数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

合集下载

数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

师范大学本科毕业论文题目:第二型曲线积分与曲面积分的计算方法专业:数学与应用数学系班:数学与信息科学系2006级数本2班毕业年份:姓名:学号:指导教师:职称:教授目录本科毕业论文任务书 (1)本科毕业论文开题报告 (3)本科毕业论文登记表 (5)毕业论文论文正文文稿 (7)本科毕业论文答辩记录 (15)西北师范大学本科毕业论文(设计)任务书注:1. 任务书由指导教师填写、经教研室主任及系主管教学副主任审批后,在第七学期末之前下达给学生..2. 文献查阅指引,应是对查阅内容和查阅方法的指引,即查阅什么和怎样查阅.渭南师范学院本科毕业论文(设计)开题报告注:开题报告是在导师的指导下,由学生填写。

李第二型曲线积分与曲面积分的计算方法李明松(渭南师范学院 数学与信息科学系2006级数本2班)摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目.关键词: 曲面积分;曲线积分1 引 言第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义.2 第二型曲线积分例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-⎰,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线o (0,0) 的弧.方法一:利用格林公式法L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的.解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L ,()()()()()()11sin cos sin cos xxLL xxL I e y b x y dx e y ax dye y b x y dx e y ax dy=-++---++-⎰⎰记为12I I I =- ,则由格林公式得:()1cos cos x xD DQ P I dxdy e y a e y b dxdy x y ⎛⎫∂∂⎡⎤=-=---- ⎪⎣⎦∂∂⎝⎭⎰⎰⎰⎰()()22Db a dxdy a b a π=-=-⎰⎰其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0因而:()222I bx dx a b =-=-⎰ ,从而()22231222222I I I a b a a b a b a πππ⎛⎫=-=-+=+- ⎪⎝⎭方法二:应用积分与路径无关化为参数的定积分法求解(1) 若 P Q y x∂∂=∂∂(与路径无关的条件), 则 ()()()()1111000,01,,,A x y x y B x y x y Pdx Qdy P x y dx Q x y dy +=+⎰⎰⎰(2) ()(),x t y t φϕ==()()()()()()()()'',,AB Pdx Qdy P t t t Q t t t dt βαφϕφφϕϕ⎡⎤+=+⎣⎦⎰⎰ α是起点 β是终点解: ()()()sin cos x x LI e y b x y dx e y ax dy =-++-⎰()sin cos x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰记为12I I I =- ,对于1I ,积分与路径无关,所以()()0,02,0sin cos sin 0xx x a eydx e ydy e y+==⎰对于2I ,取L 的参数方程sin sin x a a ty a t=+⎧⎨=⎩,t 从0到π,得()()22223230223sin sin cos sincos cos 11222Lb x y dx axdy a b t a b t t a b t a t a t dt a b a a πππ++=---++=--+⎰⎰从而 23222I a b a ππ⎛⎫=+- ⎪⎝⎭对于空间第二曲线一般的解题过程为:LPdx Qdy Rdz ++⎰若L 闭合,P,Q,R 对各元偏导数连续Ldydz dzdx dxdyPdx Qdy Rdz x y z P Q R∑∂∂∂++=∂∂∂⎰⎰⎰若L 非闭,其参数方程为()()()()()()()()()()()()()()(),,',,',,'P x t y t z t x t Q x t y t z t y t R x t y t z t z t dtβα⎡⎤++⎣⎦⎰其中: ()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩α,β分别为L 的起点,终点参数值.