电大离散数学形成性考核作业(一)

合集下载

电大 离散数学 形成性考核册 作业(一)答案

电大 离散数学 形成性考核册 作业(一)答案

离散数学形成性考核作业(一)集合论部分本课程形成性考核作业共4次,内容由中央电大确定、统一布置。

本次形考作业是第一次作业,大家要认真及时地完成集合论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。

第1章 集合及其运算1.用列举法表示 “大于2而小于等于9的整数” 集合.解:{3,4,5,6,7,8,9}2.用描述法表示 “小于5的非负整数集合” 集合.解:}50{N n n n ∈<<且3.写出集合B ={1, {2, 3 }}的全部子集.解:集合B ={1, {2, 3 }}的全部子集为:}}.3,2{,1{}},3,2{{},1{,φ4.求集合A ={∅∅,{}}的幂集.解:A ={∅∅,{}}的幂集为,是子集的集合。

题是求集合的幂集,,应把子集列举出来;题是求集合的全部子集:注意43][}}}{,{}},{{},{,{2)(φφφφφ==A A P5.设集合A ={{a }, a },命题:{a }⊆P (A ) 是否正确,说明理由.解:{a }⊆P (A ) 不正确。

因为P (A )是A 的幂集,是由A 的子集组成的集合。

{a }既是 A 的元素又是A 的子集,应有{a }∈P (A ) 。

6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃(3)C - A (4)A B ⊕解:(1)A B ⋂={1,3}; (2)A B C ⋃⋃={1,2,3,4,5,6};(3)C -A ={4,6}; (4)A B ⊕={2,5}7.化简集合表示式:((A ⋃B )⋂B ) - A ⋃B .解:φ=⋃-=⋃-⋂⋃B A B B A B B A ))((8.设A , B , C 是三个任意集合,试证: A - (B ⋃C ) = (A - B ) - C .C B A C A B A A C A B A A C B A A C B A --=⋂-⋂-=⋂⋃⋂-=⋃⋂-=⋃-)()()())()(()()(解:9.填写集合{4, 9 }⊂{9, 10, 4}之间的关系.10.设集合A = {2, a , {3}, 4},那么下列命题中错误的是( A ).A .{a }∈AB .{ a , 4, {3}}⊆AC .{a }⊆AD .∅⊆A11.设B = { {a }, 3, 4, 2},那么下列命题中错误的是( C 、D ).A .{a }∈B B .{2, {a }, 3, 4}⊆BC .{a }⊆BD .{∅}⊆B第2章 关系与函数1.设集合A = {a , b },B = {1, 2, 3},C = {3, 4},求 A ⨯(B ⋂C ),(A ⨯B )⋂(A ⨯C ) ,并验证A ⨯(B ⋂C ) = (A ⨯B )⋂(A ⨯C ).)()(}3,,3,{}4,,3,,4,,3,{}3,,2,,1,,3,,2,,1,{)()(};3,,3,{}3{},{C A B A C B A b a b b a a b b b a a a C A B A b a b a C B A ⨯⋂⨯=⋂⨯〉〈〉〈=〉〈〉〈〉〈〉〈⋂〉〈〉〈〉〈〉〈〉〈〉〈=⨯⋂⨯〉〈〉〈=⨯=⋂⨯)(由上面可知,)(解:2.对任意三个集合A , B 和C ,若A ⨯B ⊆A ⨯C ,是否一定有B ⊆C ?为什么?。

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。

(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案

(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案

(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案《离散数学》网络课答案形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项: B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项: D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项: C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项: D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项: C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).选择一项: B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为: f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>}, h = {<1, 3>,<2, 1>,<3, 1>},则h =().选择一项: D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c,d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c,d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项: C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项: D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项: A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项: C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项: C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项: B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是( ).选择一项: C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项: A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项: D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项: B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项: D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项: C. ┐A∧┐B ↔┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( )选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务5 网上学习行为(学生无需提交作业,占形考总分的10%)《学前儿童卫生与保健》网络课答案讨论型:(10分)每个学前儿童的生长发育都有其特点:答:生长发育的一般规律是指群体儿童在生长发育过程中所具有的一般现象。

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案:最新电大《离散数学》形考作业任务01-07网考试题及答案 100%通过考试说明:《离散数学》形考共有7个任务。

任务3、任务5、任务7是主观题,任务2、任务4、任务6是客观题,任务2、任务4、任务6需在考试中多次抽取试卷,直到出现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就可以按照该套试卷答案答题。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他教学考一体化答案,敬请查看。

01任务一、单项选择题(共 8 道试题,共 80 分。

)1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲. A. 18 B. 20 C. 19 D. 17 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(). A. 复习指导 B. 视频 C. 课件 D. 自测二、作品题(共 1 道试题,共 20 分。

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5题目3设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图D.对偶图题目7设图G=<V,E>,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对错题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对错题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。

国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。

【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。

【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。

【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学形成性考核作业(一)
集合论部分
分校_________ 学号____________________ 姓名 _________________ 分数______________ 本课程形成性考核作业共4次,内容由中央电大确定、统一布置。

