221椭圆及其标准方程导学案优质示范课(供参考)

合集下载

椭圆及其标准方程 (优质课说课稿)

椭圆及其标准方程 (优质课说课稿)

《椭圆及其标准方程》说课稿尊敬的各位评委:大家好!我说课的内容是《椭圆及其标准方程》, 下面, 我将从教材分析, 学情分析, 教学目标, 教学方法, 教学过程设计, 教学设计说明几个方面来进行阐述.一、教材分析1.课标要求:《椭圆及其标准方程》是人教A版普通高中课程选修2-1第二章的第二节内容.课程标准对这部分内容的要求是:“经历从具体情境中抽象出椭圆模型的过程, 掌握椭圆的定义、标准方程及简单几何性质”.2.教材地位“椭圆及其标准方程”是《圆锥曲线》第一节的内容;在前面学生已经学习了运用坐标法研究了直线和圆的性质,及曲线与方程的关系,对椭圆概念与方程的研究是坐标法的深入,为后面研究双曲线、抛物线提供了基本模式和理论基础,因此, “椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析(1)在学习本课之前学生已学习了直线和圆的方程及其性质, 曲线与方程的关系, 对解析几何有一定的了解, 已有一定的观察、分析、解决问题的能力.这为本节课的学习奠定了必要的知识基础.(2)在日常生活中, 学生对椭圆有了一定的认识, 但仍没有上升到成为“概念”的水平, 将感性认识理性化将会是对他们的一个挑战.含有两个根式的方程的化简也会使学生的探究受阻, 教师要适时加以点拨.三、教学目标分析根据教学内容的地位和作用, 结合学生的实际, 确定了以下教学目标:1.掌握椭圆的定义及其标准方程;通过对椭圆标准方程的探求, 熟悉求曲线方程的一般方法.2.在椭圆概念的形成过程及其标准方程的推导过程中,培养学生的归纳概括能力、动手实践能力、分析问题、解决问题的能力及运算能力.3.在教学中充分揭示“数”与“形”的内在联系, 体会数形美的统一, 激发学生学习数学的兴趣, 培养学生敢于探索, 勇于创新的精神.教学重点和难点:1.重点: 感受建立曲线方程的基本过程, 掌握椭圆的标准方程及其推导方法.为了突出重点, 让学生动手实践, 自主探索, 通过画图揭示椭圆上的点所要满足的条件, 由此得出定义, 推出方程.2.难点: 椭圆标准方程的推导.为了突破难点, 关键是抓住“怎样建立坐标系”和“怎样简化方程”两个环节来进行方程的推导.四、教学方法及准备(一)教学方法本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法, 并以多媒体手段辅助教学, 使学生经历实践、观察、交流、分析、概括等理性思维的基本过程, 切实改进学生的学习方式, 使学生真正成为学习的主人.(二)教学准备教师准备:多媒体课件学生准备: 一支铅笔、两个图钉(或胶带)、一根细绳、一张硬纸板.五、教学过程设计按照“引入课题——形成概念——推导方程——对比分析——例题讲解——归纳小结——作业布置”这七个环节来组织教学, 层层推进, 实现教学目标.(一)创设情境, 引入课题本节课的开始由多媒体演示“神舟八号”无人飞船与“天宫一号”目标飞行器进行了空间交会对接, 绕地球旋转运行的画面.提出问题: “神州八号”的轨道是什么形状?待学生回答后,请学生叙述生活中见到的椭圆形象, 并用课件展示我所搜集的椭圆形象, 让学生形成椭圆的感性认识, 引入课题.[设计意图] 这一过程充分调动学生的学习兴趣, 激发学生的探究心理,为引出新知做铺垫.通过举例和展示生活中椭圆形的图片, 让学生认识到椭圆和日常生活关系密切.使他们感受数学的应用价值, 同时培养学生学会用数学眼光去观察周围事物的能力.(二)实验探索, 形成概念有了对椭圆的感性认识,如何来研究椭圆呢?提出问题: 曲线可以看作适合某种条件的点的集合或轨迹.椭圆是满足什么条件的点的轨迹呢?这时借助于多媒体演示椭圆的画法, 请学生拿出准备的学具动手画图, 并思考问题.在学生思考的过程中我继续用问题引导: 圆是如何定义的,圆是满足什么条件的点的轨迹呢?学生回答后我继续追问: 在画图的过程中, 哪些量在变, 哪些量保持不变?学生根据自己的实验, 观察回答: “两定点间的距离没变, 绳子的长度没变, 点在运动.”我继续提问:你们能根据刚才画椭圆的过程, 类比圆的定义, 归纳概括出椭圆的定义吗?先让学生独立思考,尝试归纳,然后进行小组合作交流,教师重点关注学困生,适时给予点拨指导.几分钟后,大部分学生都能得到椭圆的定义:“平面内与两个定点的距离之和为常数的点的轨迹叫椭圆.”接着对得到的概念进行剖析, 提出问题: 这个常数是任意的吗?给学生两分钟时间进行思考、讨论、交流, 尝试找出答案, 若有困难, 教师借助于演示实验再次探索观察, 学生不难发现, 这个常数必须大于两定点间的距离.这样, 就得到了完整的椭圆定义:平面内与两个定点、的距离之和等于常数(大于|F F |)的点的轨迹叫做椭圆。