例2 计算空间曲线积分I=()()()y z dx z x dy x y dz -+-+-⎰,其中曲线L为圆柱面222x y a +=与平面1x za h+=的交线()0,0a h >>,从X 轴正向看,曲线是逆时针方向.方法一:化为参数的定积分计算,对于这种封闭的曲线要充分利用[]0,2π上三角函数的正交性.解: 令 cos ,sin x a t y a t ==, 则()cos 111cos x a t z h h h t a a ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭于是I=()()()(){}()sin 1cos sin 1cos cos cos cos sin sin 2a t h t a t h t a t a t a t a t h t dt a a h π--⋅-+--⋅+-⋅⎡⎤⎡⎤⎣⎦⎣⎦=-+⎰方法二:解 :2dydzdzdx dxdyI dydz dzdx dxdy x y z y zz xx y∑∑∂∂∂==-++∂∂∂---⎰⎰⎰⎰ {}()21,1,1,0,1212xyD D h h dxdy dxdy a h a a a π⎧⎫⎛⎫=-⋅=-+=-+⎨⎬ ⎪⎩⎭⎝⎭⎰⎰⎰⎰3 第二型曲面积分例 3 计算曲面积分()2z x dydz zdxdy +-∑⎰⎰,其中∑为旋转抛物面()2212z x y =+ 介于平面z=0及z=1之间的部分的下侧.方法一:利用两类曲面积分的联系()cos cos cos Pdydz Qdzdx Rdxdy P Q R ds αβγ++=++⎰⎰⎰⎰ ()1其中cos ,cos ,cos αβγ是有向曲面∑上点(x ,y ,z )处的法向量的方向余弦. 解: {},,1n x y =-,{}cos ,cos ,cos n αβγ=⎧⎫= ()()22z x dydz zdxdy z x z ds ∑∑⎡⎤+-=+-⎢⎢⎣⎰⎰⎰⎰222∑∑==()2221Dx x y ++=()22212D x x y dxdy ⎡⎤=++⎢⎥⎣⎦⎰⎰22220cos 82r d rdr πθθπ⎡⎤=+=⎢⎥⎣⎦⎰⎰方法二:分面投影法如果∑由(),z z x y =给出,则()(),,,,,xyD R x y z dxdy R x y z x y dxdy =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()2如果∑由(),x x y z =给出,则()(),,,,,yzD P x y z dydz P x y z y z dydz =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()3 如果∑由(),y y z x =给出,则()(),.,,,zxD Q x y z dzdx Q x y z x z dzdx =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()4 等式右端的符号这样规定:如果积分曲面∑是由方程()()()(),,,,x x z y y y x z z z x y ===所给出的曲面上(前,右)侧,应取“+”,否则取“-”. 解:()()22z x dydz zdxdy z x dydz zdxdy ∑∑∑+-=+-⎰⎰⎰⎰⎰⎰()()()222z x dydz z x dydz z x dydz∑∑∑=+=+++⎰⎰⎰⎰⎰⎰后前((22yzyzD D z dydz z dydz =--⎰⎰⎰⎰20244yzD dy π===⎰()2212xyD zdxdy x y dxdy ∑=-+⎰⎰⎰⎰22300142d r dr πθπ=-=-⎰⎰所以()28z x dydz zdxdy π∑+-=⎰⎰方法三 :合一投影法前面我们看到,按分面投影发计算曲面积分时,对不同类型的积分项必须将曲面用不同的方程表示,然后转化为不同坐标面上的二重积分,这种方式形式上虽然简单但计算比较繁琐.事实上,如果∑的方程(),z z x y =, (),xy x y D ∈,(xy D 是∑在xoy 面上的投影区域),函数,,P Q R 在∑上连续时,则单位法向量为 n e ={}cos ,cos ,cos αβγZ ⎧⎫-=± 由于投影元素 cos dydz ds α=, cos dzdx ds β=,cos dxdy ds γ=,于是得到cos cos cos cos cos cos cos cos cos cos cos cos x y dydz ds ds dxdy Z dxdy dzdx ds ds dxdy Z dxdyαααγγγβββγγγ====-====-所以()()()()()()()(){}()(),,,,,,,,,,,,,,,,,xyxyx y D x y D P x y z dydz Q x y z dzdx R x y z dxdyP x y z x y Z x y Q x y z x y Z x y R x y z x y dxdy P Z Q Z R dxdy∑++⎡⎤=±⋅-+-+⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=±⋅-+⋅-+⎣⎦⎰⎰⎰⎰⎰⎰ 等式右端的符号这样确定:如果∑是由方程所给出的曲面上侧,取“+”,否则取“-”. 