焊接性能试验

合集下载

焊接产品试验合格报告

焊接产品试验合格报告

焊接产品试验合格报告1. 引言焊接产品是现代制造业中不可或缺的一环,它们广泛应用于汽车、航空航天、建筑等领域。

为确保焊接产品的质量和安全性,进行试验是必要的。

本报告旨在总结焊接产品试验的过程和结果,并验证是否合格。

2. 试验目的本次试验的目的是评估焊接产品的焊缝强度、密封性以及其他重要性能。

通过试验结果的合格与否,判断产品是否满足设计要求和相关标准。

3. 试验方法3.1 焊缝强度试验使用万能试验机对焊接产品中焊缝进行拉伸试验。

试验时,将样品夹紧在试验机上,逐渐施加拉力并记录其对应的变形量。

根据试验曲线上的最大拉力值来评估焊缝强度。

3.2 密封性试验将焊接产品置于深水中进行密封性试验。

观察一定时间后,检查焊接部位是否出现漏水现象,以判断产品的密封性能。

3.3 其他重要性能试验根据设计要求和相关标准,选择适当的试验方法,对焊接产品的其他重要性能进行评估,例如耐腐蚀性、耐磨损性等。

4. 试验结果及分析经过以上试验方法的应用,对焊接产品进行全面评估,得到如下试验结果及分析:4.1 焊缝强度试验结果:合格根据试验结果,焊接产品的焊缝强度高于设计要求,并达到相关标准的要求。

4.2 密封性试验结果:合格焊接产品在水中静置一定时间后,未检测到焊接部位漏水情况,证明其密封性能良好,符合设计要求和相关标准。

4.3 其他重要性能试验结果:合格针对焊接产品的其他重要性能试验,产品均符合设计要求和相关标准。

5. 结论根据以上试验结果及分析,我们得出以下结论:焊接产品在焊缝强度、密封性以及其他重要性能方面均通过了试验,并符合设计要求和相关标准。

产品被认定为合格产品。

6. 建议根据本次试验的结果,建议进一步优化焊接过程和工艺,以提高焊接产品的整体品质和性能。

同时,加强质量管理体系的建设,确保产品在生产过程中的每个环节都能达到质量要求,并持续改进和优化。

7. 参考文献[1] 相关标准编号及名称,出版日期。

附录附录一:试验记录表格试验项目结果焊缝强度合格密封性合格其他性能合格... ...附录二:试验过程中的图片或图表(here could be the images or charts related to the welding product testing)以上为焊接产品试验合格报告完整内容。