高中数学《椭圆及其标准方程(第一课时)》优质课比赛教案设计

高中数学《椭圆及其标准方程(第一课时)》优质课比赛教案设计

椭圆及其标准方程(第一课时)教案一.教材及学情分析:本节课是《普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修2-1第二章第二节《椭圆及其标准方程》第一课时.用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线.圆锥曲线的发现与研究始于古希腊.当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广.17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.在选修2中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二.教学目标:1.知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三.重、难点重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想 难点:椭圆标准方程的推导与化简,坐标法的应用 关键:含有两个根式的等式化简 四.教法分析新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人. 五.教学过程创设情境——提出问题,学生活动——体验数学, 意义建构——感知数学,数学理论——建立数学, 数学应用——巩固新知,回顾反思——归纳提炼, 课后作业——巩固提高 (一)创设情境——提出问题 以折纸游戏创设问题情境请学生将课前统一发放的圆形纸片拿出来, 并按如下步骤进行操作:1.将圆心记作点1F ,然后在圆内任取一定点2F 2.在圆周上任取10个点,分别记作12310N N N N 、、……, 将它们与圆心相连,得半径111213110F N F N F N F N 、、……986N3.折叠圆形纸片,使点1N 与点2F 重合,将折痕与半径11F N 的交点记作1M ;然后再次折叠圆形纸片,使点2N 与点2F 重合,将折痕与半径12F N 的交点记作2M ;……;依此类推,最后折叠圆形纸片,使点10N 与点2F 重合,将折痕与半径110F N 的交点记作10M4.用平滑曲线顺次连接点12310M M M M 、、……,你有何发现? 设计意图:使学生产生学习兴趣和探索欲望 (二)学生活动——体验数学1.学生通过动手实践、观察,猜想轨迹为椭圆 2.展示学生成果3.用几何画板展示动点生成轨迹的全过程,印证猜想 4.展示椭圆实际应用的幻灯片5.导出新课:看来,大家对椭圆并不陌生,但细想想,我们对椭圆也说不上有多熟悉,除了“她”的名字和容貌,我们对“她”的品性几乎还一无所知.数学是一门严谨的科学,我们不能满足于直观感受、浅尝辄止,我们希望对椭圆有更深刻的认识,比如:椭圆上所有的点所具有的共同的几何特征是什么?——椭圆的定义;能否用代数方法精确地刻画出这种共同的几何特征?——椭圆的标准方程.这就是我们这节课的重点内容. 设计意图:从折纸游戏中导出新课,明确研究课题 (三)意义建构——感知数学 椭圆定义的初步生成学生每4人一组,合作探究,在刚才的折纸游戏中,折痕与对应半径的交点的共同属性,教师巡视指导.如学生有困难,可按如下提示铺设认知阶梯:如何用数学语言表达点N 与定点2F 重合——点N 与定点2F 关于折痕轴对称 对称轴有什么特点——折痕即对称轴是线段2NF 的垂直平分线线段垂直平分线上的点有什么几何性质——到线段两个端点距离相等,即2MF MN =动点M 与定点12F F 、之间有什么关系——1211MF MF MF MN NF R +=+== 请学生代表本小组交流探究结论——与两个定点12F F 、的距离之和等于常数的点的轨迹叫做椭圆(四)数学理论——建立数学 1.椭圆定义的完善提出问题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲.那么,这个常数可以是任意正实数吗?有什么限制条件吗?如何体现点2F 在定圆1F 的内部?引导学生回答:点2F 在定圆1F 的内部即点2F 到圆心1F 的距离小于圆的半径,也就是1212F F R MF MF <=+,从而意识到在“定义”中需要加上“常数>12F F ”的限制.继续深化问题:若常数=12F F 或常数<12F F ,情况会发生什么变化?应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数=12F F 时,与两个定点21,F F 的距离之和等于常数的点的轨迹是线段12F F ;当常数<12F F 时,与两个定点21,F F 的距离之和等于常数的点的轨迹不存在.请学生给出经过修改的椭圆定义,教师用幻灯片给出完善的椭圆定义,并介绍焦点、焦距的定义.设计意图:使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风 2.椭圆的标准方程(1)回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性 (2)建立焦点在x 轴上的椭圆的标准方程①建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?——利用椭圆的对称性特征以直线12F F 为x 轴,以线段12F F 的垂直平分线为y 轴,建立平面直角坐标系.