当∑可用显示方程(),y y z x =或(),x x y z =表示时,只需注意到此时∑的法向 量为{},1,x x y y y ---或{}1,,y z x x --,可得相应公式. 上述方法将上式中的三种类型积分转化为同一坐标面上的二重积分,故名为合一投影法.解:()2212z x y =+,∑在xoy 面上的投影区域:xy D =(){}22,4x y x y +≤,又∑的下侧,x z x =,故由上式可得:()()()()()2222222222222200114212cos 82xy xy D D z x dydz zdxdy x y x x x y dxdyx x y dxdyr d r rdr πθθπ∑⎧⎫⎡⎤+-=-++--+⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-++⎢⎥⎣⎦⎡⎤=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰方法四:高斯公式,,P Q R Pdydz Qdzdx Rdxdy dv x y z ∑Ω⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰解:曲面不是封闭曲面,不能直接利用高斯公式,应补面12z =∑的上侧,则用高斯公式()1200zx dydz zdxdy dv Ω++-==∑∑⎰⎰⎰⎰⎰所以 ()()122z x dydz zdxdy z x dydz zdxdy +-=-+-∑∑⎰⎰⎰⎰又()112028xyD zx dydz zdxdy zdxdy dxdy π+-=--=-∑∑⎰⎰⎰⎰⎰⎰所以 ()28z x dydz zdxdy π∑+-=⎰⎰4 小结从以上对试题的分析,发现不同年份的命题,多次考到相同的知识点,并且吻合于通用教材教学中的难点重点,虽然考试题目千变万化,但教材的内容相对稳定,因此只有吃透教材,抓住重点难点,克服盲点复习,达到以静制动.过本文的分析,希望对大家有一定的指导作用. (指导教师:吕国亮)参考文献[1] 华东师大数学系. 数学分析(下)[M],第三版. 高等教育出版社,2001,224-231. [2] 刘玉琏,傅沛仁等.数学分析讲义(下)[M],第四版. 高等教育出版社,2003, 375-388. [3] 林源渠,方企勤. 数学分析解题指南[M]. 北京大学出版社,2001,338-362. [4] 陈文灯. 数学复习指南[M]. 世界图书出版社,2000,276-287.[5] 田勇.硕士研究生入学考试历年真题解析[M]. 机械工业出版社,2002,175-188. [6] 华中科技大学数学系.考研特别快车—数学[M].华中科技大学出版社,2001. 204-212. [7] 孙一生. 第二型曲线与曲面积分计算的基本方法与技巧[J].《哈尔滨师范大学自然科学学报》,1989,5(2):106-112.[8] 陈少元. 第二型曲线积分计算方法与技巧[J]. 科技信息(学术版),2007(1):12-15.The Second Type Cruve Total And Song Computing Technology That Area Divide IntoLI Ming-song(Class 2 Grade 2006, Department of Mathematic and Information Science, Weinan Teachers University)Abstract :This text is it turn to make total mark law parameter to utilize mainly,Green formula,total mark answer the second type cure exercise question of integration with method that route have nothing to do;Unilize song connection that area assign,divide into the surface projection law,unify the projection law,gausses of formmula answer the second type song topic that area divide.Key words:The area of the song is divided;The total mark of curve。

