can总线(一)物理层—屏蔽双绞线
J1939中文资料2

(SAE1939-13:2004 MOD )国家标准化管理委员会ICSGB/T XXXX.2-XXXX商用车控制系统局域网络(CAN )通讯协议第2部分:物理层—非车载诊断连接器(英文名称)(征求意见稿)20xx-xx-xx 发布20xx-xx-xx 实施GB/T XXXX.2-XXXX前言GB/T××××《商用车控制系统局域网络(CAN 总线)通讯协议》包括10个部分:—第1部分:物理层—屏蔽双绞线(250K比特/秒)—第2部分:物理层—非车载诊断连接器—第3部分:物理层—非屏蔽双绞线(250K比特/秒)—第4部分:数据链路层—第5部分:应用层—车辆—第6部分:应用层—诊断—第7部分:网络管理—第8部分:参数组分配—第9部分:地址和标识分配—第10部分:可疑参数编号(SPN)—第11部分:网络层本标准为GB/T××××的第2部分,对应于SAE1939-13:1999 《物理层,非车载诊断连接器》,本标准与SAE1939-13的一致性程度为修改采用(技术内容完全等同),主要差异如下:—编辑性修改——本标准由全国汽车标准化技术委员会提出。
本标准由全国汽车标准化技术委员会归口。
本标准由负责起草。
本标准主要起草人:GB/T XXXX.2-XXXX 商用车控制系统局域网络(CAN 总线)通讯协议第2部分:物理层—非车载诊断连接器1 范围本部分规定了CAN 总线的物理层—非车载诊断连接器与汽车通信网络连接的建立。
本部分适用于M2、M3及N类车辆。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T××××.1 《商用车控制系统局域网络(CAN 总线)通讯协议》第1部分:物理层—屏蔽双绞线(250K比特/秒)GB/T××××.3 《商用车控制系统局域网络(CAN 总线)通讯协议》第3部分:物理层—非屏蔽双绞线(250K比特/秒)SAE J2030 Heavy-Duty Electrical Connector Performance Standard(重型的电气连接器操作规范)SAE J1708 Serial Data Communications Between Microcomputer Systems in heavy-Duty Vehicle Applications(以串行数据来通讯的微型计算机系统之间在重型车辆上的运用) SAE J2202 Heavy-Duty Wiring Systems for On-Highway Trucks(重型公路卡车的配线系统)ISO 11783-2农业和林业用的拖拉机和机械-串行控制和通讯数据网络-物理层ISO 11898 道路车辆-数字信息的交换-高速通讯的控制器局域网络(CAN)3非车载诊断连接器本部分规定了用非车载诊断连接器与汽车通信网络建立连接。
CAN总线协议

CAN总线协议协议名称:Controller Area Network (CAN) 总线协议协议概述:CAN总线协议是一种用于在电气控制单元(ECU)之间进行高速通信的网络协议。
它最初由Bosch公司开发,用于汽车领域,但现在已广泛应用于其他领域,如工业自动化和医疗设备等。
CAN总线协议具有高可靠性、实时性和容错性的特点,适用于多节点通信和分布式控制系统。
协议内容:1. 物理层CAN总线协议使用双绞线作为传输介质,并采用差分信号传输。
传输速率可根据需求选择,常见的速率有1 Mbps、500 kbps和250 kbps等。
总线长度和拓扑结构应根据具体应用进行规划。
2. 数据链路层2.1 帧格式CAN总线协议使用帧格式来传输数据。
帧由以下几个字段组成:- 起始位(SOF):标识帧的开始。
- 标识符(ID):用于识别不同的消息。
- 控制位(RTR):用于指示数据帧还是远程帧。
- 数据长度码(DLC):指示数据字段的长度。
- 数据字段(Data):存储实际数据。
- CRC:用于检测传输错误。