设焦距为()20c c >,则()()12,0,0F c F c -.设(),M xy 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.②动点M 满足的几何约束条件: 122MF MF a +=2a =④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号预案一:移项后两次平方法()()()22222222222222242222222222222222242221x c aa x cx c y a x cx c y a cxa x a cx a c a y a a cx c ac x a y a a c x y a a c +==+++=+-++=--++=-+-+=-+=-链接到几何画板,分析22a c -得到焦点在x 轴上的椭圆的标准方程为()222210x y a b a b+=>>()()()()()()()()()()()()22222222222222222222212212423124234221a k cxcx ak k a k a cx a ac x x cx c y a cx aa c x a y a a c x y a a c==⨯=⇒=+=+=++++=++-+=-+=-预案二:引入共轭无理数对得:将代入下同法一()()()()()()()()()()()()()22222222222222222222222222221221443214341x c aa a d a d cx cx ad d ax y c a d cx x y c a a ac x a y a a c x y a a c +==-=+-=⇒=+++=+⎛⎫++=+ ⎪⎝⎭-+=-+=-预案三:运用等差数列知识设得:得:将代入得:下同法一设计意图:进一步熟悉用坐标法求动点轨迹方程的方法掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神感受数学的简洁美、对称美(3)建立焦点在y 轴上的椭圆的标准方程要建立焦点在y 轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在x 轴上的椭圆的标准方程转化为焦点在y 轴上的椭圆的标准方程.只需将图(1)沿直线y x =翻折或将图(1)绕着原点按逆时针方向旋转90︒即可转化成图(2),需将x 轴、y 轴的名称换为y 轴、x 轴或y 轴、x -轴.(1) (2)焦点在y 轴上的椭圆的标准方程为()222210y x a b a b+=>>设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动 (4)辨析焦点分别在x 轴、y 轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较2x 与2y 项分母的大小即可.若2x 项分母大,则焦点在x 轴上;若2y 项分母大,则焦点在y 轴上.反之亦然. 联系:它们都是二元二次方程,共同形式为()2210,0,Ax By A B A B +=>>≠ 两种情况中都有222a c b -= (五)数学应用——巩固新知例1:判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹;(是) (2)到点()12,0F -和点()22,0F 的距离之和为4的点的轨迹;(不是) (3)到点()10,2F -和点()20,2F 的距离之和为6的点的轨迹;(是) (4)到点()12,0F -和点()20,2F 的距离之和为4的点的轨迹;(是) 设计意图:巩固椭圆定义例2:已知椭圆的两个焦点的坐标分别是()()121,01,0F F -、,椭圆上一点M 到12F F 、的距离之和为4,求该椭圆的标准方程.2222224213143a a cb ac x y =∴==∴=-=∴+=解:椭圆的标准方程为设计意图:学会用待定系数法求椭圆标准方程变式一:已知椭圆的两个焦点的坐标分别是()()120,10,1F F -、,椭圆上一点M 到12F F 、的距离之和为4,求该椭圆的标准方程.2222224213143a a cb ac y x =∴==∴=-=∴+=解:椭圆的标准方程为设计意图:提醒学生在解题时先要根据焦点位置判断使用哪种形式的椭圆标准方程变式二:已知椭圆的两个焦点分别是()()121,01,0F F -、,椭圆经过点31,2M ⎛⎫⎪⎝⎭,求该椭圆的标准方程.()22221222335321142132222143a MF MF a cb ac x y ⎛⎫=+=+++=+=∴==∴=-= ⎪⎝⎭∴+=解:椭圆的标准方程为设计意图:使学生体会椭圆定义在解题中的重要作用(六)回顾反思——归纳提炼1.知识点:椭圆的定义及其标准方程2.数学方法:用坐标化的方法求动点轨迹方程3.数学思想:数形结合思想、化归思想(七)课后作业,巩固提高1.必做题:课本49页习题2.2 A组2,5(1)(2),6,9 2.思考题:(1)在化简椭圆方程的过程中有ca xaca xa=-=+成立,该式有什么几何含义?你能从函数观点看待等式右端的代数式吗?你能用函数单调性解释椭圆上的点与焦点间距离的变化情况吗?(2)将ca xaca xa=-=+稍作变化即可得到caxccaxc=-⎪⎪=⎪+⎪⎩,两个代数式的商为常数,它又有什么几何含义?设计意图:为引入椭圆第二定义及焦半径公式作适当铺垫,体现数学知识之间的联系,培养学生养成深入思考的习惯.。