曲面积分计算技巧

曲面积分计算技巧

曲面积分计算技巧曲面积分计算技巧总结引言曲面积分是数学中的一个重要概念,常应用于计算曲面上某种物理量的总量。

本文将介绍曲面积分的基本概念,并详细说明各种计算技巧。

曲面积分的基本概念曲面积分是对曲面上某个标量或矢量场进行积分运算的方法。

曲面积分可以分为两类:第一类是曲面上某个标量场的积分(记作∬S f(x,y,z) dS),第二类是曲面上某个矢量场的积分(记作∬SF(x,y,z)·dS)。

曲面积分的计算技巧计算第一类曲面积分1.选择合适的参数化表达式:对给定的曲面进行参数化,将曲面上的每个点表示为参数的函数形式,方便后续积分计算。

2.确定面积元素向量:计算参数化表达式对应曲面上的面积元素向量dS,也就是曲面上面积微元的大小和方向。

3.求解积分:将被积函数表示为参数的函数形式,并将之前得到的面积元素向量代入公式进行计算。

计算第二类曲面积分1.选择合适的参数化表达式:同第一类曲面积分一样,需要对曲面进行参数化处理。

2.确定曲面法向量:通过计算曲面上每个点对应的法向量n,用来确定曲面元素的方向。

3.求解积分:将被积函数表示为参数的函数形式,并将之前得到的曲面法向量代入公式进行计算。

其他常用技巧1.使用对称性简化计算:如果曲面具有对称性,可以利用对称性简化曲面积分的计算过程。

2.参考标准公式:对于常见的曲面,可以参考标准公式进行计算,避免重复计算。

3.使用数值计算:对于复杂的曲面和积分函数,可以使用数值计算方法来求解曲面积分近似值。

结论本文介绍了曲面积分的基本概念和计算技巧,包括计算第一类曲面积分和第二类曲面积分的方法,以及常用的简化计算和数值计算技巧。

掌握这些技巧能够帮助我们更高效地计算曲面积分,应用于更广泛的领域中。

补充材料和进一步学习1.对于更深入的了解曲面积分的概念和计算技巧,可以参考高等数学教材中相关章节。

2.在学习过程中,可以通过做一些习题来巩固对曲面积分的掌握。

3.了解更多数学科学知识和应用领域可以扩展你的知识广度。

10.2第二类曲线积分和曲面积分

10.2第二类曲线积分和曲面积分
的一段弧
H.W 习题10 11 12 (2)(3)(4) 14 15
10.4.2 向量值函数曲面积分
一. 双侧曲面 设S是一光滑曲面,n是起点P 在S 上的任一法 向量,若P在S上沿任何曲线连续变动而不越过曲面 边界回到起始位置时,法向量n 总是保持原来的指 向,则称S 是双侧曲面 (Möbius面不是双侧曲面)
移动一段弧微元所作的功
F
e
M
B
dW F e ds
C
A
W F e ds
C
由于单位切向量 e
( dx ds
, dy ) ds
e ds (dx , dy)
于是
W F e ds Pdx Qdy
C
C
(给出两类曲 线积分关系)
向量函数F = (P(x,y), Q(x,y)) 在曲线C切方向
上式的右端形式称为向量值函数曲面积分或第二类
曲面积分
从而
PdydzQdzdx Rdxdy
S
(P cos Q cos R cos )dS S
(两型曲面积分的关系)
2. 性质
第二类曲面积分与在曲面哪一侧积分有关
Pdydz Qdzdx Rdxdy
S
PdydzQdzdx Rdxdy
S
(试提出其他性质)
三. 计算法 若曲面方程为
x x(u, v),

y

y(u,
v),
z z(u, v),
(u, v) D
则其法向量为 ( A, B, C ) ,故单位法向量为
(cos , cos , cos )
1
( A, B,C )
A2 B2 C 2

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。

本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。

曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。

曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。

第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。

计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。

例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。

首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。

计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。

例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。

曲线积分和曲面积分论文

曲线积分和曲面积分论文

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,用于计算曲线上和曲面上的物理量。

在数学、物理、工程等领域都有广泛的应用。

本文将介绍曲线积分和曲面积分的定义、性质和计算方法,并通过简单的例子加深理解。

曲线积分定义曲线积分是指沿曲线上的函数的积分。

设曲线C为向量函数r(t)在区间[a, b]上的路径,则曲线积分的定义为:∫C f·dr = ∫[a,b] f(r(t))·r'(t)dt其中,f为定义在C上的向量函数,r(t)为描述曲线C的向量函数,r’(t)为r(t)的导数。

性质•曲线积分的值与参数化无关,即参数化不同,但曲线积分的值相同。

•曲线积分满足线性性质,即∫(af + bg)·dr = a∫f·dr + b∫g·dr,其中a和b为常数。

•曲线积分可以通过路径分割来计算,即把曲线C分割成若干小段,然后对每一小段进行积分求和。

•曲线积分可以分为第一类曲线积分和第二类曲线积分。

计算方法计算曲线积分的方法有两种:参数化法和曲线长度法。

参数化法参数化法通过选择合适的参数化方程来计算曲线积分。

具体步骤如下: 1. 选择合适的参数化方程r(t)。

常见的参数化方程有极坐标参数化、直角坐标参数化等。

2. 计算r(t)的导数r’(t)。

3. 将函数f(r(t))·r’(t)dt代入曲线积分的定义中,计算定积分。

曲线长度法曲线长度法通过计算曲线的长度和曲线上函数的积分来计算曲线积分。

具体步骤如下: 1. 计算曲线C的长度L。

2. 将函数f(r)·T(s)ds代入曲线积分的定义中,其中s为曲线长度参数,T(s)为曲线的切向量。

3. 对s的范围进行积分,即∫[0,L] f(r)·T(s)ds。

例子计算曲线积分∫C (2x+3y)·dr,其中C为圆x^2 + y^2 = 1。

选择圆的参数化方程为:x = cos(t)y = sin(t)计算r’(t)得到:r'(t) = (-sin(t), cos(t))将函数f(r(t))·r’(t)dt代入曲线积分的定义,得到:∫C (2x+3y)·dr = ∫[0,2π] (2cos(t)+3sin(t))·(-si n(t), cos(t))dt= ∫[0,2π] (-2sin(t)cos(t)-3sin(t)sin (t))dt= ∫[0,2π] (-2sin(t)cos(t)-3/2sin(2t)) dt= -π因此,曲线积分∫C (2x+3y)·dr的值为-π。

