14.与整式相关的找规律
查补重难点01 整式相关运算与探索表达规律(原卷版)

查补重难点01.整式相关运算与探索表达规律考点一:幂运算与乘法公式1.幂运算公式:⎪⎩⎪⎨⎧∙===∙∙+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m n m n m b a ab a a a a a )()(2.乘法公式:(1)平方差公式:();22)(b a b a b a -=-+(2)完全平方公式:()2222222)(2b ab a b a b ab a b a +-=-++=+;题型1.幂运算与乘法公式基本运算1)符号处理不当:在幂的运算中,很多同学计算时符号容易出错。
计算时,可以先确定计算符号,负数进行运算时,看次方,负数的奇次幂结果为负,偶次幂结果为正。
2)忽视指数为“1”的幂:在幂的运算中,有些同学会忽视指数为“1”的幂,从而导致计算的错误。
指数为“1”时通常省略不写,但是计算时不能漏加。
3)忽视0指数幂、负指数幂成立的条件:在计算零指数幂或负指数幂时,要注意,底数不能等于0.4)运用完全平方公式时,①丢掉系数的平分;②丢掉中间乘积项或漏了系数的“2倍”;③不能正确区分中间项符号特征。
5)运用平方差公式时,没找准“a ”与“b ”。
例1.(2023·江苏镇江·中考真题)下列运算中,结果正确的是()A .22423m m m +=B .243·m m m =C .422m m m ÷=D .246()m m =变式1.(2023年江苏省镇江市中考数学真题)如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(22)x y +个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数相同,则+2x y 的值等于()A .128B .64C .32D .16变式2.(2023·四川成都·统考中考真题)下列计算正确的是()A .22(3)9x x -=-B .27512x x x +=C .22(3)69x x x -=-+D .22(2)(2)4x y x y x y -+=+题型2.完全平方公式变形求值(知二求二)乘法公式求值类的题目,关键在于恒等变形,反复利用平方差公式和完全平方公式,结合公式中各项的情况,做出相应的变形。
专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题06整式中规律探索的三种考法类型一、单项式规律性问题例.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为()A.5B.3C.2D.1【答案】C【分析】先根据题意,求出前几次跳到的点的位置,发现这是一个循环,按照3、5、2、1成一个循环,再用解循环问题的方法求解.【详解】解:按照题意,第一次在1这个点,下一次就跳到3,再下一次跳到5,再下一次跳到2,2是偶数了,就逆时针跳一个点,又回到了1这个点,发现这是一个循环,3、5、2、1是一个循环,÷ ,20154=5033∴最后到2这个点.故选:C.【点睛】本题考查找规律,解题的关键是通过前几个数发现这是一个循环问题,利用解循环问题的方法求解.【变式训练1】按上面数表的规律.得下面的三角形数表:【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键.类型三、图形类规律探索例.根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.6060【答案】C【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭2020个这样的正方形需要3×2020+1=6061根火柴棒;故选C.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.【变式训练1】下列每一个图形都是由一些同样大小的三角形按一定的规律排列组成的,其中第①个图形中有5个小三角形,第②个图形中有10个小三角形,第③个图形中有16个小三角形,按此规律,则第⑨个图中小三角形的个数是()A.69B.73C.77D.83【答案】B【分析】根据已知图形得出第⑨个图形中三角形的个数的特点,据此可得答案.【详解】解:∵第①个图形中三角形的个数5=1+2×(1-1),第②个图形中三角形的个数10=5+2×1+3,第③个图形中三角形的个数16=5+2×2+3+4,第④个图形中三角形的个数23=5+2×3+3+4+5,第⑤个图形中三角形的个数31=5+2×4+3+4+5+6,……【答案】57【分析】根据每个图形增加三角形的个数,找到规律即可.【详解】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…,第n个图形中三角形的个数是1+4(n﹣1)=(4n﹣3)个,当n=15时,4n﹣3=4×15﹣3=57.故答案为:57.【点睛】本题考查了图形的变化规律,解题关键是通过图形数量的变化发现规律,并应用规律解决问题.课后训练20192020)a a -。
整式的加减和找规律

