人教版七上数学专题-求线段长度的方法

合集下载

数线段的简便方法

数线段的简便方法

数线段的简便方法数线段是数学中常见的概念,我们在解题时经常需要计算线段的长度。

那么,有没有一种简便的方法来计算线段的长度呢?答案是肯定的,下面我们就来介绍一些简便的方法来计算线段的长度。

首先,我们来看一下如何利用坐标轴上的点来计算线段的长度。

假设我们有两个点A(x1, y1)和B(x2, y2),那么线段AB的长度可以通过以下公式来计算:AB = √((x2 x1)² + (y2 y1)²)。

这个公式就是利用勾股定理来计算线段的长度,只需要知道两个点的坐标,就可以轻松求得线段的长度。

其次,我们可以利用数轴上的坐标来计算线段的长度。

假设我们有两个点A和B,它们在数轴上的坐标分别为a和b,那么线段AB的长度可以通过以下公式来计算:AB = |b a|。

这个公式非常简便,只需要用B的坐标减去A的坐标,然后取绝对值即可得到线段的长度。

除此之外,我们还可以利用三角形的性质来计算线段的长度。

假设我们有一个三角形ABC,其中AB为底,C为顶点,那么线段AB的长度可以通过以下公式来计算:AB = 2 AC sin(∠ACB)。

这个公式利用了三角函数的性质,通过已知的边长和夹角,就可以求得线段的长度。

最后,我们还可以利用相似三角形的性质来计算线段的长度。

假设我们有两个相似三角形ABC和A'B'C',其中AB为底,A'B'为对应的底,那么线段AB和A'B'的长度比可以通过以下公式来计算: AB/A'B' = AC/A'C'。

这个公式非常有用,通过已知线段的长度比和一个边长,就可以求得另一个边长的长度。

通过以上方法,我们可以看到,计算线段的长度并不难,只需要掌握一些简便的方法,就可以轻松应对各种计算问题。

希望本文介绍的方法能够帮助大家更加轻松地解决线段长度的计算问题。

(2021年整理)七年级计算线段长度的方法技巧

(2021年整理)七年级计算线段长度的方法技巧

七年级计算线段长度的方法技巧编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级计算线段长度的方法技巧)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级计算线段长度的方法技巧的全部内容。

计算线段长度的方法技巧线段是基本的几何图形,是三角形、四边形的构成元素.初一同学对于线段的计算感到有点摸不着头绪。

这是介绍几个计算方法,供同学们参考.1。

利用几何的直观性,寻找所求量与已知量的关系例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB.图1分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又又因为CD=10cm,所以AB=96cm2。

利用线段中点性质,进行线段长度变换例2。

如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。

图2分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3。

根据图形及已知条件,利用解方程的方法求解例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?图3分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC.解:因为C为AD的中点,所以因为,即又由<1〉、〈2>可得:即BC=3AB例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB 的中点,且MN=21,求PQ的长。

