《数值分析》完整版讲义

合集下载

数值分析全册完整课件

数值分析全册完整课件
0
解: 将 ex2 作Taylor展开后再积分
1 eБайду номын сангаас x2 dx
1
(1
x2
x4
x6
x8
... ) dx
0
0
2 ! 3! 4!
1 1 1 1 1 1 1 1 ... 3 2! 5 3! 7 4! 9
S4
R4
取 1 e
x
2
dx
0
S4
,

R4
1 1 4! 9
1 1 5! 11
...
值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将 在操场上空出现。如果下雨的话,就让士兵穿着野战服列 队前往礼堂,这一罕见的现象将在那里出现。
连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗 星将身穿野战服在礼堂中出现。如果操场上下雨,营长将 下达另一个命令,这种命令每隔76年才会出现一次。
1.由实际问题应用有关知识和数学理论建立模型, -----应用数学任务
2.由数学模型提出求解的数值计算方法直到编程出结果, -----计算数学任务
计算方法是计算数学的一个主要部分,研究的即是后半 部分,将理论与计算相结合。
特点:
面向计算机,提供切实可行的算法; 有可靠的理论分析,能达到精度要求,保证近
计算方法
数值分析全册完整课件
教材和参考书
教材:
数值分析,电子科技大学应用数学学院,钟尔杰, 黄廷祝主编,高等教育出版社
参考书:
数值方法(MATLAB版)(第三版),John H. Mathews,Kurtis D. Fink 著,电子工业出版社;
数值分析(第四版),李庆扬,王能超,易大义编,清华 大学出版社;

数值分析(03)赋范线性空间讲义.

数值分析(03)赋范线性空间讲义.

数值分析
3.C [a , b] : f ( x ) C [a , b]也有以下的三种常用范数. 1 范数 : f 2 范数 : f 范数 : f
1
f ( x ) dx
a
b
2
( f ( x ) dx )
a
b
2
1 2

max f ( x )
x a , b
用范数定义V中元素之间的距离
数值分析
数值分析
例:f ( x) x, g( x ) e x , x [0,1]
( f , g) || x e ||p , p 1,2,
x
( f , g ) || x e ||1 | x e | dx
b
(3)
f g 1 = f ( x ) g( x ) dx ( f ( x ) g( x ) )dx
a a
f ( x ) dx g( x ) dx f
a a
b
b
b
1
g 1,
f ( x ), g( x ) C [a , b]
所以 f 1 = f ( x ) dx 为f ( x )在C [a , b]中的范数.
2 1 2
可以证明 : x R n 有 关 系 式 1 x2 x x2 n x x2 n x x x1n x
数值分析
数值分析
例:证明
|| x || || x ||2 n || x ||
2 xn n max | xi |2 n max | xi | 1 i n 1 i n
1 p
欧氏范数
2 1 2
i 1 n
Cauchy Schwarz 不等式 ( xi yi )

数值分析讲义

数值分析讲义

存在正数 ε∗, 使得
|x∗ − x| ≤ ε∗
称 ε∗ 为近似值的绝对误差限,简称误差限。
记作 x = x∗ ± ε.
朱升峰 (ECNU)
x∗ − ε∗ ⩽ x ⩽ x∗ + ε∗,
数值分析
. . . .... .... .... . . . . .
. . . .... .... .... . .
. ..
2021.03 14 / 31
相对误差
定义 3
近似值的误差与准确值的比值 e∗ x∗ − x x= x
称为近似值 x∗ 的相对误差,记作 e∗r 。
定义 4
若存在正数 ε∗r , 使得 |e∗r | ≤ ε∗r , 则称 ε∗r 为相对误差限。
实际计算中,准确值未知,一般取
e∗ x∗ − x x∗ = x∗
理论研究 实验研究 科学计算 科学计算: 现今体现国家科学技术核心竞争力的重要标志 计算数学是各种计算性学科的共性基础。
朱升峰 (ECNU)
数值分析
. . . .... .... .... . . . . .
. . . .... .... .... . .
. ..
2021.03 5 / 31
计算方法与计算机
面向计算机的算法: 串行算法: 只有一个进程的算法适合于串行计算机 并行算法: 有两个以上的算法适合于并行计算机
算法 “好”: 可靠的理论分析且良好的数值表现 (计算复杂性好) 数值分析研究数值问题的算法
1 面向计算机 2 可靠的理论分析: 近似算法的收敛性, 数值稳定性, 误差分析等 3 好的计算复杂性: 时间复杂性, 空间复杂性 4 要有数值实验: 算法的数值验证
作为 x∗ 的相对误差,ε∗r = ε∗/|x∗|.