- 确认位(ACK):用于确认数据帧是否被接收。
- 结束位(EOF):标识帧的结束。
2.2 帧类型CAN总线协议定义了两种帧类型:- 数据帧:用于传输实际数据。
- 远程帧:用于请求其他节点发送数据。
2.3 错误检测和恢复CAN总线协议具有强大的错误检测和恢复机制。
每个节点在发送数据时都会对其进行CRC校验,接收节点也会进行CRC校验来检测传输错误。
如果检测到错误,节点可以通过重新发送数据来进行恢复。
3. 网络层CAN总线协议使用基于优先级的非冲突访问机制。
每个消息都有一个唯一的标识符,具有较低标识符的消息具有较高的优先级。
当多个节点同时发送消息时,具有较高优先级的消息会被优先发送。
4. 应用层CAN总线协议的应用层可以根据具体需求进行定制。
常见的应用包括以下几个方面:- 传感器数据传输:CAN总线协议可以用于传输各种传感器数据,如温度、压力和位置等。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车、工业控制和通信领域的串行通信协议。
它的工作原理是基于一种分布式通信机制,可以同时连接多个节点,实现高效的数据传输和控制。
CAN的工作原理可以简单概括为以下几个方面:1. 物理层:CAN总线采用双绞线作为传输介质,通常使用差分信号传输方式。
这种方式可以有效地反抗电磁干扰,提高通信的可靠性。
CAN总线上的每一个节点都通过一个传输线连接到总线上。
2. 数据链路层:CAN总线采用一种基于帧的通信协议,数据传输以帧为单位进行。
每一个CAN帧由四个部份组成:起始位、帧类型位、数据位和CRC校验位。
起始位用于同步节点的时钟,帧类型位用于标识数据帧或者远程帧,数据位用于传输实际的数据,CRC校验位用于检测数据传输的错误。
3. 帧传输:CAN总线上的节点可以同时发送和接收数据。
当一个节点要发送数据时,它首先检查总线上是否有其他节点正在发送数据,如果没有,则它可以开始发送数据。
发送节点会将数据和标识符封装成一个CAN帧,并通过总线发送出去。
其他节点在接收到这个CAN帧后,会检查标识符,如果匹配,则接收数据。
4. 碰撞检测:由于CAN总线是一种共享总线结构,多个节点可能同时发送数据,导致碰撞。
为了解决碰撞问题,CAN总线采用了非破坏性的碰撞检测机制。
当一个节点发送数据时,它会同时监听总线上的数据,如果检测到其他节点同时发送数据,那末发送节点会住手发送,并等待一个随机的时间后重新发送。
5. 优先级:CAN总线上的每一个节点都有一个惟一的标识符,用于标识节点的优先级。
当多个节点同时发送数据时,具有更低标识符的节点具有更高的优先级,可以优先发送数据。
这种优先级机制可以确保重要数据的及时传输。
总的来说,CAN的工作原理基于分布式通信机制,通过物理层和数据链路层的协议实现数据的高效传输和控制。
它具有高可靠性、抗干扰能力强、支持多节点等特点,因此在汽车、工业控制和通信领域得到广泛应用。
CAN的工作原理

CAN的工作原理CAN(Controller Area Network)是一种广泛应用于汽车电子控制系统的通信协议,它的工作原理是通过一种高效的串行通信方式来实现多个电子控制单元(ECU)之间的数据传输。
本文将从引言概述、正文内容和结尾总结三个部份来详细阐述CAN的工作原理。
引言概述:CAN是一种被广泛应用于汽车电子控制系统的通信协议,它的浮现极大地促进了汽车电子化的发展。
CAN的工作原理基于一种高效的串行通信方式,通过在总线上传输数据帧来实现多个ECU之间的数据交换。
下面将详细介绍CAN的工作原理。
正文内容:一、物理层1.1 传输介质:CAN协议可以使用两种传输介质,即双绞线和光纤。
双绞线是最常见的传输介质,它具有成本低、抗干扰能力强等优点,适合于大多数汽车电子控制系统。
而光纤传输介质具有传输速度快、抗干扰能力更强等优点,适合于高速数据传输场景。