第二型曲面积分的计算

第二型曲面积分的计算

第二型曲面积分的计算曲面积分是向量分析的一部分,是在把一个标量函数或向量函数沿曲面曲线进行积分,求解该曲面的某些特定值,如流量、质量和表面积等。

第二型曲面积分是对标量函数的曲面积分,主要用于求解流量、质量以及电荷等相关物理量。

在进行第二型曲面积分计算之前,需要了解一些基本概念。

首先,我们需要了解曲面的概念。

在向量解析中,曲面被定义为二维点的集合,可以通过参数方程进行描述。

例如,一张球体的曲面可以通过以下参数方程来表示:S(u,v)=(Rsinu cosv,Rsinusinv,Rcosu),其中,R为球半径,u和v是参数。

通常情况下,曲面的参数域是一个有限的矩形,例如0≤u≤π,0≤v≤2π。

其次,我们需要了解曲面积分的类型。

在向量解析中,曲面积分可以被分为两种类型:第一型和第二型。

第一型曲面积分是对向量函数的曲面积分,主要用于求解流量。

第二型曲面积分是对标量函数的曲面积分,主要用于求解质量、表面积和电荷等相关物理量。

最后,我们需要了解曲面积分的计算方法。

对于第二型曲面积分,我们可以使用以下公式进行计算:∬ s f(x,y,z) dS=∫∫ rf(x(u,v),y(u,v),z(u,v)) ×|ru∧rv| dudv,其中,f(x,y,z)是被积函数,S是曲面,r(u,v)是曲面S的参数化方程,ru和rv分别是r对u和v的偏导数,ru∧rv是ru和rv的叉积。

实际上,这个公式可以看作是对于曲面上很多微小的“面元”进行累加操作。

其中,面元的大小是由参数方程定义的。

具体来说,我们可以通过对参数方程进行微分计算得到面元的大小,即|ru∧rv|dudv。

这里的|ru∧rv|表示ru和rv的叉积的模长。

在具体应用时,我们需要将被积函数f(x,y,z)替换成参数方程中的变量,即:f(x,y,z)=f(x(u,v),y(u,v),z(u,v))。

这可以将f(x,y,z)从三维空间中的函数转换为定义在参数域上的函数,从而方便进行计算。

第二类曲线积分计算公式

第二类曲线积分计算公式

第二类曲线积分计算公式曲线积分是高等数学中的重要概念,它是对向量场在曲线上的积分。

在积分过程中,我们需要根据曲线的特性来选择适合的计算公式。

第二类曲线积分计算公式是其中一种常用的公式,它可以帮助我们计算向量场在曲线上的积分。

本文将详细介绍第二类曲线积分计算公式的定义、性质以及应用。

一、第二类曲线积分计算公式的定义在介绍第二类曲线积分计算公式之前,我们需要先了解一下曲线积分的概念。

对于一个二维向量场 $F(x,y)=(P(x,y),Q(x,y))$,我们可以定义其在曲线 $C: y=f(x)$ 上的积分为:$$int_C F(x,y)cdot ds=int_a^bF(x,f(x))cdotsqrt{1+(f'(x))^2}dx$$其中,$ds=sqrt{1+(f'(x))^2}dx$ 表示曲线元素。

这个积分式子就是曲线积分的基本形式。

在这个基础上,我们可以继续分类讨论,分成第一类曲线积分和第二类曲线积分。

第二类曲线积分是指曲线积分中,积分项中的 $F(x,y)$ 为一个梯度场的情况。

具体来说,如果存在一个标量场$varphi(x,y)$,使得 $ablavarphi(x,y)=(P(x,y),Q(x,y))$,那么我们就称$F(x,y)=(P(x,y),Q(x,y))$ 为一个梯度场。

此时,第二类曲线积分的计算公式为:$$int_C F(x,y)cdot ds=varphi(B)-varphi(A)$$其中,$A$ 和 $B$ 分别表示曲线 $C$ 的起点和终点。

也就是说,第二类曲线积分的结果只与曲线的起点和终点有关,与曲线的具体形状无关。

二、第二类曲线积分计算公式的性质第二类曲线积分计算公式有以下几个重要的性质:1. 线性性质对于任意两个梯度场 $F_1(x,y)=(P_1(x,y),Q_1(x,y))$ 和$F_2(x,y)=(P_2(x,y),Q_2(x,y))$,以及任意两个标量场$varphi_1(x,y)$ 和 $varphi_2(x,y)$,有:$$int_C (F_1(x,y)+F_2(x,y))cdot ds=int_C F_1(x,y)cdot ds+int_C F_2(x,y)cdot ds$$$$int_C (kcdot F(x,y))cdot ds=kcdotint_C F(x,y)cdot ds$$$$int_C (varphi_1(x,y)+varphi_2(x,y))cdot ds=int_C varphi_1(x,y)cdot ds+int_C varphi_2(x,y)cdot ds$$$$int_C (kcdotvarphi(x,y))cdot ds=kcdotint_Cvarphi(x,y)cdot ds$$其中,$k$ 是任意常数。