焊接检验方法

焊接检验方法

焊接检验方法
焊接作为一种重要的连接方式,广泛应用于各种工业生产中。

为了确保焊接质量,必须进行焊接检验。

本文将介绍几种常见的焊接检验方法,旨在为读者提供指导参考。

一、外观检验
外观检验是最基本的焊接检验方法。

通过肉眼观察焊缝,可以初步判断焊缝的质量和是否存在缺陷。

外表平整、色泽均匀、无气孔、裂纹、夹杂物或缺损等,是焊缝外观可接受的标准。

需要注意的是,在外观检验中,应特别对焊口的大小和形状进行检查。

二、尺寸检验
对焊缝进行尺寸检验可以判断焊缝的几何形状是否符合设计要求。

这包括焊口的形状、宽度、深度、角度等尺寸特征。

因此,在焊接检验中,应该及时地测量、记录,并进行比较。

这样可以确保焊缝的尺寸特征符合要求。

三、焊接力学性能检测
焊接力学性能检测可以评估焊接材料的可靠性和耐久性。

通常,使用拉伸试验、冲击试验、弯曲试验、硬度试验等方法进行检测。

其中拉伸试验是最常用的一种检测方法,它可以检测焊缝的抗拉强度、延伸率、断裂韧性等力学性能。

四、非破坏检验
非破坏检验是指通过直接观察、声波、磁粉检测、涡流检测、超声波检测等技术,对焊缝进行缺陷检测而不改变焊缝的形态。

其中超声波检测是最为常用的方法之一,可以对各种缺陷如气孔、夹杂、裂缝等进行检测,不会给工件造成任何损伤,可以保证焊接质量和机器设备的安全性。

总之,焊接质量的检验是焊接工艺的重要组成部分,对于各种焊接工艺都非常重要。

通过外观检验、尺寸检验、焊接力学性能检测以及非破坏检验,我们可以全面地了解焊接的质量和缺陷,及时排除高质量的焊缝问题,保证工业生产的可靠性和安全性。

焊接强度测试方法

焊接强度测试方法

焊接强度测试方法在评估焊接件的强度时,我们通常采用以下测试方法:拉伸试验、弯曲试验、冲击试验、硬度测试、无损检测、疲劳测试和抗腐蚀试验。

这些测试方法的应用有助于我们全面了解焊接件的性能和质量。

1. 拉伸试验拉伸试验是评估焊接件强度最常用的方法之一。

它通过在垂直于焊缝的方向上逐渐增加焊接件的拉伸载荷,以确定焊接件的强度和延展性。

通过拉伸试验,我们可以了解焊接件在承受拉伸载荷时的强度和变形情况,以及焊缝的抗拉强度和母材的强度匹配情况。

2. 弯曲试验弯曲试验主要用来测试焊接件的弯曲强度和弯曲性能。

在试验中,我们将焊接件放在弯曲机上,逐渐增大弯曲角度,直到发生断裂或达到预定弯曲角度。

通过弯曲试验,我们可以了解焊接件在承受弯曲载荷时的强度和变形能力,同时也可以检测出焊接缺陷。

3. 冲击试验冲击试验是测试焊接件在冲击载荷下的强度和韧性的方法。

在试验中,我们使用摆锤冲击焊接件,测量其冲击吸收功和冲击韧性。

通过冲击试验,我们可以了解焊接件在承受冲击载荷时的性能,以及焊缝的韧性和脆性转变温度。

4. 硬度测试硬度测试是评估焊接件表面硬度和材料韧性的方法。

在试验中,我们使用硬度计对焊接件表面进行压痕测试,测量其硬度值。

通过硬度测试,我们可以了解材料的硬化程度和焊缝金属与母材的硬度差异。

5. 无损检测无损检测是通过非破坏性方法检测焊接件中是否存在缺陷的方法。

最常用的无损检测方法有射线检测、超声波检测、磁粉检测和涡流检测等。

通过无损检测,我们可以发现焊接件中的裂纹、气孔、夹杂物等缺陷,以便及时采取措施进行修复和改进。

6. 疲劳测试疲劳测试是评估焊接件在交变载荷作用下的疲劳性能的方法。

在试验中,我们在一定的循环次数和载荷条件下对焊接件进行疲劳测试,以确定其疲劳寿命和疲劳强度。

通过疲劳测试,我们可以了解焊接件在交变载荷作用下的疲劳性能和寿命,预测其在工作条件下的可靠性。

7. 抗腐蚀试验抗腐蚀试验是测试焊接件在腐蚀环境中的耐腐蚀性能的方法。

电渣压力焊中焊接接头的力学性能测试