初中几何问题中线段长度的求解技巧探究

初中几何问题中线段长度的求解技巧探究

解法探究2023年11月下半月㊀㊀㊀初中几何问题中线段长度的求解技巧探究◉江苏省无锡市东林中学㊀卢晓雨㊀㊀摘要:平面几何是初中数学知识中重要的一部分,线段长度的变化影响着图形的大小㊁形状.考查线段长度的形式多种多样,相关的问题也都十分灵活.求线段长度的基本方法有等面积法㊁利用勾股定理㊁利用相似等.本文中结合不同例题,具体分析解答求线段长度问题常见的解题思路.关键词:平面几何;线段长度;解法思路㊀㊀求线段的长度是初中几何的基础问题.解这类题目要综合考虑线段的位置关系,通过题干信息的提取,采用合适的方式进行求解.1利用等面积法等面积法是指用不同方式表示同一平面图形的面积,通过面积的相互转化或面积与边㊁角关系的互相转化,而使问题得到解决的方法.对于三角形而言,就是指利用三角形的面积自身相等的性质,或根据等高(底)的两个三角形的面积之比等于对应底边(对应高)的比等进行解题的一种方法.利用等面积法解题具有便捷㊁快速的特点.解题思路大致为:①根据已知条件通过面积的相互转化或面积与边㊁角关系的互相转化,用不同方式表示同一三角形的面积;②通过题中已知条件进行运算即可求出所求线段长度[1].具体解题思路和步骤如以下例题所示.图1例1㊀如图1,在R t әA B C 中,øC =90ʎ,A C =4,B C =3,C D 是斜边A B 上的高,求C D 的长度.分析:首先根据题中已知条件,可知在一个直角三角形中øC =90ʎ,以及A C 和B C 的长度,从而可求得A B的长,又根据C D 是斜边A B 上的高,通过面积与边㊁角关系的互相转化,最后进行运算即可求出所求C D 长度.解:ȵøC =90ʎ,A C =4,B C =3,ʑA B =5.又C D 为斜边A B 上的高,ʑS әA B C =A C B C =A B C D .ʑ4ˑ3=5C D .ʑC D =125.例2㊀如图2,已知әA B C 中,A D 是әA B C 的图2中线,A D =4,B C =6,A C =5,P 是A B 边上的一点﹐且әP B D 是以B P 为底的等腰三角形,求线段A P 的长度.分析:首先根据题中已知条件,可得A D ʅB C .再根据面积相等可得DH 长度.同理,可得B H 长度.最后根据等腰三角形的 三线合一 性质,得到PH =H B ,求出P B 长度,从而求出线段A P 长度.解:过D 作DH ʅA B ,垂足为H .ȵA C 2=A D 2+C D 2,ʑøA D C =90ʎ.ʑA D ʅB C .在әA B D 中,根据面积相等可得12A B DH =12B D A D .ʑDH =B D A D A B =125.在R t әB DH 中,求得B H =B D 2-DH 2=95.根据等腰三角形的 三线合一 性质,得PH =H B ,A B =A C =5.ʑP B =2B H =185.故线段A P =75.2利用勾股定理已知直角三角形的两直角边长分别为a ,b ,斜边长为c ,则a 2+b 2=c 2.因此,在直角三角形中,已知任意两边长,可求第三边长.构造出直角三角形,用勾股定理建立方程求线段长度的解题思路大致为:①根据已知条件构造直角三角形;②利用勾股定理建立方872023年11月下半月㊀解法探究㊀㊀㊀㊀程;③通过计算求出所求线段长度[2].具体解题思路和步骤如以下例题所示.图3例3㊀如图3,在R t әA B C 中,øC =90ʎ,A C =4,B C =3,C D 是斜边A B 上的高,求C D 的长度.分析:首先根据题中已知条件,可知在一个直角三角形中,øC =90ʎ,以及A C 和B C 的长度,从而可求得A B的长.