整式的加减、找规律本次课继续学习字母表示数,通过在现实情境中进一步理解字母表示数的意义,发展符号感.在具体情境中了解合并同类项的法则、进行同类项的合并,在具体情境中体会去括号的必要性,运用运算律去括号,总结去括号法则,利用去括号法则解决简单的问题;经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,用代数式表示简单问题中的数量关系,用合并同类项、去括号等法则验证所探索的规律.重、难点知识归纳及讲解1、同类项的概念所含字母相同,并且相同字母的指数也相同的项,叫做同类项.判断几个项是否是同类项有两个条件:一是所含字母相同,二是相同字母的指数分别相同,同时具备这两个条件的项是同类项,缺一则不可。
同类项与系数无关,与字母的排列顺序无关,特别地,几个常数项也是同类项.2、合并同类项的意义、法则及方法(1)合并同类项的意义把代数式中的同类项合并成一项,叫做合并同类项.合并同类项时,只能把同类项合并成一项,不是同类项的不能合并.(2)合并同类项的法则在合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.如果两个同类项的系数互为相反数,合并同类项后,结果为 0.(3)合并同类项的方法步骤:第一步:准确地找出同类项;第二步:利用法则,把同类项的系数相加,字母和字母的指数不变;第三步:写出合并后的结果.3、去括号的意义在有理数运算中,有括号时,通常先算括号内的,然后省掉括号,而在代数式的运算中,遇有括号时,却往往无法先进行括号内的运算,或先算括号内的相对复杂。
因而先去掉括号,才能使运算得以顺利进行,遇到多重括号时,可以由内向外去括号,可以由外向内去括号,也可以内外同时去括号.4、去括号法则括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.5、探索规律的一般方法(1)从具体的、实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)由此及彼,合理联想、大胆猜想;(3)善于类比,从不同事物中发现其相似或相同点;(4)总结规律,作出结论,并验证结论正确与否;(5)在探究规律的过程中,善于变换思维方式,收到事半功倍的效果.三、典型例题剖析例 1、判断下列各组中的两项是否是同类项,并说明理由.例 2、合并下列各式中的同类项:例 3、已知是同类项,求3m+5n的值.例 4、先化简,再求值:,其中x=-2,y=3. 例 5、已知a+b=21,3m-2n=9,求代数式(2a+9m)+[-(6n-2b)]的值. 例6、已知有理数a、b的和a+b及差a-b在数轴上的表示如图所示.试求: |2a+b|-2|a|-|b-7|的值.1、下列各组中的两项为同类项的是()A.2m2n3与3m3n2 B.5πR2与7π2R2C.-4ab与9abc D.-3x2与-2x32、已知34x2与5n x|n|是同类项,则n等于()A.5 B.3 C.2或-2 D.2或43、下列各题结果正确的是()A.3x+3y=6xy B.7m-5m=2mC.16y2+9y2=25y4 D.19a2b-6ab2=13a2b4、若b=4a,c=3b,则a+b+c等于()A.11a B.13a C.15a D.17a5、已知代数式ax+bx合并后的结果是零,则下列说法正确的是()A.a=b=0 B.a=b=x=0 C.a+b=0或x=0 D.a-b=06、下列去括号错误的共有()① a+(b+c)=ab+c ② a-(b+c-d)=a-b-c+d③ a+2(b-c)=a+2b-c ④ a2-[-(-a+b)]=a2-a+bA.1个 B.2个 C.3个 D.4个7、a+b-c的相反数是()A.c-a-b B.-a+b-cC.a+b+c D.a-b+c8、-{-[+3-5(x-2y)-2x]}化简的结果是()A.3-7x+10y B.-3-3x-2yC.-2+x-2y D.-3-5x+10y-2x9、若a>0,b<0时,化简|5-2b|-|2a-3b|+|b-2a|的结果是()A.5 B.5-4b C.5+2b D.5-4a+2b10、已知a>0,b>0,c<0,d<0,则下列各式中值最大的是()A.a-(b+c-d) B.a-(b-c+d)C.a-(-b+c+d) D.a+(b-c+d)11、如果-3m5n a-2与-3m|a+b-2|n3是同类项,则a=__________,b=__________;这时两项相加结果是__________.12、已知-4<x<2,则5-|x-2|+|x+4|=__________.13、托运行李p千克(p为整数)的费用为c(元).已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需加费用5角,则用含p的代数式表示托运行李费用c的表达式是__________.【巩固练习】1、下列每个图是若干盆花组成的形如三角形的图案,每条边(包括三个顶点)有n(n>1)盆花,每个图案花盆的总数是S.(1)当n=9时,S=__________;(2)按此规律推断,S与n的关系是__________.2、已知A=4ab3-5b3,B=-3ab3+2b3,求:(1)2A-B;(2)A-B;(3)B+A;(4)2B-A.3、化简求值:3a2-{-2a2-[a2-ab-2(b2-2ab)+b2]+ab},其中a=-,b=-2.4、已知(x+2)2+|y+1|=0,求5xy2-{2x2y-[3xy2-(4xy2-2x2y)]}的值.5、若a>0>b>c,且|a|<|b|<|c|.化简:|a+c|+|a+b+c|-|a-b|+|b+c|.6、三个队植树,第一队植树x棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42棵,三个队共植树多少棵?当x=100时,三个队共植树多少棵?7、在由自然数排成的数阵中,在1000的正下方的自然数是多少?1 2 5 …4 3 6 …9 8 7 ……………。