【参考借鉴】椭圆及其标准方程导学案.doc

【参考借鉴】椭圆及其标准方程导学案.doc

2.2.1《椭圆及其标准方程》导学案【学习目标】1.从具体情境中抽象出椭圆的模型,理解椭圆的定义;2.了解椭圆标准方程的推导,掌握椭圆的标准方程;3.能根据已知条件写出椭圆的标准方程。

【学习重难点】重点:椭圆的定义及其标准方程;难点:椭圆标准方程的推导。

【课前准备】1、日常生活中常见的椭圆形物体有哪些?2、求曲线方程的一般步骤是?320=1=4、小组准备一块硬纸板,一根细绳,两枚图钉。

【预习展示】动手试验:①取一条定长的细绳②把细绳的两端固定在图纸上③当绳长大于两定点之间的距离时,用铅笔尖把绳子拉紧,在图纸上慢慢移动,看看能画出什么图形(根据画图的体验,类比圆的定义,给出椭圆的定义:)一、椭圆的定义:思考:这里的常数有什么限制吗?定义中 :(1) 当122a F F >时,轨迹是(2) 当122a F F =时, 轨迹是(3) 当122a F F <时, 轨迹是二.椭圆标准方程的推导1、建系设点:2、写出点集:3、列出方程:4、化简方程:5、检验:椭圆的标准方程:__________________________________________________思考:若焦点在R 轴上,椭圆的标准方程是什么?【合作探究】已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程。

(用自己的方法). 【课堂检测】1.如果点(,)M x y 在运动过程中,10=,点的轨迹是 ,它的方程是 .2.写出适合下列条件的椭圆的标准方程:①4,3a b ==,焦点在x 轴上;②1,2b c ==,焦点在y 轴上;③9,3a b c +== ④与椭圆2212x y +=有相同的焦点,且经过点3(1,)23.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)4. 已知ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的 另外一个焦点在BC 边上,则ABC 的周长是( ).A ..6 C ..12。

椭圆及其标准方程导学案(第1课时)

椭圆及其标准方程导学案(第1课时)

§2.1椭圆及其标准方程导学案(第1课时)【学习目标】1.能准确的说出椭圆的定义;2.会推导椭圆的标准方程并掌握椭圆的标准方程的写法. 3会用待定系数法求椭圆的标准方程 【学习过程】 一.自学探究 1.椭圆的产生 2.椭圆的定义我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思②:若将距离之和(| P F 1|+| P F 2|)记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .试一试:1若动点P 到两定点F 1(-4,0),F 2(4,0)的距离之和为8,则动点P 的轨迹为( ) A.椭圆 B.线段F 1F 2 C.直线F 1F 2 D.不存在2命题甲:动点P 到两定点A 、B 的距离之和|PA|+|PB|=2a(a>0,常数)命题乙:P 点轨迹是椭圆, 则命题甲是命题乙的( )A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件小结:理解椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >二.椭圆标准方程的推导 1.标准方程的推导步骤 (1)建立坐标系 (2)设点 (3)列式 (4)化简 (5)检验2.两种标准方程的比较2三:典型例题例1. 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .方法总结:椭圆的标准方程的两种求法:(1)定义法:定义是研究椭圆问题的基础和根本,根据椭圆的定义得到相应的,,a b c ,再写出椭圆的标准方程。

(2)待定系数法,先设出椭圆的标准方程22221x y a b +=或22221x y b a+=(0a b >>),然后求出待定的系数代入方程即可四、练习提升1求适合下列条件的椭圆的标准方程:(1)椭圆的两焦点分别为F 1(-3,0)、F 2(3.,0),且椭圆上的点到两焦点的距离之和等于8;(2)求经过两点(1,0),(0,2),且焦点在y 轴上。