电渣压力焊中焊接接头的力学性能测试

电渣压力焊中焊接接头的力学性能测试电渣压力焊是一种常用的焊接方法,适用于焊接金属材料。

焊接接头的力学性能测试对于确保焊接质量和工程安全至关重要。

本文将介绍电渣压力焊中焊接接头的力学性能测试方法与步骤。

一、引言电渣压力焊是一种高效、高质量的焊接方法,广泛应用于船舶建造、桥梁制造、石油化工等领域。

焊接接头的力学性能测试是评估焊接质量的重要手段之一。

通过力学性能测试,可以判断焊接接头的强度、韧性、疲劳寿命等关键指标,为工程设计和使用提供依据。

二、焊接接头力学性能测试的方法1. 抗拉试验抗拉试验是常用的焊接接头力学性能测试方法之一。

通过在试验机上对焊接接头进行拉伸,可以测得焊接接头的抗拉强度、屈服强度、断裂延伸率等参数。

该方法适用于评估焊接接头在拉伸应力下的表现。

2. 弯曲试验弯曲试验是测试焊接接头在弯曲应力下的性能的方法。

通过在试验机上对焊接接头进行弯曲,可以测得其抗弯强度、弯曲刚度等参数。

该方法适用于评估焊接接头在弯曲载荷作用下的性能。

3. 冲击韧性试验冲击韧性试验是评估焊接接头在冲击载荷下的性能的方法。

常用的冲击试验方法有冲击试验机法、夏比基裂纹落锤冲击试验法等。

通过该试验可以获得焊接接头的冲击韧性、断裂模式等信息,对于评估焊接接头的抗冲击性能提供重要依据。

4. 金属log性测试金属log性测试是一种非破坏性测试方法,通过对焊接接头进行超声波检测,可以检测焊接接头中的缺陷、夹杂物、裂纹等情况,评估焊接接头的质量。

该方法适用于评估焊接接头的内部缺陷情况。

三、焊接接头力学性能测试步骤1. 准备样品根据需要进行焊接接头力学性能测试的焊接接头样品。

样品要求焊接质量良好,尺寸符合标准要求。

2. 选择测试方法根据待测试的力学性能指标,选择适当的测试方法进行。

可以综合考虑抗拉试验、弯曲试验、冲击韧性试验和金属log性测试等。

3. 进行测试按照所选择的测试方法,开始进行焊接接头的力学性能测试。

确保测试设备正常,样品夹持牢固,保证测试的准确性和可靠性。

焊接质量的检验方法有哪些

焊接质量的检验方法有哪些

引言:焊接质量的检验对于确保焊接结构的安全性和可靠性至关重要。

合格的焊接质量可以提高焊接结构的抗压能力、耐用性和耐腐蚀性。

本文将介绍焊接质量的检验方法,以便于及时发现和纠正焊接质量问题,确保焊接结构的质量。

概述:焊接质量的检验方法包括多个方面,如焊缝外观检验、焊接接头机械性能测试、无损检测、化学成分分析等。

在进行焊接质量的检验时,应综合采用多种方法,以确保焊接质量的综合评价和问题的全面发现。

接下来,本文将详细介绍焊接质量的检验方法。

正文内容:一、焊缝外观检验1.焊缝形貌检查:焊缝形貌检查是观察焊缝的形状、凹陷、错边等是否符合标准要求。

2.焊缝焊道检查:焊缝焊道检查是通过放大镜或显微镜观察焊缝焊道的尺寸和形态,判断焊接质量。

3.焊缝偏离度检查:焊缝偏离度检查是通过量测焊缝与参考线的距离,判断焊接的偏离度是否在规定范围内。

二、焊接接头机械性能测试1.拉伸试验:拉伸试验是将焊接接头制成试样,通过施加拉力来测试焊接接头的抗拉强度和延伸性能。

2.冲击试验:冲击试验是测试焊接接头在受冲击负载时的抗冲击能力。

3.硬度测试:硬度测试是通过在焊接接头的表面上进行压痕试验,来检测接头的硬度和金属结构的组织状态。

三、无损检测1.超声波检测:超声波检测是通过反射和散射来检测焊接接头中的缺陷,如气孔、裂纹等。

2.射线检测:射线检测是利用射线通过物体减弱的原理来检测焊接接头中的缺陷,如虚焊、夹渣等。

3.磁粉检测:磁粉检测是通过涂覆磁粉在焊接接头的表面,以观察磁粉颜色变化来检测焊接接头的缺陷。

四、化学成分分析1.化学成分分析是通过取样,进行金属元素的含量测试,用来确定焊接材料的质量是否符合要求。