七年级专题三-与整式相关的找规律

专题三----“两大题模”秒杀找规律问题一.找规律规律探究类的问题是近几年中考题中出现的创新性题目,考查从特殊到一般的认识水平、运算能力以及对知识的贯通能力,要求学生必须具备逻辑推理能力、观察归纳能力、猜想验证能力.考察题型主要有“数字类”、“图形类”、“计算类”等.1、掌握探究的一般方法是解决此类问题的关键.(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找到隐含的规律.(2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题.2、探索规律一般要经历以下的一些过程:(1).观察它前后几项的和、差、积、商和乘方等特点,注意数的大小、结构的变化、图形位置的变换,进行多角度的观察与调整;(2).从已知的有限个数据或图形中去寻找数量关系和图形之间的关系,并进行归纳; (3).从归纳出的数量关系或图形关系进行大胆的猜测,得出他们共同的规律; (4).列举符合条件的数据和图形,验证猜想的规律的正确性,得出结论。
题模一:数字类1 观察下列各式:3211= 332123+=33321236++= 33332123410+++= ……猜想:333312310+++⋅⋅⋅⋅+=__________.2 定义:对于任意一个不为1的有理数a ,把11a-称为a 的差倒数,如2的差倒数为1112=--,1-的差倒数为()11112=--.记112a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2a =____________;2015a =____________3有一列式子,按一定规律排列成251017263,9,27,81,243a a a a a ---,(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是___________; (2)上列式子中第n 个式子为__________(n 为正整数).4、观察下列等式:2=2=1×22+4=6=2×32+4+6=12=3×42+4+6+8=20=4×5 ……(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是__________;即2+4+6+…+2n= .(2)当n=10时,从2开始到第10个连续偶数的和是_______________。
整式(规律问题)备战2023年中考数学考点微专题

考向1.2 整 式(规律问题)例 1、(2020·云南·中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a --故选A .【点拨】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.例 2、(2021·湖北荆门·中考真题)如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.【答案】64 5【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解 解:通过观察发现: 1=1 3=1+2 6=1+2+3 10=1+2+3+4 ……故第n 行第n 列数字为:1(1)2n n +,则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<-即24421)0(n n m +=-,可以看作两个连续的整数的乘积, 2263=396964=4096,,m n ,为正整数,64n ∴=当64n =时,=5m 故答案为:64,5【点拨】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.例 3、(2021·湖南常德·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .【点拨】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.具体方法和步骤:(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题具体解题方法:首先要按照题目中的排列顺序给已知量编上序号;然后找出已知量中变化和不变的部分,分析序号和变化部分之间的数量关系,猜想和归纳出第n个量的含有n的表达式,得出般规律;最后将序号代回表达式算出结果,比较所得结果与对应数值是否一致,验证猜想的正确性,得出最终结果。
《整式》拓展题七年级数学上册(含答案)