(导学案)2.2.1椭圆及其标准方程

(导学案)2.2.1椭圆及其标准方程

2.1.1 椭圆及其标准方程(1) (导学案)【学习目标】(1)从具体情境中抽象出椭圆的模型;(2)掌握椭圆的定义,能用坐标法求椭圆的标准方程; (3)掌握椭圆的标准方程的推导及标准方程的形式。

【重点、难点】重点:椭圆的定义及其标准方程。

难点:椭圆标准方程的推导与化简。

【学习方法】探究、讨论、归纳、类比 一、【基础知识链接】1、曲线可以看作是适合某种条件的点的集合或轨迹。

求曲线方程的一般步骤是: → → → → 。

其中,建立坐标系一般应遵循 的原则。

2、平面内两点间的距离公式:设A (x 1,y 1),B (x 2,y 2),则︱AB ︱=二、【新知导学】 探究任务一:椭圆的定义 【教材导读】 预习课本P38的内容,动动手,做教材P38中的“探究”,并完成下列问题:(1)、设笔尖(动点)为M ,两个定点1F ,2F 的距离为2c ,绳长为2a ,当22a c >时,动点M 的轨迹是 ;当22a c =时,动点M 的轨迹是 ;当22a c <时,动点M 的轨迹是 。

(2)、椭圆的定义:把平面内动点M 与两个定点1F ,2F 的距离之和等于常数(2a大于 )的点的轨迹叫做 . 这两个定点叫做椭圆的 ,两焦点的距离(2c )叫做 .探究任务二:椭圆的标准方程【教材导读】 预习课本P38至P39的内容,并完成下列问题(1)、观察椭圆的形状,可以发现椭圆既是 对称图形,又是 对称图形。

(2)、怎样建立坐标系,才能使求出的椭圆方程最为简单?①、建系;以 为x 轴, 为y 轴,建立平面直角坐标系,则1F ,2F 的坐标分别为:. ②、设点并写出点集:设M ( , )为椭圆上任意一点,根据椭圆定义知:③、列方程:④、化简方程得:⑤、为使上述方程简单并具有对称美,引入字母 ,令 = a 2 - c 2,则方程可化为(3)、类似的,焦点在 轴上的椭圆的标准方程为 : ,其中焦点1F ,2F 的坐标为: .(4)点的位置?试一试:根据下列椭圆方程,写出,,a b c 的值,并指出焦点的坐标: (1)221169y x +=; (2) 2212516y x +=; (1)a = ;b = ;c = (2)a = ;b = ;c = 焦点坐标为: 焦点坐标为: 待课堂上与老师和同学探究解决。

高中数学 选修2-1椭圆导学案加课后作业及参考答案

高中数学  选修2-1椭圆导学案加课后作业及参考答案

椭圆及其标准方程(一)导学案【学习要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【学法指导】1.通过自己亲自动手尝试画图,发现椭圆的形成过程进而归纳出椭圆的定义,培养观察、辨析、归纳问题的能力.2.通过经历椭圆方程的化简,增强战胜困难的意志并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性,养成扎实严谨的科学态度【知识要点】1.椭圆:平面内与两个定点F 1,F 2的 的点的轨迹叫做椭圆(ellipse).这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 . 2.探究点一 椭圆的定义问题1 给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?问题2 动点P 到两定点A 、B 的距离之和|P A |+|PB |=2a (a >0且a 为常数)的轨迹一定是椭圆吗?探究点二 椭圆的标准方程问题1 观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.问题2 建系时如果焦点在y 轴上会得到何种形式的椭圆方程?怎样判定给定的椭圆焦点在哪个坐标轴上?问题3 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程; (2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.跟踪训练1 (1)已知中心在原点,以坐标轴为对称轴,椭圆过点Q (2,1)且与椭圆x 29+y 24=1有公共的焦点,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过P 1(6,1),P 2(-3,-2)两点,求椭圆的标准方程.例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是 ( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积.跟踪训练3 已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________【当堂检测】1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为 ( )A .5B .6C .7D .82.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是 ( )A .-9<m <25B .8<m <25C .16<m <25D .m >83.椭圆x 216+y 232=1的焦距为________.4.已知椭圆经过点(3,0)且与椭圆x 24+y 29=1的焦点相同,则这个椭圆的标准方程为____________【课堂小结】1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解. 3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.【拓展提高】1.已知P 是椭圆13422=+y x 上的点,21F F 、分别是椭圆的左、右焦点,21=,则21PF F ∆的面积为( ) A .33B .3C .32D .33 2.已知椭圆的两焦点为P F F ),0,1()0,1(21、-为椭圆上一点,且21212PF PF F F += (1)求此椭圆方程(2)若点P 在第二象限,21012,120F PF PF F ∆=∠求的面积3.如果点),(y x M 在运动过程中总满足关系10)3()3(2222=+++-+y x y x ,点M 的轨迹是 ,它的方程是 4. 椭圆22194x y +=的焦点为F 1、F 2,点P 为其上的动点,当21PF F ∠为钝角时,求P 点横坐标的取值范围。