2.化学成分分析可以通过光谱分析、X射线荧光分析等多种分析方法来实施,以确定焊接材料的化学成分是否合格。

五、其他检验方法1.焊缝断面组织观察:通过对焊接接头切割并腐蚀后,在显微镜下观察焊缝断面的组织结构,以评估焊缝质量。

2.焊接应力测试:焊接应力测试是通过放大畸变形成焊接结构应力,来测试焊接结构的强度和稳定性。

焊接试件物理实验报告

焊接试件物理实验报告

实验名称:焊接试件物理性能测试实验日期:2023年4月15日实验地点:材料力学实验室一、实验目的1. 了解焊接接头的物理性能,包括强度、硬度、韧性等。

2. 通过实验掌握焊接试件制备和测试方法。

3. 分析焊接工艺对焊接接头性能的影响。

二、实验原理焊接接头是焊接过程中形成的一种特殊结合形式,其物理性能直接影响到构件的使用性能和寿命。

本实验通过测试焊接接头的强度、硬度、韧性等物理性能,分析焊接工艺对焊接接头性能的影响。

三、实验材料及设备1. 实验材料:低碳钢(Q235)板,焊接材料:E4303焊条。

2. 实验设备:焊接机、万能材料试验机、硬度计、万能试验机、拉伸试验机、冲击试验机等。

四、实验步骤1. 焊接试件制备:根据实验要求,将低碳钢板切割成所需尺寸,焊接试件长度为100mm,宽度为10mm,厚度为5mm。

焊接过程中,选用E4303焊条,焊接电流为150A,焊接速度为50mm/min。

2. 焊接试件检测:将焊接试件进行外观检查,确保焊接质量。

3. 强度测试:将焊接试件固定在万能材料试验机上,按照GB/T 228.1-2010标准进行拉伸试验,测试焊接接头的抗拉强度。

4. 硬度测试:将焊接试件表面打磨平整,采用硬度计进行洛氏硬度测试,测试焊接接头的硬度。

5. 韧性测试:将焊接试件进行冲击试验,测试焊接接头的冲击韧性。

五、实验结果与分析1. 强度测试结果:焊接接头的抗拉强度为390MPa,略低于母材的强度。

2. 硬度测试结果:焊接接头的洛氏硬度为HRC30,略高于母材的硬度。

3. 韧性测试结果:焊接接头的冲击韧性为80J/cm²,略低于母材的韧性。

分析:焊接过程中,焊接材料与母材发生化学反应,形成新的金属组织,导致焊接接头的强度、硬度、韧性等物理性能发生变化。

在本实验中,焊接接头的抗拉强度、硬度、韧性均略低于母材,这可能是由于焊接过程中产生的热影响区、焊接残余应力和焊接缺陷等因素导致的。

六、实验结论1. 焊接工艺对焊接接头的物理性能有显著影响,焊接接头的强度、硬度、韧性等物理性能均略低于母材。

焊接质量的五种检验方法

焊接质量的五种检验方法

焊接质量的五种检验方法焊接质量是指焊接接头在满足特定要求下的物理性能和力学性能。

为确保焊接质量的合格,需要进行相应的检验。

本文将介绍五种常见的焊接质量检验方法,包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。

一、目视检验目视检验是最常用的一种检验方法,通过肉眼观察焊接接头的外观,判断其是否存在缺陷。

目视检验主要包括焊缝的形状、焊缝的几何尺寸、焊缝的表面质量以及焊接过程中是否存在飞溅、气孔等缺陷。

目视检验简单直观,但对于微小缺陷的检测有一定局限性。

二、尺寸检验尺寸检验是通过对焊接接头的尺寸进行测量,判断其是否符合设计要求。

尺寸检验主要包括焊缝的宽度、高度、深度等尺寸参数的测量。

通过尺寸检验,可以验证焊接接头的几何形状是否满足设计要求,确保焊接接头的尺寸精度。

三、无损检测无损检测是一种通过对焊接接头进行检测,不破坏焊接接头的方法。

常用的无损检测方法包括超声波检测、射线检测和涡流检测等。

通过无损检测,可以检测焊接接头内部的缺陷,如裂纹、夹杂物等,并对其进行评估和分类。