1.2 总线结构:CAN总线采用了一种主从结构,其中一个ECU扮演主节点的角色,负责控制总线上的数据传输,其他ECU作为从节点,接收和发送数据。
1.3 电气特性:CAN总线的电气特性是保证数据传输可靠性的重要因素之一。
CAN总线采用差分信号传输,即CAN_H和CAN_L两个信号线,通过CAN收发器将数据转换为差分信号进行传输,从而提高了抗干扰能力。
二、数据链路层2.1 帧结构:CAN数据帧由四个部份组成,分别是起始位、帧类型位、数据位和校验位。
起始位用于同步传输,帧类型位标识数据帧还是远程帧,数据位用于传输实际数据,校验位用于检测数据传输过程中的错误。
2.2 帧ID:CAN数据帧的帧ID用于标识数据的发送和接收对象。
帧ID由11位或者29位组成,其中11位的帧ID用于标识标准帧,29位的帧ID用于标识扩展帧。
2.3 确认机制:CAN协议采用了一种基于优先级的确认机制,即具有高优先级的数据帧可以中断低优先级的数据帧的传输,从而提高了数据传输的实时性。
三、网络层3.1 数据传输:CAN协议通过循环发送数据帧的方式来实现数据传输。
can总线的原理

can总线的原理CAN总线的原理CAN总线,全称Controller Area Network,是一种高度可靠的、高速的、串行通信总线,常被应用于汽车电子、工业控制和航空航天等领域。
CAN总线的原理主要包括物理层、数据链路层和应用层。
一、物理层CAN总线的物理层是基于差分传输的。
它使用两条线CAN_H和CAN_L,当CAN_H线电压高于CAN_L线电压时,表示逻辑为1,当CAN_L线电压高于CAN_H线电压时,表示逻辑为0。
CAN总线的差分传输方式具有很强的抗干扰能力,能够有效地抵抗电磁干扰和噪声等干扰。
二、数据链路层CAN总线的数据链路层主要包括帧格式、帧发送和接收机制。
CAN 总线的帧格式包括起始位、帧类型、数据长度、数据区、帧校验和和结束位。
其中,起始位和结束位用于标识一个CAN总线帧的开始和结束,帧类型用于标识数据帧或远程帧,数据长度用于标识数据区的长度,数据区用于存储数据或请求数据,帧校验和用于确认数据的正确性。
CAN总线的帧发送机制采用分时复用和优先级控制的方法,即不同节点通过CAN总线共享相同的带宽,同时通过优先级控制来实现节点之间的数据传输。
当多个节点同时发送数据时,CAN总线会按照节点的优先级进行数据传输,优先级越高的节点先发送数据。
CAN总线的帧接收机制采用广播方式,即所有节点都能够接收到总线上的数据帧,并采用校验和来判断数据的正确性。
如果数据校验和正确,则可以接收数据,否则舍弃数据。
三、应用层CAN总线的应用层是通过标准的数据格式和协议来实现节点之间的数据交换。
CAN总线的应用层支持多种数据类型,包括数字、模拟和状态等,并支持多种通信协议,如CANopen、J1939和DeviceNet等。
CAN总线的原理是基于差分传输的物理层、帧格式、帧发送和接收机制以及应用层协议。
它具有高度可靠的性能、高速的传输速率和良好的抗干扰能力,广泛应用于汽车电子、工业控制和航空航天等领域。
can总线的通信协议

can总线的通信协议Can总线是一种广泛应用于汽车行业的通信协议,它采用了差分信号传输技术,具有高可靠性和抗干扰能力。
Can总线的通信协议包括物理层、数据链路层和应用层三个部分,下面将逐一介绍。
一、物理层Can总线的物理层主要定义了通信的电气特性和连接方式。
Can总线采用双绞线进行通信,其中一根线为CAN_H,另一根为CAN_L,通过差分信号的方式传输数据。
双绞线的使用使得Can总线具有较好的抗干扰能力,可以在噪声较多的环境中正常工作。
同时,Can总线还采用了差分驱动器和终端电阻的方式来提高信号的可靠性和传输距离。
二、数据链路层Can总线的数据链路层主要负责数据传输的控制和错误检测。
Can总线采用了CSMA/CD(载波监听多路访问/冲突检测)的传输机制,即节点在发送数据之前先监听总线上是否有其他节点正在发送数据,若有,则等待一段时间后再发送。
这种机制可以有效避免数据冲突。