再设B D =x ,表示出A D .又因为C D 是斜边A B 上的高,最后利用勾股定理建立方程,通过计算即可求出所求线段C D 的长度.解:ȵøC =90ʎ,A C =4,B C =3,ʑA B =5.设B D =x ,则A D =5-x .ȵC D 为斜边A B 上的高,ʑ在R t әA D C 与R t әB D C 中,有C D 2=A C 2-A D 2=B C 2-B D 2.ʑ42-(5-x )2=32-x 2.ʑx =95.ʑC D =32+(95)2=125.图4例4㊀如图4,在әA B C中,øC =90ʎ,A D ,B E 是әA B C 的两条中线,B E =210,A D =5,求A B 的长.分析:首先根据题中已知条件,设C E =x ,C D =y ,再表示出A C 和B C ,最后利用勾股定理建立方程,通过计算即可求出所求线段A B 的长度.解:设C E =x ,C D =y ,ʑA C =2x ,B C =2y .ȵB E =210,A D =5,øC =90ʎ,ʑ在R t әA C D 与R t әB C E 中,有(2x )2+y 2=25,(2y )2+x 2=40.ʑx 2+y 2=13.ʑA B 2=A C 2+B C 2=4x 2+4y 2=52.ʑA B =213.3利用相似利用相似求线段长度是根据边角关系发现相似三角形的模型,从而通过运算得到所求线段长度.解题思路大致为:①根据已知条件构造出相似三角形;②设相应线段为x ,建立方程;③通过计算即可求出所求线段长度.具体解题思路和步骤如以下例题所示.图5例5㊀如图5,R t әA B C 中,øA B C =90ʎ,A B =3,B C =4,R t әM P N 中,øM P N =90ʎ,点P 在A C 上,P M 交A B 于点E ,P N交B C 于点F ,当P E =2P F 时,求线段A P 的长度.分析:如图6,作P Q ʅA B 于点Q ,P R ʅB C 于点R .由әQ P E ʐәR P F ,推出P Q P R =P EP F=2,可得P Q =2P R =2B Q .由P Q ʊB C ,可得A Q ʒQ P ʒA P =A B ʒB C ʒA C .设P Q =4x ,则可表示出A Q ,A P ,B Q ,进而求出x 即可求出所求线段长度.图6解:如图6,作P Q ʅA B 于点Q ,P R ʅB C 于点R ,则øP Q B =øQ B R =øB R P =90ʎ.ʑ四边形P Q B R 是矩形.ʑøQ P R =90ʎ=øM P N .ʑøQ P E =øR P F .ʑәQ P E ʐәR P F .ʑP Q P R =P E P F=2.ʑP Q =2P R =2B Q .ȵP Q ʊB C ,ʑA Q ʒQ P ʒA P =A B ʒB C ʒA C =3ʒ4ʒ5.设P Q =4x ,则A Q =3x ,A P =5x ,B Q =2x .ʑ2x +3x =3.ʑx =35.ʑA P =5x =3.根据上述不同的求线段长度例题的分析,可以得到求线段长度的基本方法有等面积法㊁利用勾股定理以及利用相似等.针对不同类型问题,采取相应的解题方法进行解答.在解题过程中,应加强对问题条件的分析应用,借助已知条件和相关性质去灵活解答,以此提高解题效率.同时,也希望同学们谨记各方法的注意事项,记住各方法的适用条件,在考试中灵活加以运用,避免出现错误.参考文献:[1]程长宾.求线段长度最值的常用方法[J ].初中数学教与学,2012(23):24G26.[2]李丹.连结两中点所得线段长度问题的求解策略[J ].初中数学教与学,2017(17):23G25.Z 97。