曲面积分的计算方法

曲面积分的计算方法

曲面积分的计算方法曲面积分是向量场在曲面上的积分,它在物理、工程、数学等领域有着广泛的应用。

在实际问题中,我们常常需要计算曲面上某个物理量的总量,而曲面积分就是用来描述这种总量的。

本文将介绍曲面积分的计算方法,包括参数化曲面、曲面积分的定义和计算公式等内容。

首先,我们来介绍曲面的参数化。

对于一个曲面S,我们可以用参数方程来描述它。

通常情况下,我们可以用两个参数u和v来表示曲面上的任意一点,即P(u, v)。

通过参数方程,我们可以将曲面S上的点表示为P(u, v) = (x(u, v), y(u, v), z(u, v)),其中x(u, v)、y(u, v)、z(u, v)分别是u和v的函数。

这样,曲面S就被参数化了。

接下来,我们来介绍曲面积分的定义。

设F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))是定义在曲面S上的向量场,曲面积分的定义如下:∬S F·dS = ∬S (P·n)dS + ∬S (Q·n)dS + ∬S (R·n)dS。

其中n是曲面S在点P(u, v)处的单位法向量,dS表示曲面S上的面积元素。

上式右边的三个积分分别表示F在曲面S上的法向分量P、Q、R与dS的点积之和。

这就是曲面积分的定义。

然后,我们来介绍曲面积分的计算公式。

对于参数化曲面S,曲面积分可以表示为:∬S F·dS = ∬D F(x(u, v), y(u, v), z(u, v))·|ru ×rv|dudv。

其中D是参数空间的投影区域,ru和rv分别是曲面S对参数u和v的偏导数,|ru × rv|表示它们的叉乘的模长。

上式右边的积分表示在参数空间D上对F(x(u, v), y(u, v), z(u, v))·|ru × rv|进行积分。

这就是曲面积分的计算公式。

最后,我们来举一个例子来说明曲面积分的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

师范大学本科毕业论文题目:第二型曲线积分与曲面积分的计算方法专业:数学与应用数学系班:数学与信息科学系2006级数本2班毕业年份:姓名:学号:指导教师:职称:教授目录本科毕业论文任务书 (1)本科毕业论文开题报告 (3)本科毕业论文登记表 (5)毕业论文论文正文文稿 (7)本科毕业论文答辩记录 (15)西北师范大学本科毕业论文(设计)任务书注:1. 任务书由指导教师填写、经教研室主任及系主管教学副主任审批后,在第七学期末之前下达给学生..2. 文献查阅指引,应是对查阅内容和查阅方法的指引,即查阅什么和怎样查阅.渭南师范学院本科毕业论文(设计)开题报告注:开题报告是在导师的指导下,由学生填写。