无损检测可以发现隐蔽的缺陷,提高焊接接头的质量。

四、力学性能检验力学性能检验是通过对焊接接头进行拉伸、弯曲、冲击等试验,评估焊接接头的力学性能。

力学性能检验可以验证焊接接头的强度、韧性和冲击性能是否满足要求。

常用的力学性能检验方法包括拉伸试验、冲击试验和硬度试验等。

五、金相检验金相检验是通过对焊接接头进行金相组织观察和分析,评估焊接接头的组织性能。

金相检验可以检测焊接接头的晶粒尺寸、晶体结构、相含量和相组成等。

金相检验可以发现焊接接头的晶粒异常、相变和相分离等缺陷,对焊接接头的质量评估具有重要意义。

焊接质量的检验方法包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。

这些检验方法各具特点,可以对焊接接头的质量进行全面评估,确保焊接接头的质量合格。

在实际焊接过程中,应根据具体情况选择合适的检验方法,以保证焊接质量的可靠性和稳定性。

焊接质量的检验方法

焊接质量的检验方法

焊接质量的检验方法引言:焊接是将金属材料通过加热或压力使其熔化并连接在一起的常用工艺,广泛应用于制造业。

焊接质量的好坏直接影响到焊接件的性能和安全可靠性。

因此,对焊接质量进行有效的检验是非常重要的。

本文将介绍一些常用的焊接质量检验方法,以帮助确保焊接件的质量符合标准要求。

一、外观检验法外观检验法是通过肉眼观察焊接件的表面特征来评估焊缝的质量。

该方法适用于简单的焊接结构,如焊缝表面是否平整、无明显裂纹、气孔、夹杂物等。

二、无损检测法无损检测法是通过使用无损检测设备,如超声波、射线、液体渗透等技术对焊接件进行检测。

这些技术可以检测到焊接件内部的缺陷,如焊缝中的气孔、夹杂物、裂纹等。

无损检测法适用于对焊接质量要求较高的关键部位。

三、拉伸试验法拉伸试验法是通过在焊接件上施加拉力来评估其强度和韧性。

焊接件通常以拉伸试样的形式制备,并在拉伸试验机上进行拉伸。

根据断裂模式和拉伸值,可以评估焊接件的强度和延展性。

拉伸试验法适用于对焊接件机械性能要求较高的情况。

四、硬度测试法硬度测试法是通过在焊接件表面进行硬度测试来评估其力学性能。

硬度测试法可以检测焊缝区域的硬度变化,根据硬度值可以判断焊接区域的强度和韧性。

硬度测试法适用于对焊接部位的材料性能要求较高的情况。

五、金相检验法金相检验法是通过制备焊接件的金属切片,并在显微镜下观察和分析焊缝的金属组织结构。

金相检验法可以评估焊接件的晶粒尺寸、晶界结构、相变等特征,从而评估焊接质量的好坏。

金相检验法适用于对焊接质量较高的精细结构。

六、破坏性检测法破坏性检测法是通过对焊接件进行破坏性试验,并观察试验后的断裂面来评估焊接质量。

常用的破坏性试验方法有冲击试验、弯曲试验等。

通过观察断口的形态和裂纹的分布,可以评估焊接件的韧性和抗冲击性能。

结论:焊接质量的检验是确保焊接件性能和安全的重要环节。

本文介绍的外观检验法、无损检测法、拉伸试验法、硬度测试法、金相检验法和破坏性检测法是常用的焊接质量检验方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三部分高级焊接人员知识要求第一章焊接接头试验方法第一节焊接性试验方法一、焊接冷裂纹试验方法1、间接评定方法根据焊件材料的化学成分或焊接接头热影响区的最高硬度,进行材料冷裂纹的评定方法,叫间接评定法。

1)碳当量法将钢中合金元素(包括碳)的含量按其作用换算成碳的相当含量,叫该种材料的碳当量,常以符号C E表示。

国际焊接学会推荐的碳当量计算公式为:C E=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5 (%)碳当量C E值愈高,钢材淬硬倾向愈大,冷裂敏感性也愈大。