七年级数学上册《线段的长度》教案、教学设计

七年级数学上册《线段的长度》教案、教学设计
二、学情分析
七年级的学生在数学学习方面已经具备了一定的基础,掌握了基本的几何图形和几何计算方法。在此基础上,他们对线段的学习既有兴趣,也存在一定的挑战。学生对线段的认知主要停留在直观层面,对于线段长度计算、性质应用等方面的知识掌握还不够深入。因此,在教学过程中,教师应关注以下几个方面:
1.学生对线段概念的理解程度,引导他们从直观认知过渡到抽象理解,注重培养学生的空间观念。
(一)教学重难点
1.重点:线段的概念、性质、长度的计算方法以及线段中点的求解。
2.难点:
(1)线段性质的深入理解,尤其是线段的中点概念及其应用。
(2)线段长度的精确测量和计算,特别是涉及分数和小数的处理。
(3)将线段知识应用于解决实际问题时,如何引导学生建立正确的数学模型。
(二)教学设想
1.引入环节:通过现实生活中的实例,如操场跑道上的起点和终点,引入线段的概念,让学生感知线段的存在,并激发他们的学习兴趣。
(2)关注学生的情感态度,鼓励他们积极参与课堂,培养自信心。
6.教学策略:
(1)启发式教学:引导学生主动发现线段的性质,培养学生的探究能力。
(2)情境教学:创设生活情境,让学生在实际问题中运用线段知识,提高他们的应用意识。
(3)分层教学:根据学生的认知水平和学习需求,设计不同难度的教学活动和练习,使每个学生都能得到有效指导。
b.求给定线段的中点,并在几何图形中找出线段的中点。
c.解决一些实际问题,如计算操场跑道的长度、确定两地间的距离等。
2.教学目标:
(1)巩固学生对线段长度计算和性质应用的掌握。
(2)提高学生的实际操作能力,培养他们解决实际问题的能力。
(五)总结归纳
1.教学活动设计:
在课堂结束时,我将引导学生进行以下总结:

求简单线段长度

求简单线段长度

求简单线段长度在我们的日常生活和学习中,经常会遇到需要求简单线段长度的情况。

这看似是一个基础的几何问题,但却蕴含着不少有趣的知识和方法。

首先,我们来聊聊什么是线段。

线段就是在直线上截取的一段,它有两个端点,这两个端点决定了线段的长度。

比如说,我们在纸上画两点,然后把这两点连接起来,这中间的部分就是线段。

那怎么求线段的长度呢?如果这条线段是在一个标准的坐标平面上,那就方便多了。

假设我们知道线段两个端点的坐标,比如点 A 的坐标是(x1, y1) ,点 B 的坐标是(x2, y2) ,那么根据勾股定理,线段 AB 的长度就可以通过以下公式计算:AB 的长度=√(x2 x1)²+(y2y1)²。

这个公式可能看起来有点复杂,但其实就是把线段在 x 轴和 y轴上的投影长度分别计算出来,然后通过勾股定理算出总的长度。

举个例子,假如点 A 的坐标是(1, 2) ,点 B 的坐标是(4, 6) 。

那么 x 轴上的投影长度就是 4 1 = 3 ,y 轴上的投影长度就是 6 2 = 4 。

然后代入公式,AB 的长度=√(4 1)²+(6 2)²=√3² + 4²=√(9+ 16) =√25 = 5 。

除了在坐标平面上,有时候我们还会遇到在几何图形中求线段长度的问题。

比如说在一个三角形里,已知一些角度和其他线段的长度,要求某一条边的长度。

这时候就要用到三角形的一些定理了。

如果是直角三角形,那就可以直接用勾股定理来求解。

但如果是一般的三角形,可能就要用到正弦定理或者余弦定理。

正弦定理是:a /sin A = b / sin B = c / sin C ,其中 a、b、c 是三角形的三条边,A、B、C 是它们对应的角。

余弦定理则是:a²= b²+ c² 2bc cos A 。

比如说,有一个三角形 ABC ,角 A 是 60 度,角 B 是 45 度,边BC 的长度是 5 ,要求边 AC 的长度。

初一上册求线段长度的技巧和方法

初一上册求线段长度的技巧和方法

初一上册求线段长度的技巧和方法一、勾股定理勾股定理是一个基本的几何定理,它指出在一个直角三角形中,直角边的平方和等于斜边的平方。

利用勾股定理,我们可以求出直角三角形中未知的直角边或斜边的长度。

例如,已知两条直角边的长度分别为a和b,那么斜边的长度c 可以通过公式a² + b² = c² 来计算。

二、相似三角形相似三角形是指两个三角形的对应角相等,对应边成比例。

通过相似三角形的性质,我们可以找到一条线段与已知线段的比例关系,从而求出未知线段的长度。

在相似三角形中,利用对应边的比例关系,结合已知的一边长度,可以求出其他边的长度。

三、面积法面积法是通过三角形的面积和底边长度来求出高或中线的长度。

三角形的面积可以通过底边长度和相应的高或中线的长度来计算。

通过给定的面积和底边长度,我们可以求出未知的高或中线的长度。

四、移动线段移动线段是指将一条线段从一个位置移动到另一个位置,通过移动线段来构造新的图形,从而求出未知的线段长度。

通过将线段从一个位置移动到另一个位置,可以形成新的三角形或矩形等图形,利用这些图形的性质和已知的边长信息,可以求出未知的线段长度。

五、中点公式中点公式是指在几何图形中,如果一个点是某条线段的中点,那么这个点到线段两端点的距离相等。

利用中点公式,我们可以找到一条线段的中点,从而求出未知的线段长度。

例如,在三角形中,如果一个点是某条边上的中点,那么这个点到三角形的其他两个顶点的距离等于这条边的一半。

六、代数运算代数运算是一种常用的求解线段长度的方法。

通过设立代数方程或表达式,我们可以表示出未知的线段长度,并利用代数方法求解。

例如,在三角形中,如果已知两边长度和这两边之间的夹角,我们可以通过三角函数计算出第三边的长度。

七、比例关系比例关系是指两个量之间的相对大小关系。

在几何问题中,利用比例关系可以找到一条线段与已知线段之间的比例关系,从而求出未知的线段长度。

例如,在相似三角形中,对应边的比例关系就是一种比例关系。

人教版七年级数学上册作业课件 第四章 几何图形初步 专题训练(七) 线段的计算

人教版七年级数学上册作业课件 第四章 几何图形初步 专题训练(七) 线段的计算

6.A,B两点在数轴上的位置如图所示,现A,B两点分别以1个单位/秒、4个 单位/秒的速度同时向左运动.
(1)几秒钟后,原点O恰好在两点正中间? (2)几秒钟后,恰好有OA∶OB=1∶2?
解:(1)由图可知 OA=3,OB=12,设 x 秒钟后,原点 O 恰好在两点正中间, 则有 3+x=12-4x,解得 x=95 (2)设 y 秒钟后,恰好有 OA∶OB=1∶2, 则 OB=2OA,分两种情况:①当点 B 在点 O 的右边时,有 12-4y=2(3+y), 解得 y=1;②当点 B 运动到点 O 的左边时,有 4y-12=2(3+y),解得 y=9
5.如图,线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点 Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm,求AP,QB,AB的长.
解:设AP=2x cm,则PB=3x cm,所以AB=AP+PB=5x cm,因为AQ∶QB =4∶1,所以AQ=4x cm,QB=x cm,因为AQ-AP=PQ,所以4x-2x=3,解 得x=1.5,所以AP=3 cm,QB=1.5 cm,AB=7.5 cm
9.已知点A,B在数轴上的位置如图:
(1)若点P在数轴上,且PA+PB=6,求P点对应的数; (2)若点M在数轴上,MA∶MB=1∶3,求点M对应的数. 解:(1)①当点P在A,B之间时,不符合题意舍去;②当点P在点A右边时,点P 对应的数为2;③当点P在点B左边时,点P对应的数为-4 (2)①点M在线段AB上时,点M对应的数为0;②M在BA的延长线上时,点M对 应的数为3;③点M在AB的延长线上时,不合题意舍去
二、利用方程思想求线段的长 3.如图,已知线段 AB 上有两点 C,D,AD=35,BC=44,AC=23 BD, 求线段 AB 的长.

数线段的简便方法

数线段的简便方法

数线段的简便方法在数学中,线段是指两个点之间的部分,通常用两个点A、B来表示,记作AB。

线段的长度也可以用|AB|来表示。

那么,如何快速、简便地计算线段的长度呢?下面我们将介绍一些简便方法来计算线段的长度。

方法一,利用坐标轴计算。

如果已知线段的两个端点的坐标,可以利用坐标轴上的距离公式来计算线段的长度。

假设线段的两个端点分别为A(x1, y1)和B(x2, y2),那么线段AB的长度可以通过以下公式来计算:|AB| = √((x2 x1)² + (y2 y1)²)。