李第二型曲线积分与曲面积分的计算方法李明松(渭南师范学院 数学与信息科学系2006级数本2班)摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目.关键词: 曲面积分;曲线积分1 引 言第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义.2 第二型曲线积分例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-⎰,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线o (0,0) 的弧.方法一:利用格林公式法L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的.解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L ,()()()()()()11sin cos sin cos xxLL xxL I e y b x y dx e y ax dye y b x y dx e y ax dy=-++---++-⎰⎰记为12I I I =- ,则由格林公式得:()1cos cos x xD DQ P I dxdy e y a e y b dxdy x y ⎛⎫∂∂⎡⎤=-=---- ⎪⎣⎦∂∂⎝⎭⎰⎰⎰⎰()()22Db a dxdy a b a π=-=-⎰⎰其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0因而:()222I bx dx a b =-=-⎰ ,从而()22231222222I I I a b a a b a b a πππ⎛⎫=-=-+=+- ⎪⎝⎭方法二:应用积分与路径无关化为参数的定积分法求解(1) 若 P Q y x∂∂=∂∂(与路径无关的条件), 则 ()()()()1111000,01,,,A x y x y B x y x y Pdx Qdy P x y dx Q x y dy +=+⎰⎰⎰(2) ()(),x t y t φϕ==()()()()()()()()'',,AB Pdx Qdy P t t t Q t t t dt βαφϕφφϕϕ⎡⎤+=+⎣⎦⎰⎰ α是起点 β是终点解: ()()()sin cos x x LI e y b x y dx e y ax dy =-++-⎰()sin cos x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰记为12I I I =- ,对于1I ,积分与路径无关,所以()()0,02,0sin cos sin 0xx x a eydx e ydy e y+==⎰对于2I ,取L 的参数方程sin sin x a a ty a t=+⎧⎨=⎩,t 从0到π,得()()22223230223sin sin cos sincos cos 11222Lb x y dx axdy a b t a b t t a b t a t a t dt a b a a πππ++=---++=--+⎰⎰从而 23222I a b a ππ⎛⎫=+- ⎪⎝⎭对于空间第二曲线一般的解题过程为:LPdx Qdy Rdz ++⎰若L 闭合,P,Q,R 对各元偏导数连续Ldydz dzdx dxdyPdx Qdy Rdz x y z P Q R∑∂∂∂++=∂∂∂⎰⎰⎰若L 非闭,其参数方程为()()()()()()()()()()()()()()(),,',,',,'P x t y t z t x t Q x t y t z t y t R x t y t z t z t dtβα⎡⎤++⎣⎦⎰其中: ()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩α,β分别为L 的起点,终点参数值.例2 计算空间曲线积分I=()()()y z dx z x dy x y dz -+-+-⎰,其中曲线L为圆柱面222x y a +=与平面1x za h+=的交线()0,0a h >>,从X 轴正向看,曲线是逆时针方向.方法一:化为参数的定积分计算,对于这种封闭的曲线要充分利用[]0,2π上三角函数的正交性.解: 令 cos ,sin x a t y a t ==, 则()cos 111cos x a t z h h h t a a ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭于是I=()()()(){}()sin 1cos sin 1cos cos cos cos sin sin 2a t h t a t h t a t a t a t a t h t dt a a h π--⋅-+--⋅+-⋅⎡⎤⎡⎤⎣⎦⎣⎦=-+⎰方法二:解 :2dydzdzdx dxdyI dydz dzdx dxdy x y z y zz xx y∑∑∂∂∂==-++∂∂∂---⎰⎰⎰⎰ {}()21,1,1,0,1212xyD D h h dxdy dxdy a h a a a π⎧⎫⎛⎫=-⋅=-+=-+⎨⎬ ⎪⎩⎭⎝⎭⎰⎰⎰⎰3 第二型曲面积分例 3 计算曲面积分()2z x dydz zdxdy +-∑⎰⎰,其中∑为旋转抛物面()2212z x y =+ 介于平面z=0及z=1之间的部分的下侧.方法一:利用两类曲面积分的联系()cos cos cos Pdydz Qdzdx Rdxdy P Q R ds αβγ++=++⎰⎰⎰⎰ ()1其中cos ,cos ,cos αβγ是有向曲面∑上点(x ,y ,z )处的法向量的方向余弦. 解: {},,1n x y =-,{}cos ,cos ,cos n αβγ=⎧⎫= ()()22z x dydz zdxdy z x z ds ∑∑⎡⎤+-=+-⎢⎢⎣⎰⎰⎰⎰222∑∑==()2221Dx x y ++=()22212D x x y dxdy ⎡⎤=++⎢⎥⎣⎦⎰⎰22220cos 82r d rdr πθθπ⎡⎤=+=⎢⎥⎣⎦⎰⎰方法二:分面投影法如果∑由(),z z x y =给出,则()(),,,,,xyD R x y z dxdy R x y z x y dxdy =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()2如果∑由(),x x y z =给出,则()(),,,,,yzD P x y z dydz P x y z y z dydz =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()3 如果∑由(),y y z x =给出,则()(),.,,,zxD Q x y z dzdx Q x y z x z dzdx =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()4 等式右端的符号这样规定:如果积分曲面∑是由方程()()()(),,,,x x z y y y x z z z x y ===所给出的曲面上(前,右)侧,应取“+”,否则取“-”. 