Ⅱ 分类拔高专题一、找规律题(一)、代数式找规律1、观察下列单项式:54325,4,3,2,a a a a a --,…(1)观察规律,写出第20YY 和第20YY 个单项式;(2)请你写出第m 个单项式和第n+1个单项式。
(m 为自然数)2、有一个多项式为332456b a b a b a a -+-…,按这种规律写下去,第六项是= ,最后一项是= 。
3、(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,根据此 规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = 。
(2)如果欲求203233331+++++ 的值,可令203233331+++++= S ①,将①式两边同乘以3,得 ,②由②减去①式,得S= ;(3)由上可知,若数列1a ,2a ,3a ,…n a ,n a ,从第二项开始每一项与前一项之比的常数为q ,则n a = ,(用含1a ,q ,n 的代数式表示),如果这个常数q ≠1,那么1a +2a +3a +…+n a = (用含1a ,q ,n 的代数式表示)。
4、 5、 观察下列一组数:21,43,65,87,……,它们是按一定规律排列的,那么这一组数的第n 个数是 .(二)、图形找规律5、用棋子摆成如图所示的“T ”字图案.(1)摆成第一个“T ”字需要 个棋子,第二个图案需要 个棋子;(2)按这样的规律摆下去,摆成第10个“T ”字需要 个棋子,第n 个需要 个棋子.6、如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是= ,第n 个“广”字中棋子个数是= 。
7、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“●”的个数为 .8、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3(1) (2) (3) …………个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆;第n 个图形有______个小圆.9、观察下列图形,则第n 个图形中三角形的个数是()A.22n + B .44n + C .44n - D .4n10、观察如下图的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________11、下图是某同学在沙滩上用石于摆成的小房子:观察图形的变化规律,写出第n 个小房子用了[(n+1)2+(2n-1)] 块石子。
整式乘法找规律问题

定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若1,a b ==直接写出,a b 的“如意数”c ;(2)如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b = (用含x 的式子表示)对于实数p ,我们规定:用<p>表示不小于p 的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.阅读下面材料:勾股定理的逆定理:如果直角三角形的三条边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
我们知道,像3、4、5这样能构成为直角三角形三边长的三个正整数,称为勾股数,古希腊的哲学家柏拉图提出的构造勾股数组的公式为:如果m 表示大于1的整数,a=2m ,b=m 2+1,c=m 2-1,则a 、b 、c 为勾股数.利用柏拉图公式构造出的勾股数,斜边和其中一直角边的差为2,特别地,当n 为大于2的整数时,可以构造出最短边的长度为偶数的勾股数.任务:(1)请你证明柏拉图公式的正确性.(2)请你利用柏拉图公式,写出两组勾股数(数据从小到大排列)第一组:8 、 ;第二组: 、 37.如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星⨯-⨯=,再选择其它位置的十字星,可以发现“十字差”仍为48.的十字差为121462048(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为____________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.图1 图2(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为_____(直接写出结果).图3阅读材料并解答问题:我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数(m ≥3),则a=m ,b=21(m 2-1)和c=21(m 2+1)是勾股数. 方法2:若任取两个正整数m 和n (m >n ),则a=m 2-n 2,b=2mn ,c=m 2+n 2是勾股数.