椭圆及其标准方程(优秀获奖教案)-椭圆及其标准方程教案

2.2.1椭圆及其标准方程(1)教学目标:重点: 椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程.难点:椭圆标准方程的建立和推导.知识点:椭圆定义及标准方程.能力点:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力懂得欣赏数学的“简洁美”,并渗透数形结合和等价转化的数学思想方法.教育点:通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力,培养学生探索数学的兴趣,激发学生的学习热情.自主探究点:1.通过教学情境中具体的学习活动(如动手实验、自主探究、合作交流等),引导学生发现并提出数学问题,并在作出合理推导的基础上,形成椭圆的定义;2.探讨椭圆标准方程的最简形式,并通过对解决问题过程的反思,获得求曲线方程的一般方法.考试点:椭圆定义及标准方程,利用其解决有关的椭圆问题易错易混点:在用椭圆标准方程时,学生一般在“焦点的位置”上容易出错.拓展点:如何利用坐标法探讨其它圆锥曲线的方程.教具准备多媒体课件和三角板课堂模式学案导学一、引入新课【创设情景】材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:20XX 年6月16日下午18时,“神州九号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州九号”飞船的运行轨道是什么?多媒体展示“神州九号”运行轨道图片.【设计意图】利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆.通过“神州九号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想. 思考1:自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?思考2:在圆的学习中我们知道,平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?【设计意图】对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆. 学生分组做试验,教师同时做好指导:按照课本上介绍的方法,学生用一块纸板;两个图钉,一根无弹性的细绳试画椭圆,让学生自己动手画,同桌相互切磋,探讨研究.(提醒学生:作图过程中注意观察椭圆的几何特征,即椭圆上的点要满足怎样的几何条件)思考:点M 运动时,12,F F 移动了吗?点M 按照什么条件运动形成的轨迹是椭圆?1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程, 师生共同总结规律:当1212||||||MF MF F F +> 时,M 点的轨迹为椭圆;当1212||||||MF MF F F +=时,M 点的轨迹为线段1F 2F ; 当1212||||||MF MF F F +<时,M 点的轨迹不存在. 【设计意图】在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.二、探究新知 (一)归纳定义思考:焦点为21,F F 的椭圆上任一点M ,有什么性质?设椭圆上任一点为M ,则有)22(22121F F c a a MF MF =>=+【设计意图】通过学生观察、思考、讨论,概括出椭圆的定义,让学生全程参与概念的探究过程,加深理解,提高概括能力和数学语言的表达能力.(二)椭圆标准方程的推导复习提问求曲线方程的一般步骤:(教师提问,针对对于学生回答情况做一总结) (1)建系、设点;(2)写出点的集合;(3)列式;(4)化简;(5)证明. 思考:如何建系,才能使求出的方程最简呢?由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,把学生分成若干组,分别按不同的建系的方法推导方程,进行比较。

椭圆及其标准方程导学案

2.1.1 椭圆及其标准方程(第一课时)导学案【学法指导】1.仔细阅读教材(P28—P30),独立完成导学案,规范书写,用红色笔勾画出疑惑点,课上讨论交流。

2.通过动手画出椭圆图形,研究椭圆的标准方程。

【学习目标】1.掌握椭圆的定义,标准方程的两种形式。

2.会根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

【学习重、难点】学习重点:椭圆的定义和椭圆的标准方程.学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因.【预习案】预习一:椭圆的定义(仔细阅读教材P28,回答下列问题)1.取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 2.平面内与两个定点1F ,2F 的 的点的轨迹叫做椭圆。