《数值分析简明教程》讲义

《数值分析简明教程》讲义
例1:已知 , , 求 。(10.723)
例2:取节点 , , 对函数 建立线性插值公式。
3、一般情形
现在考虑一般的插值问题:设函数在区间[a,b]上n+1个互异节点 上的函数值分别为 ,求n次插值多项式 ,满足条件
, j=0,1,…,n

——拉格朗日插值公式。
其中 为以 为节点的n次插值基函数,其公式为:
则称 为近似数x的相对误差限。
三、有效数字
1、有效数字
如果近似值 的误差限是某一位的半个单位,该位到 的第一位非零数字共有 位,则我们称 有 位有效数字。
例如, 取 时,
所以, 作为 的近似值时,就有3位有效数字。
2、误差限与有效数字的关系
定理1 设有一数x,其近似值
若 具有 位有效数字,则其相对误差限为
可表示为下列点斜式:


——线性插值公式
其中:
例1:已知 , ,求 。(10.714)
例2:取节点 , 对函数 建立线性插值公式。
2、抛物插值
问题:求作二次式 ,使满足条件:
几何解释就是通过三点 , , 的抛物线,因而称为抛物插值。
根据插值基函数所满足的条件,可得抛物插值的基函数为:
最终得: ——抛物插值公式。
运算过程中舍入误差不增长的计算公式——数值稳定的,否则为不稳定的。
2、要避免两个相近数相减。
3、要防止大数“吃掉”小数。(数量级相差很大的数,措施:调整运算次序。)
4、注意简化计算步骤。
第2章插值方法
在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的,并不知道它的表达式,只能通过观察、测量或实验得到函数在区间[a,b]上一些离散点上的函数值、导数值等。还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。插值法就是寻求近似函数的方法之一。

数值分析1.1讲义.

数值分析1.1讲义.

方程求根问题
在科学计算中常要遇到求解各种方程, 例如:
高次代数方程
超越方程
x 5- 3 x + 7 = 0
x e cos 0 3
x
高次线性方程和超越方程看似简 单,但难于求其精确解。对于高次 代数方程,由代数基本定理知多项 式根的数目和方程的阶相同,但对 超越方程就复杂的多,如果有解, 其解可能是一个或几个,也可能是 无穷多个。
用计算机解决科学计算问题通常经历以 下过程
应 用 数 学 计 算 数 学
实际问题
数值计算方法
程序设计
数学模型
上机计算结果
2.数值分析研究的内容 — 函数的数值逼近(插值与拟合)
— 数值积分与数值微分
— 非线性方程数值解 — 数值线性代数
— 常微和偏微数值解,……
数值分析实质上是以数学问题为研 究对象,不像纯数学那样只研究数 学本身的理论,而是把理论与计算 紧密结合,着重研究数学问题的数 值方法及理论。
y ' 1 2 xy y (0) 0
常微分方程的一般解(解析解) 对一些典型的微分方程 ( 可分离变 量方程,一阶线性方程等等 ) ,有可 能找出它们的一般解表达式,然后 用初始条件确定表达式中的任意常 数,这样解即能确定。
y ' 2 x 例如 求解 y (0) 0
数值分析
Numerical Analysis

《数值分析》(第2版)
材 朱晓临 主编
中国科学技术大学出版社
《数值分析》(第5版) 李庆阳,王能超,易大义编著 清华大学大学出版社
参 考 书 目
《数值分析》(第3版) 颜庆津著, 北京航空航天大学 出版社 《Numerical Analysis》(Ninth ed.)

数值分析(交通类)讲义_第五章

数值分析(交通类)讲义_第五章

(2)回代过程
( n) 若 ann 0, 则
( n) a ( n) xn bn nn
(k ) n ( k ) ( k ) xk bk akj x j akk , (k n 1,,1) j k 1
BJTU
说明: 若线性方程组的系数矩阵非奇异,则它总可 以通过带行交换的高斯消去法进行求解。
1.00 105 x 1.00 y 1.00 5 5 1.00 10 y 1.00 10
BJTU
x 0.00, y 1.00
解法2:
5 1 . 00 10 x 1.00 y 1.00 1.00 x 1.00 y 2.00 5 5 ( 1 . 00 1 . 00 10 ) y ( 1 . 00 2 . 00 10 ) 1.00 x 1.00 y 2.00 1.00 y 1.00
(1) x b (1) a1 1 n 1 ( 2) ( 2) ( 2) x2 b a22 a2 n 2 . ( n) ( n) x 0 ann bn n (1) a12
其中
( 2) (1) (1) aij aij mi1 a1 j , (i, j 2,3,, n)
(1) bi( 2) bi(1) mi1 b1 , (i 2,3,, n)
第2步:若 „ „
BJTU
( 2) a22 0,
用„ „.
Байду номын сангаас
第k步:若
(k ) akk 0,
例1(见板书)
一般地,顺序高斯消去法:
BJTU

数值分析讲义

数值分析讲义

第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。

误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。

相对误差e r是误差e 与精确值x* 的比值,。

常用计算。

相对误差限是相对误差的最大限度,,常用计算相对误差限。

绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。

从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。

关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。

(4) 要求精确到10-3,取该数的近似值应保留4 位小数。

一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。

一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。

二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 误差分析与数值稳定性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 误差分析方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 有效数字 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 误差估计基本公式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
数值分析讲义
目录
第一讲 数值分析引论
1
1.1 数值分析介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 科学计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.3 内积与内积空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 带权内积与范数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 推荐参考资料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 线性代数基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 线性空间基本概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 范数与赋范线性空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 绝对误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ห้องสมุดไป่ตู้
1.3.2 相对误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.5 向量范数与矩阵范数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 数值计算中的误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 数值稳定性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 避免误差危害 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 课后练习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
第二讲 函数插值
25
2.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
相关文档
最新文档