经验指出,当C E>0.45%~0.55%时,就容易产生冷裂纹。

利用碳当量只能在一定范围内,对钢材概括地、相对地评价其冷裂敏感性,因为:①碳当量公式是在某种试验情况下得到的,所以对钢材的适用范围有限。

②碳当量计算值只表达了化学成分对冷裂倾向的影响。

实际上,除了化学成分以外,对冷裂的影响相当大,不同的冷却速度,可以得到不同的组织,因而抗裂性也不一样。

确切地说,在刚性和扩散氢含量相同的情况下,应当主要是钢材的组织而不是碳当量确定冷裂敏感性。

③影响金属组织从而影响冷裂敏感性的因素,除了化学成分和冷却速度外,还有焊接热循环中的最高加热温度和高温停留时间等参数。

此外,钢材规定成分中没有表明微量合金元素和杂质元素的影响,也没有在碳当量计算公式中表示出来。

因此说,碳当量公式不能作为准确的评定指标。

(2)根部裂纹敏感性评定法这是专门评定根部裂纹的碳当量法,根据裂纹敏感指数P cM进行评定,计算公式为P Cm=C+Si/30+Mn/20+Cu/20+Cr/20+Ni/60+Mo/15+V/10+5B (%)钢的P cM值越低,热影响区的冷裂纹敏感性越低。

为了克服单纯用碳当量评定冷裂倾向的缺点,可以进一步把氢和板厚(代表应力)作为延迟裂纹的三因素综合一起考虑,得到冷裂纹敏感性指数P w,其计算公式为P w= P Cm+δ/600+H/60 (%)式中δ——板厚,mm;H一焊缝金属中扩散氢含量,mL/100g。

(3)热影响区最高硬度法(GB4675.5-84)试件的形状和尺寸,分别见图26—1和表26—1。

(P266)试件的标准厚度为20mm。

1号试件在室温下,2号试件在预热温度下进行焊接。

焊后经12h,加工成如图26—2(P266)试样,在切点O及其两侧各7个以上的点作为硬度的测定点。

把点中维氏硬度最大值与该钢材规定的热影响区最大允许值作比较,若超过允许值,则材料冷裂敏感倾向大。

这种方法比较简便,对于判断热影响区冷裂倾向有一定价值。

但它只考虑了组织因素,没有涉及氢和应力,所以不能借以判断实际焊接产品的冷裂倾向,仅适用于相同试验条件下不同母材冷裂倾向的相对比较。

1、直接试验方法可分为两大类。

一类是自拘束试验,即试件焊接时,由试件本身的刚性而产生的拘束应力,试验时不必另外施加外载;另一类是外拘束试验,试验时外加巨大的拘束应力,来模拟焊接接头施焊时的应力状态、应变状态,甚至氢和组织状态。