Can总线的数据链路层还包括帧格式的定义。
Can总线的数据传输单位是帧,每个帧由起始位、标识符、控制位、数据域和校验位组成。
其中,标识符用于标识帧的类型和发送节点,数据域用于存储实际的数据信息,校验位用于检测数据传输过程中是否发生错误。
三、应用层Can总线的应用层主要定义了数据的传输和处理方式。
Can总线上的节点可以进行点对点通信或广播通信。
点对点通信是指两个节点之间进行数据传输,而广播通信是指一个节点向整个总线发送数据,所有节点都能接收到。
Can总线上的节点需要事先约定好数据的传输格式和意义,以确保数据的正确解析和处理。
通常情况下,Can总线上的数据是采用十六进制表示的,通过不同的标识符和数据域来区分不同的数据类型和含义。
这样的设计使得Can总线可以同时传输多种类型的数据,满足复杂系统中各种需求。
总结:Can总线的通信协议具有高可靠性、抗干扰能力强的特点,广泛应用于汽车行业。
通过物理层、数据链路层和应用层的定义和规范,Can总线实现了节点之间的可靠通信和数据传输。
CAN总线协议

CAN总线协议协议名称:Controller Area Network (CAN) 总线协议协议简介:Controller Area Network (CAN) 总线协议是一种用于在汽车和工业领域中传输数据的串行通信协议。
CAN总线协议最初由德国Bosch公司于1986年开发,并于1991年成为国际标准ISO 11898。
CAN总线协议具有高可靠性、实时性和容错性,被广泛应用于汽车电子系统、工业自动化、医疗设备等领域。
协议内容:1. 物理层CAN总线协议使用双绞线作为物理传输介质,支持两种传输速率:高速CAN (1 Mbps)和低速CAN(125 Kbps)。
双绞线的长度可以根据需求灵活调整,最大长度为40米。
CAN总线采用差分信号传输,其中一个线路为CAN_H(高电平表示逻辑1),另一个线路为CAN_L(低电平表示逻辑0)。
2. 数据帧格式CAN总线协议使用数据帧进行通信,数据帧由以下几个部分组成:- 帧起始位(SOF):用于标识数据帧的开始。
- 标识符(ID):用于区分不同的数据帧,包括标准帧和扩展帧两种类型。
- 控制位(Control):用于指定数据帧的类型和长度。
- 数据域(Data):用于传输实际的数据。
- CRC(Cyclic Redundancy Check):用于检测数据传输过程中的错误。
- 确认位(ACK):用于确认数据帧是否被成功接收。
- 结束位(EOF):用于标识数据帧的结束。
3. 数据帧类型CAN总线协议定义了四种不同类型的数据帧:- 数据帧(Data Frame):用于传输实际的数据。
- 远程帧(Remote Frame):用于请求其他节点发送数据。
- 错误帧(Error Frame):用于指示数据传输过程中的错误。
- 过载帧(Overload Frame):用于指示接收节点无法及时处理数据。
4. 数据传输CAN总线协议采用了一种基于优先级的访问机制,称为非冲突分配(Non-Destructive Arbitration)。
CAN的工作原理

CAN的工作原理CAN总线是一种常用于汽车和工业控制系统中的通信协议,它的全称是控制器局域网络(Controller Area Network)。
CAN总线的工作原理是通过在一个总线上连接多个节点,实现节点之间的高速数据传输和通信。
CAN总线的工作原理主要包括以下几个方面:1. 物理层:CAN总线使用双绞线作为传输介质,采用差分信号传输方式。
每一个节点都通过一个收发器与总线相连,收发器负责将节点发送的电信号转换为差分信号,以及将总线上的差分信号转换为节点可以处理的电信号。
2. 帧格式:CAN总线的数据传输是以帧为单位进行的。
每一个CAN帧由一个起始位、一个标识符、一个控制位、数据域和校验位组成。
标识符用于区分不同的帧,控制位用于指示帧的类型和数据域的长度,数据域用于存储实际的数据,校验位用于检测数据传输过程中的错误。