(1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的△ABC 是直角三角形;(2)请根据方法1和方法2按规律填写下列表格:(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树 棵.12+32-42=-2×1×3; ① 22+42-62=-2×2×4; ② 32+52-82=-2×3×5; ③ …(1)按照上面的规律,请你猜想第n 个等式是 ;(2)请你用学过的知识证明你的猜想.观察下列各式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3;…根据上述规律写出2009×2011=找规律并验证第n 个式子的正确性观察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2, 3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,…(1)根据你观察、归纳、发现的规律,写出8×9×10×11+1的结果;(2)试猜想:n (n+1)(n+2)(n+3)+1是哪一个数的平方?并说明理由.(3)根据(2)在的规律,计算13x 104101x 102x 10 的值.观察下列各式:1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52… 请你把发现的规律用含正整数n 的等式表示为 验证观察下列各式:12+1=2=1×2 22+2=6=2×3 32+3=12=3×4 42+4=20=4×5 试猜想 992+99=1+4×1×2=9=32,1+4×2×3=25=52,1+4×3×4=49=72,1+4×4×5=81=92,…设n 是正整数,请你用一个含字母n 的等式表示上面各式所呈现的规律:观察下列各式:①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳、发现的规律,写出4×2012×2013+1可以看成哪个数的平方?(2)试猜想第n 个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(21x 2+x)(21x 2+x+1)+1改写成完全平方形式.小明同学在学习中发现了如下的运算规律:15×15=225=1×2×100+25,25×25=625=2×3×100+25,35×35=1225=3×4×100+25,…(1)用含n (n 是正整数)的等式写出一般的规律:;(2)证明你的结论.(1)计算下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于10),你发现结果有什么规律?53×57,38×32,84×86,71×79.(2)你能用所学知识解释这个规律吗?(3)利用你发现的规律计算:58×52,63×67,752,952.。
人教版数学七年级上册《整式》中数学活动——找规律

第1个图形
第2个图形
第3个图形
(4).用同样大小的黑白两种颜色的棋子 摆成如图所示的正方形图案,则第n个图案 需要用白色棋子( 4n+4 )枚(用含有n 的式子表示) ……
第1个
第2个 第3个
(5)如图,将连续奇数1,3,5,7‥‥‥排列成数表, 用十字框框出5个数,问:
①十字框框出的5个数 和框正中间的数17有 什么关系?
1 3 5 7 9 11 13 15 17 19 21 23 ②若将十字框上下左右平 25 27 29 31 33 35 移,可框住另外5个数。 37 39 41 43 45 47 若设中间的数为x,用式子表示十字框框住的5个数之和。
③十字框框住的5个数之和能等于2000吗?能等于2005 吗?若能,分别写出这5个数。
我们曾经接触过“细胞分裂”问题: 细胞每次都是由一个分裂成两个。 想一想 1 个细胞 经过 n 次分裂,由1个能 分裂成多少个?
分裂次数 1 2 3 4 …
细胞分裂问题
n
细胞个数
21 2 42 8 23 16 24 … 2n
思路启迪 为便于寻找规律,需把细胞个数表示为
分裂次数的同一种关系。
• 1.在如图所示的两个方框或其它多种方框
中,一条对角线上两数的和等于另一条对角 线上两数的和.
日 一 二 1 6 7 8 13 14 15 20 21 22 27 28 29
三 2 9 16 23 30
四 3 10 17 24 31
五 4 11 18 25
六 5 12 19 26
• 2、在十字形的区域中,五个数字的和等于正中心数 的5倍。 若设中心数为a, 则这五个数之和为: (a-7)+(a+7)+(a-1)+(a+1)+a=5a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四讲:与整式相关的找规律
知识精讲 一.找规律
规律探究类的问题是近几年中考题中出现的创新性题目,考查从特殊到一般的认识水平、运算能力以及对知识的贯通能力,要求学生必须具备逻辑推理能力、观察归纳能力、猜想验证能力.考察题型主要有“数字类”、“图形类”、“计算类”等.
掌握探究的一般方法是解决此类问题的关键.
(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找到隐含的规律.
(2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题. 三点剖析
一.考点:数字类、图形类找规律.