(1)冷裂纹的自拘束试验l)斜y形坡口焊接裂纹试验方法(GB4675.1-84)又称小铁研法适用于板厚≥12mm的冷裂纹及再热裂纹抗裂性能试验。

试件的形状及尺寸,见图26—3(P267)。

试验条件及步骤:先将两端的固定焊缝焊好,再焊试验焊缝;单焊道,焊条直径Φ4,焊接规范为I=170A,U=26V,v=150mm/min。

焊后室温放置24h后,用肉眼或磁粉检查表面裂纹,然后沿垂直焊缝方向取五个横截面,检查内部裂纹。

评定方法:表面裂纹率=Σι/L×100%断面裂纹率=Σh/H×100%L为焊缝长度,Σι为裂纹总长度,H为焊肉厚度,Σh为裂纹总深度,见图26—4(P267)。

试验时需采用低氢型焊条,焊接试验焊缝时引弧、熄弧位置见图26—5、图26—6(P267)。

2)搭接接头(CTS)焊接裂纹试验方法(GB4675.2-84)本试验适用于低合金钢焊接热影响区,由于马氏体转变而引起的裂纹试验。

此方法未能推广使用。

3)T型接头焊接裂纹试验方法(GB4675.3—84)本试验适用于碳钢T形接头角焊缝的裂纹试验。

(2)冷裂纹的外拘束试验。

1)插销式试验本方法主要用来评价氢致延迟裂纹中的焊根裂纹。

插销试验施焊时焊缝位置见图26—9(P268)。

施焊完毕待焊件冷却到150℃时插销加载并保证插销在熔合线附近的粗晶区即插销的缺口尖端断裂,记录加载至断裂的时间。

若插销刚好永不断裂,这个应力值就称为临界应力。

这是一个衡量氢致裂纹敏感性的定量指标。

临界应力愈大,氢致裂纹敏感性愈小。

一般认为,恒应力之下48h,甚至24h不断裂,这时的应力就定为临界应力。

插销试验包括了氢致延迟裂纹的三大要素:组织、氢和应力。

2)拉伸拘束裂纹试验(TRC)本试验方法主要用来研究焊缝根部的冷裂纹,如图26—10(P269)所示。

试验时,对接试板在不加拉力的自由状态下焊接,焊后立即在焊缝横向施加一个选定的拉伸载荷,保持此载荷恒定不变,直到发生裂纹和断裂拉伸。

应力越小,裂纹开始发生所需时间越长。

当拉伸应力达到某一数值时,不再产生裂纹,此时的拉伸应力为临界应力。

临界应力值越大,氢致裂纹敏感性愈小。

3)刚性拘束裂纹试验(RRC)本试验用来研究高强度钢的延迟裂纹。

试验时将试样一端固定在夹头上,另一端固定在移动夹头上,焊接过程中要保持两固定端之间的距离L不变(即刚性拘束)。

L越大时,焊缝拘束应力降低,产生裂纹所需的时间也越长;当L为某一数值时,就不再出现裂纹,此时的拘束应力值为临界拘束应力。

RRC与TRC不同之处在于固定条件不同,所以RRC试验不仅可以用来研究延迟裂纹,还可以研究焊接接头冷却过程中产生的各种裂纹现象。

二、焊接热裂纹试验方法1、压板对接(FISCO)焊接裂纹试验方法(GB4675.484)本试验方法适用于低碳钢和低合金高强度钢焊条、不锈钢焊条的焊接热裂纹试验。

试件由两块200mm×120mm的钢板组成,坡口形状为I型,将试件安装在如图26—11(P269)的装置内,固定F1、F2。

在试件上顺次焊接四条长约40mm的试验焊缝,焊缝间距为10mm,焊接弧坑不填满。

焊后立即从装置中取出试件,待冷却后对焊缝进行轴向弯断,观察断面有无裂纹及测量裂纹长度。

2、环形镶块裂纹试验方法试板尺寸及加工固定方式见图26—12(P270)。

在圆孔中央镶入另一块圆板,此圆板与圆孔间保持准确地3.2mm的间隙,可用不加填充焊丝的钨极氩弧焊熔焊一圈而形成对接环缝。

待试件冷却后,根据未产生明显裂纹的圆周角θ1来评定热裂纹敏感性。

θ1值愈大,抗裂性越好。

3、可变拘束试验方法试验装置示意图见图26—13(P270)。

当电弧经过图中A点时,利用一强有力的气压压头在试板左端施加压力F,使试板急剧地向下弯。

B是具有圆弧形表面的模块,试板被压弯后贴在模块表面,形成一定的弯曲半径,电弧继续前进至C处熄弧。

试板弯曲后,上表面产生纵向应变值ε,更换不同曲率半径的模块,可改变试板表面的拘束程度。

卸下试板后,检查焊缝表面和热影响区的裂纹。

试验中,如果是测定母材的热裂纹敏感性,可用不加填充焊丝的钨极氩弧焊熔敷焊道,如果是测定焊缝的热裂纹敏感性,则可用全熔质金属做成试件,再用不加填充焊丝的钨极氩弧焊熔敷焊道。