这个公式利用了勾股定理,将线段的长度转化为了坐标轴上的距离,通过简单的计算就可以得到线段的长度。

方法二,利用数轴计算。

如果线段的两个端点在数轴上,那么可以直接通过数轴上的距段ab的长度可以通过以下公式来计算:|ab| = |b a|。

这个公式利用了数轴上两点之间的距离就是它们坐标之差的绝对值这一性质,直接计算即可得到线段的长度。

方法三,利用三角函数计算。

如果线段不在坐标轴或数轴上,可以利用三角函数来计算线段的长度。

假设线段的两个端点分别为A和B,可以通过以下公式来计算线段AB的长度:|AB| = √(x² + y²)。

其中x为线段的水平距离,y为线段的垂直距离,通过计算线段的水平距离和垂直距离的平方和的平方根,即可得到线段的长度。

方法四,利用勾股定理计算。

如果线段所在的平面是直角坐标系中的平面,可以利用勾股定B(x2, y2),那么线段AB的长度可以通过以下公式来计算:|AB| = √((x2 x1)² + (y2 y1)²)。

这个公式与利用坐标轴计算线段长度的方法是一样的,只是通过勾股定理将线段的长度转化为了坐标轴上的距离。

通过以上几种简便方法,我们可以快速、准确地计算线段的长度,而无需进行复杂的运算。

希望以上方法能够帮助大家更好地理解和运用线段的长度计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上学期求线段长度的方法、练习、巩固提高
例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

图1
分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11
所以
又因为CD=10cm,所以AB=96cm
例2.如图2已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA、MN、PM的长。

图2
分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14
所以PB=2NB=2×14=28
又因为AP=AB-PB,AB=80
所以AP=80-28=52(cm)
说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 根据图形及已知条件,利用解方程的方法求解
例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?
图3
分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以
因为,即

由<1>、<2>可得:
即BC=3AB
例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

图4
分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。

观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。

解:若设AC=2x,则
于是有
那么

解得:
所以
例5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。

分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。

图5
解:因为AB=8cm,BC=3cm
所以

综上所述,线段的计算,除选择适当的方法外,观察图形是关键,同时还要注意规范书写格式,注意几何图形的多样性等。

练习
1、已知A、B、C在同一直线上AC=AB,已知BC=12cm,求AB的长度。

2、已知C是线段AB的中点,D是CB上的点,DA=6,DB=4,求CD的长。

3、已知AD=14cm,B、C是AD上顺次两点且AB:BC:CD=2:3:2,E为AB的中点,F为CD的中点,求EF的长。

4、如下图,C 、D 、E 将线段AB 分成4部分且AC :CD :DE :EB=2:3:4:5,M 、P 、Q 、N 分别是AC 、CD 、DE 、EB 的中点,若MN=21,求PQ 的长度
5、已知C 是线段AB 上一点,BC 比AC 的2倍少2cm ,而AB 比BC 的2倍少6cm ,求AB 的长度。

6、已知A 、B 、C 三点在同一条直线上,AB=20cm ,BC=8cm ,M 是AB 的中点,N 是BC 的中点,求MN 的长度。

7、已知A 、B 、C 三点共线,AB=12cm ,AC :BC=1:3,求线段AC 的长度。

自我测评:
1.一知段线AB=15CM ,C 点在线段AB 上,BC=四分之三AC ,求BC 的长
2.已知如下图所示线段AB=16,M 是AB 的中点,C 是AM 的中点,D 是CB 的中点,求MD 和AD 的长 N P E
D C B A A M P B ⋅⋅⋅⋅
3.A 、B 、C 、D 是直线L 上的顺次四点,AB,BC,CD 的长度之比为2:3:4,点E ,F 分别是AB 、CD 的中点,且EF=
4.8cm ,求AB 的长
课后作业:
1.如图,线段AB=8cm ,C 是AB 上一点,且AC=3.2 cm ,又已知M 是AB 的中点,N 是AC 的中点,求M 、N 两点的距离.
2.线段MN 上有P 、Q 两点,cm MN 32=,cm MP 17=,.cm PQ 6=.求NQ 的长
3.如图,已知AD=5cm ,B 是AC 的中点,CD=23
AC .求AB 、BC 、CD 的长.
4.M 是线段AB 的中点,AB=6cm,PB=1cm ,求PM 的长。

5.如图4,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.
图4。

相关文档
最新文档