这两个定点叫做椭圆的 , 叫做椭圆的焦距。

3.将“大于|1F 2F |”改为“等于|1F 2F |”的常数,其他条件不变,点的轨迹是 将“大于|1F 2F |”改为“小于|1F 2F |”的常数,其他条件不变,点的轨迹存在吗?结论:在椭圆上有一点P ,则|1PF |+|2PF |= (a2>|1F 2F | )。

a 2>|1F 2F |时,点的轨迹为 ; a 2=|1F 2F |时,点的轨迹为 ; a2<|1F 2F |时,点的轨迹 。

预习二:椭圆的标准方程(仔细阅读教材P40,回答下列问题)结论:2x ,2y 分母的大小,哪个分母大,焦点就在哪个坐标轴上。

【探究案】探究一、椭圆定义的应用 1.设P 是椭圆1162522=+yx 上的任意一点,若1F 、2F 是椭圆的两个焦点,则21PF PF +等于( )A.10B.8C.5D.4 (解法指导:由椭圆的标准方程找到a ,根据|1PF |+|2PF |=a 2。

高中数学椭圆及其标准方程导学案

2.椭圆及其标准方程〔第一课时〕导学案【学习目标】1. 掌握椭圆的定义和标准方程;2. 会求简单的椭圆方程;3.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。

4.稳固用坐标化的方法求动点轨迹方程。

【重点难点】重点:椭圆定义的理解和标准方程的运用难点:标准方程的建立与推导【课前探究】阅读并预习教材,找出疑惑之处,完成以下问题1、自制工具,使用拉线法在纸板上演示椭圆定义做出椭圆思考:改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?绳长能小于两图钉之间的距离吗?2、圆的定义:椭圆的定义:3、类比圆的方程的推导过程,尝试自己推导椭圆的标准方程【课中探究】研讨互动,问题生成1、椭圆定义:平面内与两个定点F1,F2的距离和等于常数2a 〔大于12F F 〕的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距2c。

2、椭圆的标准方程:思考1:根据椭圆的定义,找出椭圆中的等量关系,并用集合表示?思考2:建系设点,推导椭圆的标准方程?以F1,F2所在的直线为x轴,线段F1,F2的中点为原点建立直角坐标系设M〔x , y〕,则F1(-c,0),F2(c,0),设122MF MF a+=思考3:如果椭圆的焦点在y轴上呢?请大家小组讨论,猜测椭圆的方程有何改变?椭圆的标准方程:22221(0)x y a b a b +=>>22221(0)y x a b ab+=>>课中反应练习:1、请判断以下哪些方程表示椭圆,如果是,则判断焦点在哪个轴上?指出22,a b 。

〔1〕22110036x y += 〔2〕22136100x y += 〔3〕2213636x y += 〔4〕22110036x y -=请同学们总结分析椭圆标准方程的结构特点:,焦点在坐标轴上,则椭圆的标准方程为 。

高中数学选修2-1 导学案

2.2 椭圆2.2.1 椭圆及其标准方程学习目标1.掌握椭圆的定义及其标准方程;2.理解椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。

基础感知预习教材,完成下列问题:(1)平面内的点的轨迹叫做椭圆,这两个定点叫做椭圆的,两焦点之间的距离叫做椭圆的(2)椭圆的标准方程:当焦点在x轴时,标准方程为;当焦点在y轴时,椭圆的标准方程为(3)集合语言:点集P={M||MF1|+|MF2|=2a,2a>|F1F2|}当2a=|F1F2|时,轨迹是当2a<|F1F2|时,轨迹是合作学习例 1.已知椭圆两个焦点的坐标分别是(-2,0)(2,0),并且经过点(2.5,-1.5),求它的标准方程。

例2.在圆x2+y2=4上任取一点P,过点P作x 轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹是什么?例3.设点A、B的坐标分别为(-5,0)(5,0),直线AM、BM相交于点M,且他们的斜率之积是-4/9,求点M的轨迹方程?当堂检测课后练习2.2.2 椭圆的简单几何性质 班级 姓名 小组学习目标1.掌握椭圆的几何性质2.椭圆的几何性质的实际应用 基础感知合作学习例1.求椭圆16x 2+25y 2=400的长轴和短轴长、离心率、焦点、顶点坐标例2.点M (x,y )与定点F (4,0)的距离和它到直线425x 的距离之比是常数54,求点M 的轨迹方程当堂检测《师说》随堂自测限时训练(1)班级姓名小组1.焦点在x轴上,a=6,c=1的椭圆的标准方程为:2.已知椭圆的方程为m2x2+16y2=16m2,焦点在x轴上,则m的取值范围:3.过点(-3,2)且与4x2+9y2=36有相同焦点的椭圆方程为:4.已知椭圆的方程是25x2+a2y2=25a2,它的两个焦点分别是F1,F2,且|F1F2|=8,弦AB过点F1,则三角形ABF2的周长为:5.椭圆25x2+16y2=1的焦点坐标是:6.已知两定点F1(-1,0)F2(1,0),动点P满足:|PF1|+|PF2|=2|F1F2|,求:(1)点P的轨迹方程(2)若∠F1PF2=120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1 椭圆及其标准方程导学案(第一课时)
王静
【学习目标】
知识目标:掌握椭圆的定义及标准方程,通过对标准方程的探求,熟悉求曲线方程的一般方法;
能力目标:通过实验操作、自我探究、数学思想方法(待定系数法)的运用等,提高分析问题、解决问题的能力;
情感目标:充分感受“数”与“形”的内在联系,体会形数美的统一,激发学习数学的兴趣,培养勇于探索的精神。