如果是测定焊接材料与母材配合性能,则可用需要测定的焊接材料和母材,以及打算采用的焊接方法进行试验。

4、鱼骨状可变拘束裂纹试验方法本试验方法适用于检测铝合金薄板的热裂纹敏感性,以及选用焊丝材料。

试件形状和尺寸见图26—14(P270)。

从A端到B端切口长度依次递增,拘束度逐渐减小。

焊接从A点开始,沿中心线向B点前进。

一般说来,焊炬到达某一位置以后裂纹就开始产生,随着焊件拘束度的逐渐减小,裂纹逐渐停止扩展,测量整个焊缝中裂纹长度作为裂纹敏感性的评定指标。

三、焊接再热裂纹试验方法l、间接评定方法钢中的合金元素对钢材的再热裂纹敏感性有很大影响,尤其是铬、钼、钒、铌、钛等,都具有增加钢材再热裂纹倾向的作用。

根据合金元素的影响作用,可以用类似碳当量的公式,间接的评定材料对再热裂纹的敏感性。

(1)日本中村关系式ΔG=Cr+3.3Mo+8.1V—1.39(%)式中ΔG一再裂纹敏感性指数。

ΔG>0时,再热裂纹敏感性较强。

通常,对于HT50级(日本钢号,相当于500MPa级)的合金结构钢:ΔG=-1.4~-1.0。

对于HT60级(日本钢号,相当于600MPa级)的高强度结构钢:ΔG=-1.4~0.6。

(2)日本伊藤关系式Ps R=Cr+Cu+2Mo+7Nb十5Ti-2(%)式中Ps R一再热裂纹敏感系数。

Ps R≤0时,再热裂纹敏感性不强。

此式适用于低合金结构钢,采用重量百分比计算,但不适用于含Cr量大于1.5%的钢。

上述两公式只能对钢材的再热裂纹作一个粗略的预测。

一些主要合金元素的影响作用仅是一个方面,还有许多其它的影响因素。

因此,单凭Ps R或ΔG就断定钢种对再热裂纹是否敏感是不充分的。

例如:合金元素铬的影响就有特殊之处:当Cr<1%时,随着Cr含量增加,再热裂纹敏感性也增加;而当Cr>l%时,则随着Cr含量的增加,却导致再热裂纹敏感性下降。

2、直接试验方法(1)斜y形坡口焊接裂纹试验方法试件尺寸及焊接工艺参数与冷裂敏感性测定方法相同。

不过,试验时必须有足够的预热温度,以保证不产生冷裂纹。

焊后还须进行消除应力热处理。

试件消除应力以后冷却至室温,再横跨焊缝把试件切成6个试片,检查裂纹情况。

(2)平板对接刚性板拘束法试件的坡口形式及尺寸见图26—15(P271)。

本试验方法通过变化拉紧焊缝的尺寸,按裂纹的严重程度,可对不同钢种的再热裂纹敏感性作定性的比较。

通过改变消除应力热处理的参数及焊接材料、焊接工艺,可以得出影响产生再热裂纹的因素,从而探索防止产生再热裂纹的可能性。

(3)反面拘束焊条再热裂纹试验试件的形状和尺寸见图26—16(P271)。

按照试验焊道处坡口形式的不同,可分为T形试板和Y形试板两种。

在如图所指示的位置先焊试验焊缝,随后再焊接拘束焊缝。

在保证没有冷裂纹的前提下,进行消除应力处理。

然后观察是否产生再热裂纹。

这样可以在不同母材、不同焊接材料、不同焊接条件,以及不同应力释放时的加热速度、温度和保温时间等情况下,确定在多少拘束焊道数目时引发再热裂纹。

拘束焊缝能够达到的数目愈多,拘束程度愈严重,则表示再热裂纹敏感性愈小。

这样,可以以“拘束焊道数”作为定量指标确定不同材料及其它情况的再热裂纹倾向。

四、层状撕裂试验方法1、Z向窗口试验这是一种模拟实际焊接结构的层状撕裂试验方法,试件的外形和尺寸,见图26—17(P272)。

然后按图中顺序焊四条角焊缝,其中1和2为拘束焊缝,3和4为试验焊缝。

焊后在室温放置24h,切取试片,检查裂纹。

相关文档
最新文档