二.重难点:数字类找规律、图形类找规律
三.易错点:
数字类规律题目,第n 项计算错误. 基础训练
题模一:数字类
1 观察下列各式:3211= 332123+=
33321236++= 33332123410+++= ……
猜想:333312310+++⋅⋅⋅⋅+=__________.
2 定义:对于任意一个不为1的有理数a ,把
11a
-称为a 的差倒数,如2的差倒数为1
112=--,
1-的差倒数为
()11112=--.记11
2
a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差
倒数,…,依此类推,则2a =____________;2015a =____________
3有一列式子,按一定规律排列成251017263,9,27,81,243a a a a a ---,
(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是___________;
(2)上列式子中第n个式子为__________(n为正整数).
4“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示()
A.C n H2n+2B.C n H2n
C.C n H2n﹣2D.C n H n+3
5找出下列各图形中数的规律,依此,a的值为________.
6给定一列按规律排列的数:1
2
,
3
5
,
5
10
,
7
17
,…,则这列数的第6个数是()
A.9
37
B.
11
37
C.
10
31
D.
7
39
7从1开始将连续奇数相加,和的情况如下:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
……
(1)按此规律请你猜想从1开始,将10个连续奇数相加,和是______.(2)将n个从1开始的连续奇数相加,则它们的和是______.
8已知一组数为:1,3
4
,
5
9
,
7
16
,
9
25
…按此规律用代数式表示第n个数为.
9将19
27
化成小数,则小数点后第2009位数字为.
题模二:图形类
1观察下列一组图形,其中图1中共有6个小黑点,图2中共有16个小黑点,图3中共有31个小黑点,…,按此规律,图5中小黑点的个数是()
A.46B.51C.61D.76
2用●表示实圆,用○表示空心圆,现有若干个实圆与空心圆按一定规律排列下:
●○●●○●●●○●○●●○●●●○●○●●○●●●○…
问:前2001圆中,有________个空心圆.()
A.667B.668C.669D.700
3 观察下列图案:
它们是按照一定规律排列的,依照此规律,第6个图案中共有_________个三角形
4下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有____个★.
能力提升
1让我们做一个数字游戏:
第一步:取一个自然数n1=5,计算2
11
n+得a1;
第二步:算出a1的各位数字之和是n2,计算2
21
n+得a2;
第三步:算出a2的各位数字之和是n3,再计算2
31
n+得a3;……
依此类推,则a2015=________.
2如图,把一个面积为1的正方形等分成两个面积为1
2
的长方形,接着把面积为
1
2
的长方形
等分成两个面积为1
4
的正方形,再把面积为
1
4
的正方形等分成两个面积为
1
8
的矩形.如此
进行下去,试利用图形所揭示的规律计算:11111111 248163264128256
+++++++.
3观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.
4一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第9个等式.
5如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由______个基础图形组成.
6用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是____.
课后作业
1 若x 是不等于1的实数,我们把
11x -称为x 的差倒数,如2的差倒数是112
-=﹣1,﹣1的差倒数为()111--=12,现已知x 1=﹣1
3
,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差
倒数,…,依此类推,则x 2015=______.
2 符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12
f =+,2
(4)14
f =+
,…,利用以上运算的规律写出()f n =________ (n 为正整数);(1)(2)(3)(100)f f f f ⋅⋅⋅⋅⋅⋅⋅=________
3 从1开始得到如下的一列数: 1,2,4,8,16,22,24,28,…
其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为( ) A . 21 B . 22 C . 23 D . 99
4 已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有( )
A . 8048个
B . 4024个
C . 2012个
D . 1066个
5 由于()111
n n -⎧-=⎨⎩(为奇数),所以我们通常把()1n
-称为符号系数.
(1)观察下列单项式:13x -,2215x ,3335x -,44
63
x …按此规律,第五个单项式是________,
第n 个单项式是__________
(2)计算:()
122
n
n a b a b
+-+- (3)请你根据(2)式写出一个档n 为偶数时值为1,当n 为奇数时值为0的式子.。