【学习重、难点】
学习重点:椭圆的定义和椭圆的标准方程.
学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因.
【创设问题情境】
请同学们举出生活中你遇到的一些椭圆的实例。

【基础预学】
请同学们仔细阅读课本P38-P40内容(阅读到第40页思考题结束),要求读完课本后达到如下要求:
1、会画出椭圆;
2、能够准确给出椭圆的定义;
3、能够说出椭圆方程的推导思路,初步掌握椭圆标准方程的推导过程。

【预学展示】
1、 小组成员合作画出椭圆,并说出在画椭圆的过程中移动的笔尖(动点)满足的几何条件 。

2、同学们根据上面的几何条件准确地给出椭圆的定义:平面内与两个定点1F ,2F 的 的点的轨迹叫做椭圆。

这两个定点叫做椭圆的 , 叫做椭圆的焦距。

3、对定义的理解:
(1)将“大于|1F 2F |”改为“等于|1F 2F |”,其他条件不变,动点的轨迹是
(2)将“大于|1F 2F |”改为“小于|1F 2F |”,其他条件不变,动点的轨迹存在吗?
4、椭圆的标准方程及其推导:
复习思考:用坐标法求动点轨迹方程的一般步骤是什么?
(1) (2) (3) (4)
请同学们根据上面的步骤推导焦点在x 轴上的椭圆的标准方程:
请先写出已知条件:
推导过程如下:
令=-2
2c a ,可整理得方程)0(122
22>>=+b a b y a x ① 由曲线与方程的关系可知,方程 ① 为焦点在x 轴上的椭圆的标准方程,两个焦点坐标分别是 ,其中c b a ,,
观察右图,你能从中找出表示22,,c a c a - a = ; c = ;22c a -=
【探究与创新】
探究一:如何得出焦点在y 轴上的椭圆的标准方程?
焦点在y 轴上的椭圆的标准方程 ,两个焦点坐标分别是 ,其中c b a ,,满足的关系式
为 。

探究二:对椭圆标准方程的认识
1、椭圆的标准方程有什么特点?
①椭圆的标准方程的形式: 左边是 ,右边是 ②椭圆的标准方程中a 、b 的关系是
2、如何区分焦点在x 轴上的椭圆的标准方程与焦点在y 轴上的椭圆的标准方程?
探究三:椭圆定义的应用
例:已知椭圆两个焦点的坐标分别是)0,2(),0,2(-,并且经过点)2
3,25(-,求它的标准方程。

思考:你还能用其他方法求它的方程吗?对比总结求解椭圆标准方程的步骤。

【课堂练习】
1、已知椭圆方程为116
252
2=+y x ①椭圆的焦点坐标为 ;
②若椭圆上一点P 到左焦点1F 的距离为6,那么点P 到右焦点2F 的距离为‗‗‗‗; ③若AB 为过左焦点1F 的弦,则21F AF ∆的周长为‗‗‗‗‗‗‗‗‗;2ABF ∆的周长为‗‗‗‗‗‗‗‗‗。

2、椭圆19
252
2=+y x 上一点P 到左焦点1F 的距离为6,则线段1PF 的中点M 到原点O 的距离为( )
A 2
B 3
C 4
D 10
3、椭圆14
2
2=+y m x 的焦距是2,则实数m 的值是( )
(A )5 (B )8 (C )3或5 (D )3
【学习总结】
同学们,你在本节课上学到了什么?
【作业】
必做题:习题2.2 A 组 2、4
选做题:习题2.2 B 组 3
【课后思考题】 已知椭圆经过两点()
2,2、⎪⎪⎭⎫ ⎝⎛214,1,求椭圆的标准方程。

相关文档
最新文档