本次形考作业是第一次作业,大家要认真及时地完成集合论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。

第1 章集合及其运算
1.用列举法表示“大于2而小于等于9 的整数” 集合.
2.用描述法表示“小于5 的非负整数集合” 集合.
3.写出集合B={1, {2, 3 }} 的全部子集.
4.求集合A={ ,{ } } 的幂集.
5.设集合A={{ a }, a },命题:{a } P(A) 是否正确,说明理由.
6.设A {1,2,3}, B { 1,3,5}, C { 2,4,6}, 求
(1) A B (2) A B C
(3)C - A (4) A B
7.化简集合表示式:((A B ) B) - A B.
&设A, B, C是三个任意集合,试证:A- (B C ) = (A - B ) - C .
9•填写集合{4, 9 } {9, 10, 4}之间的关系.
10.设集合A = {2, a, {3}, 4},那么下列命题中错误的是( ).
A, B 和 C ,试证若 A B = A C , 且 A
A = { a , b , c }到集合
B = {1}的所有二元关系.
A . {a} A
B . { a, 4, {3}} A
C . {a} A 11.设B = { { a}, 3, 4, 2},那么下列命题中错误的是( ).
A . {a} B
B . {2, { a}, 3, 4} B
C . {a} B
D . { } B
第2章关系与函数
1 .设集合 A = {a, b},
B = {1,2, 3} ,
C = {3, 4},求 A
(B
C), (A B) (AC ),
并验证 A (B C ) = (A B) (A C ).
2.对任意三个集合
A, B 和C ,若A B A C ,是否一定有B
C ?为什么?
3.对任意三个集合
4.写出从集合
5.设集合 A = {1 , 2, 3, 4, 5, 6 }, R 是 A 上的二元关系, R ={ a , b a , b A ,且 a +b = 6} 写出 R 的集合表示式.
6.设R 从集合A = {a , b , c , d }到B = {1 , 2, 3}的二元关系,写出关系 R ={ a , 1
, a , 3 , b , 2 , c , 2
7.设集合 A={ a , b , c , d}, A 上的二兀关系
c ,
d }, d , d }.
R ={ a , b , b , d , c , c

S ={ a , c , b , d , d , b ,
求 R S ,R
S ,R -S ,~(R S ),R S .
c , 3 }的关系矩阵,并画出关系图.
&设集合A={1 , 2 } , B = { a , b , c}, C ={ , }, R是从A到B的二元关系,S是从B 到C 的二元关系,且R = {<1 , a>,<1 , b>,<2 , c>} ,S= {< a , >,<b , >} ,
用关系矩阵求出复合关系R S.
9.设集合A={1 , 2 , 3 , 4} 上的二元关系
R = { 1 , 1 , 1 , 3 , 2 , 2 , 3 , 1 , 3 , 3 , 3 , 4 , 4 ,
3 ,
4 , 4 },
判断R 具有哪几种性质?
10.设集合A={ a , b , c , d } 上的二元关系
R = { a , a ,a , b ,b , b ,c , d },求r (R),s (R),t (R).
11.设集合A = {a, b, c, d} , R, S是A上的二元关系,且
R = {< a , a> , <a , b> , <b , a> , <b , b> , <c , c> , <c , d> , <d , c> , <d , d>}
S = {< a , b> , <b , a> , <a , c> , <c , a> , <b , c> , <c , b> , <a , a> , <b , b> , <c , c>}
试画出R和S的关系图,并判断它们是否为等价关系,若是等价关系,则求出A中各元素的等价类及商集.
12•图1.1所示两个偏序集A和偏序关系R的集
A, R 的哈斯图,试分别写出集合
合表达式.
d e f
“-g f
b C b c「..e
a a og
(1) (2)
图1.1 题12哈斯图
13.画出各偏序集 A , 1的哈斯图,并指出集合 A 的最大元、最小元、极大元和极
小元.其中:A={a , b , c , d , e },
i = { a , b , a , c , a , d , a , e , b , e , c , e , d , e } I A ;
18.设集合A={ a , b , c , d , e }上的偏序关系的哈斯 图如图1.2所示•则
A 的极大元为 _________________________________________ 极小元为 _______________________ .
16.设集合 A = {1 , 2, 3, 4}, A 上的二兀关系
R ={ 1 , 2 ,
S ={ 1 , 4 ,
1 , 4 , 2,3 ,
2,4 , 3,3 }, 2,4
,
3,2
},
则关系(
)={
1 , 4 , 2,4
}.
A . R S
B . RS
C . R - S
D . S - R
17.设集合A={1 , 2,3,4}上的二元关系 R = { 1 , 1
则R 具有(
).
A .自反性
B .传递性
C .对称性
D .反自反性
14. (1)
⑵ 下列函数中,哪些是满射的?那些是单射的?那些是双射的?
f 1 : R R , f (a ) = a 3
+ 1 ; f 4 : N
{0,1} , f ⑻=
0, a 为奇数 1 , a 为偶数
15 .设集合 A= {1,2 }, B = {a, b, c},则 B
A=
2,3
, 2,4
, 3,4 },
a
19.设R为实数集,函数f: R R, f (a) = -a2 +2a - 1,则彳是().
A .单射而非满射
B .满射而非单射
C.双射 D .既不是单射也不是满射。

相关文档
最新文档