定速运行;当负荷高于30%时,流量调节通过改变泵的转速,实现3段调节。

此时,泵出口压力为锅炉省煤器入口压力和管道阻力及高加阻力之和。

在锅炉不同负荷时,减温喷水量变化较大。

在低负荷时,往往由于蒸汽压力较低,水蒸汽汽化潜热随汽压降低而增大,但同1台锅炉的蒸发受热面及过热受热面的配比是不变的,所以减温水量呈明显上升趋势,这样就造成了减温水系统的阻力,总趋势是随锅炉负荷的降低而相对增大。

对于变速泵给水系统,在30%~100%负荷范围内,给水泵出口压力随锅炉负荷降低而降低。

这样,在某些工况情况下给水泵的出口压力有可能满足不了减温水喷水压力要求的。

据了解,上安电厂二期、湖北鄂州发电厂、邯峰发电厂在最初设计布置时就遇到这种情况(锅炉均为FW公司的“W”形火焰燃无烟煤锅炉),西柏坡电厂一期
工程(锅炉为BW公司的前后墙对冲燃烧方式)调试阶段也遇到此类问题。

此外,煤种变化及受热面积灰程度,也将会影响减温喷水量。

影响因素及解决方法
首先应仔细核算各工况下,给水系统、减温水系统阻力,减温器喷嘴压降等,并对其全面评估。

设计时应要求锅炉制造商提供详细的减温器阻力数据。

即使给水泵出口压力满足不了减温水喷水压力要求,其差距通常也并不大,一般为200~300kPa左右。

2.1影响因素
2.1.1喷水压降
锅炉制造商所提供的喷水喷嘴所需的压力降是重要的评估因素之一。

喷嘴所需压力降有设计流量下的最大压降和实际压降之分。

有时设计最大压降比实际压降大得多。

可能按设计最大压降计算时,给水泵出口压力满足不了减温水喷水压力要求;而按实际压降计算时,给水泵出口压力却可满足压差要求。

减温水管路上均设有调节阀,阀的进出口压差对调节特性也有影响,较大的压差可提高系统的调节品质,但
增加了系统阻力。

1.2喷水量
喷水量也是重要的影响因素之一。

喷水量增大,会增大系统阻力。

这种情况一般发生在高压加热器停运时。

此时,锅炉给水温度明显降低,从而造成过热器喷水量显著上升。

在确定减温水系统管子直径时,应考虑诸类因素,选用较大的管径可减小系统阻力。

相关文档
最新文档