3. 帧传输:CAN总线采用非冲突的CSMA/CR(Carrier Sense Multiple Access with Collision Resolution)访问机制。
节点在发送数据前会先监听总线上是否有其他节点正在发送数据,如果没有冲突,则节点可以发送数据。
如果多个节点同时发送数据,会发生冲突,此时节点会根据优先级进行竞争,优先级高的节点会继续发送数据,而优先级低的节点会住手发送。
4. 错误检测和恢复:CAN总线具有强大的错误检测和恢复能力。
每一个节点在发送数据时都会对发送的数据进行CRC校验,并在接收数据时对接收到的数据进行CRC校验。
如果校验失败,节点会认为数据浮现错误,并进行错误处理。
此外,CAN总线还具有错误重传机制,当节点发送的数据未能成功接收时,会进行重传操作,以确保数据的可靠传输。
5. 网络拓扑:CAN总线可以支持多个节点的连接,形成一个网络拓扑。
常见的网络拓扑结构包括总线型、星型和树型。
总线型拓扑是最常见的结构,所有节点都连接到同一根总线上。
星型拓扑是将所有节点连接到一个中心节点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、物理层一般要求
1.1 物理层
物理层实现网络中电控单元(ECU)的电连接。
ECU 的数目限制于总线线路的负载承
受能力。
根据本部分的电气参数定义,在特定网段上ECU 的最大数目定为30。
1.2 物理介质
物理介质为屏蔽双绞线。
双绞线特性阻抗为120Ω,电流对称驱动。
两条线分别命名为
CAN_H 和CAN_L。
相应ECU 的管脚引线也分别用CAN_H 和CAN_L 来表示。
第三条连
接屏蔽终端的线用CAN_SHLD 表示。
1.3 差动电压
CAN_H和CAN_L相对于每个单独ECU地的电压有VCAN_H和VCAN_L 。
VCAN_H和VCAN_L
间的差动电压由下式计算:
Vdiff = VCAN_H — VCAN_L
1.4 总线电平
总线总是处于两种逻辑状态,即隐性和显性的其中之一(见图1)。
在隐性状态VCAN_H
和VCAN_L 固定在一个中值电压电平。
在带终端电阻的总线上,Vdiff 接近于零。
显性状态由大于最小门限的差动电压表示。
显性状态覆盖隐性状态并在显性位中传输。
1.5 仲裁期间的总线电平
在特定的位时间里,总线线路上两个不同的ECU 的显性位和隐性位的冲突仲裁结果是
显性位。
(见图1)
1.6 共模的总线电压范围
共模的总线电压范围定义为CAN_H 和CAN_L 的边界电压值。
在连接在总线上的所有ECU 正常运行的前提下,CAN_H 和CAN_L 的电压值由各个ECU 对地测得。
1.7 总线终端
在线路的两个末端上,必须接有负载电阻R 终结L。
RL 不得放置在ECU 中,以避免其中一个ECU 断线,总线将失去终端(见图2)。
1.8 内部电阻
ECU 的内部电阻Rin 为隐性位状态,ECU 和总线线路断开下的CAN_H(或CAN_L)和ECU 地之间的电阻值。
(见图3)。
1.9 差动内部电阻
ECU 的差动内部电阻Rdiff 为隐性位状态,ECU 和总线线路断开下的CAN_H 和CAN_L间的电阻值。
(见图4)。
1.10 内部电容
ECU 的内部电容Cin 为隐性位状态,ECU 和总线线路断开下的CAN_H(或CAN_L)和ECU 逻辑地之间的电容值。
(见图3)。
1.11 差动内部电容
ECU 的差动内部电容Cdiff 为隐性位状态,ECU 和总线线路断开下的CAN_H 和CAN_L间的电容值。
(见图4)。
1.12 位时间
位时间tB 为一比特的持续时间(见图5)。
在位时间内执行的总线管理功能(如ECU同步,网络传输延迟补偿和采样点定位)由CAN 协议的可编程位计时逻辑集成电路定义。
本标准对应于250kbit/s 位时间是4μs。
CAN 协议集成电路供应商通常使用位段名称,它也可能是2 个位的段对应一个名称。