解:()()22z x dydz zdxdy z x dydz zdxdy ∑∑∑+-=+-⎰⎰⎰⎰⎰⎰()()()222z x dydz z x dydz z x dydz∑∑∑=+=+++⎰⎰⎰⎰⎰⎰后前((22yzyzD D z dydz z dydz =--⎰⎰⎰⎰20244yzD dy π===⎰()2212xyD zdxdy x y dxdy ∑=-+⎰⎰⎰⎰22300142d r dr πθπ=-=-⎰⎰所以()28z x dydz zdxdy π∑+-=⎰⎰方法三 :合一投影法前面我们看到,按分面投影发计算曲面积分时,对不同类型的积分项必须将曲面用不同的方程表示,然后转化为不同坐标面上的二重积分,这种方式形式上虽然简单但计算比较繁琐.事实上,如果∑的方程(),z z x y =, (),xy x y D ∈,(xy D 是∑在xoy 面上的投影区域),函数,,P Q R 在∑上连续时,则单位法向量为 n e ={}cos ,cos ,cos αβγZ ⎧⎫-=± 由于投影元素 cos dydz ds α=, cos dzdx ds β=,cos dxdy ds γ=,于是得到cos cos cos cos cos cos cos cos cos cos cos cos x y dydz ds ds dxdy Z dxdy dzdx ds ds dxdy Z dxdyαααγγγβββγγγ====-====-所以()()()()()()()(){}()(),,,,,,,,,,,,,,,,,xyxyx y D x y D P x y z dydz Q x y z dzdx R x y z dxdyP x y z x y Z x y Q x y z x y Z x y R x y z x y dxdy P Z Q Z R dxdy∑++⎡⎤=±⋅-+-+⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=±⋅-+⋅-+⎣⎦⎰⎰⎰⎰⎰⎰ 等式右端的符号这样确定:如果∑是由方程所给出的曲面上侧,取“+”,否则取“-”. 当∑可用显示方程(),y y z x =或(),x x y z =表示时,只需注意到此时∑的法向 量为{},1,x x y y y ---或{}1,,y z x x --,可得相应公式. 上述方法将上式中的三种类型积分转化为同一坐标面上的二重积分,故名为合一投影法.解:()2212z x y =+,∑在xoy 面上的投影区域:xy D =(){}22,4x y x y +≤,又∑的下侧,x z x =,故由上式可得:()()()()()2222222222222200114212cos 82xy xy D D z x dydz zdxdy x y x x x y dxdyx x y dxdyr d r rdr πθθπ∑⎧⎫⎡⎤+-=-++--+⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-++⎢⎥⎣⎦⎡⎤=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰方法四:高斯公式,,P Q R Pdydz Qdzdx Rdxdy dv x y z ∑Ω⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰解:曲面不是封闭曲面,不能直接利用高斯公式,应补面12z =∑的上侧,则用高斯公式()1200zx dydz zdxdy dv Ω++-==∑∑⎰⎰⎰⎰⎰所以 ()()122z x dydz zdxdy z x dydz zdxdy +-=-+-∑∑⎰⎰⎰⎰又()112028xyD zx dydz zdxdy zdxdy dxdy π+-=--=-∑∑⎰⎰⎰⎰⎰⎰所以 ()28z x dydz zdxdy π∑+-=⎰⎰4 小结从以上对试题的分析,发现不同年份的命题,多次考到相同的知识点,并且吻合于通用教材教学中的难点重点,虽然考试题目千变万化,但教材的内容相对稳定,因此只有吃透教材,抓住重点难点,克服盲点复习,达到以静制动.过本文的分析,希望对大家有一定的指导作用. (指导教师:吕国亮)参考文献[1] 华东师大数学系. 数学分析(下)[M],第三版. 高等教育出版社,2001,224-231. [2] 刘玉琏,傅沛仁等.数学分析讲义(下)[M],第四版. 高等教育出版社,2003, 375-388. [3] 林源渠,方企勤. 数学分析解题指南[M]. 北京大学出版社,2001,338-362. [4] 陈文灯. 数学复习指南[M]. 世界图书出版社,2000,276-287.[5] 田勇.硕士研究生入学考试历年真题解析[M]. 机械工业出版社,2002,175-188. [6] 华中科技大学数学系.考研特别快车—数学[M].华中科技大学出版社,2001. 204-212. [7] 孙一生. 第二型曲线与曲面积分计算的基本方法与技巧[J].《哈尔滨师范大学自然科学学报》,1989,5(2):106-112.[8] 陈少元. 第二型曲线积分计算方法与技巧[J]. 科技信息(学术版),2007(1):12-15.The Second Type Cruve Total And Song Computing Technology That Area Divide IntoLI Ming-song(Class 2 Grade 2006, Department of Mathematic and Information Science, Weinan Teachers University)Abstract :This text is it turn to make total mark law parameter to utilize mainly,Green formula,total mark answer the second type cure exercise question of integration with method that route have nothing to do;Unilize song connection that area assign,divide into the surface projection law,unify the projection law,gausses of formmula answer the second type song topic that area divide.Key words:The area of the song is divided;The total mark of curve。

相关文档
最新文档