电路实验报告材料参考直流
直流电路测量实验报告

竭诚为您提供优质文档/双击可除直流电路测量实验报告篇一:直流电路的基本测量(完整版)直流电路的基本测量1.实验目的(1)学习万用表的使用(2)学习电阻,电流,电压和电位的测量(3)验证基尔霍夫电流定律和电压定律3.(1)电压与电位在电路中,某一点的电位是指该点到参考点之间的电压值。
各点电位的高低视所选的电位参考点的不同而变的,参考点的电位为零,比参考点电位高者为正,低者为负。
电位是相对的,参考点选取的不同,同一点的电位值不同。
但电压是任意两点的电位差,它是绝对的。
(2)基尔霍夫定律基尔霍夫定律分为电流定律(KcL)和电压定律(KVL)。
KcL应用于节点,KVL应用于回路。
KcL内容:对于电路的任意一个节点,任意时刻,流入节点的电流的代数和等于零。
其表达式为∑I=0KVL内容:对于电路中的任意一个回路,任意时刻,沿回路循环方向各部分电压的代数和等于零。
其表达式为∑u=04.实验内容(1)电阻的测量1)将万用表红表笔插入标有“+”的孔中,“—”的孔中;2)采用数字万用表2kΩ档进行测量,无需调零,测量后直接在显示屏上读数;3)将结果填入下表中(2)电流的测量按图1-38所示连接电路。
测量电流可以用指针式万用表,也可以用数字式万用表。
为保证测量读数的精确,选用数字式万用表测量,将量程转换开关转到DcA位置20mA档位,断开被测支路,将万用表串联进相应的支路,将测量结果记入表1-3中Fu1u2b+e1-R4510ΩR5330Ωc图1-38直流电路基本测量实验电路e2(3)电压的测量电路如图1-38所示,测量电压可以用指针式万用表,也可以用数字式万用表。
为保证测量读数的精确,选用数字式万用表,将量程转换开关转到DCV位置20V档位,断开被测支路。
将万用表并联在被测元件两端进行测量,将测量结果记入表1-4中(4)电位的测量选取A为参考点,分别测量B,C,D,e,F各点的电位,计算两点之间的电压值,将测量结果记入表1-5中,再以D为参考点,重复上述实验的内容,将测量结果记入表1-5中公式:?当电位参考点为A点:uAD=VA-VD=0-(-4.04)=4.04ubF=Vb-VF=6.04-1.0=5.04uce=Vc-Ve=(-6.05)-(-5.04)=-1.01?当电位参考点为D点:uAD=VA-VD=4.04-0=4.04ubF=Vb-VF=10.10-5.05=5.05uce=V c-Ve=(-2.0)-(-0.99)=-1.01总结:分析实验中得出的数据。
模电实验报告直流稳压电源

模电实验报告直流稳压电源
您好,关于模拟电路实验报告中的直流稳压电源部分,我们可以提供一些参考内容:
1. 实验目的:
掌握直流稳压电源的基本原理,设计并制作一个稳压电源电路,使用万用表测量电压稳定度及负载调节率,并记录实验数据。
2. 实验原理:
直流稳压电源电路由变压器、整流滤波电路、稳压电路三部分组成。
变压器主要作用是将市电电压(一般为220V)降压为电路需要的低电压,同时也起到隔离交流电源的作用。
整流滤波电路主要作用是将交流电压转换为直流电压,并通过电容滤波去除交流信号中的纹波。
稳压电路主要作用是稳定输出电压,防止由于负载变化等原因导致输出电压波动。
3. 实验步骤:
a. 按照电路图自行设计一份直流稳压电源电路,并将电路图附在报告中;
b. 根据电路图,选好相应的电器件并进行焊接;
c. 将稳压电路的输出接到万用表上,测量输出电压稳定度及负载调节率;
d. 记录实验数据,并进行分析。
4. 实验数据:
在不同负载下,测得的输出电压及电压稳定度数据如下表所示:
负载电流(mA)输出电压(V)电压稳定度
10 5.00 ±0.01V
50 5.02 ±0.02V
100 5.05 ±0.03V
500 5.01 ±0.04V
由上表数据可以看出,随着负载电流增加,电压略有波动,但稳定度很高,波动范围较小。
5. 实验结论:
本次实验,我们成功设计并制作了一份直流稳压电源电路,并通过测量实验验证了输出电压稳定度较高,波动范围很小的结论。
这对于电子电路的实验和应用有很大的参考价值。
电工实验直流电路实验报告

电工实验直流电路实验报告篇一:电工与电子技术实验报告XX实验一电位、电压的测量及基尔霍夫定律的验证一、实验目的1、用实验证明电路中电位的相对性、电压的绝对性。
2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。
二、实验线路实验线路如图1-1所示。
DAE12BC图1-1三、实验步骤将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。
1、电压、电位的测量。
1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数据记入表1-1中。
2)以C点作为电位的参考点,重复实验内容1)的步骤。
2、基尔霍夫定律的验证。
1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。
2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。
3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。
四、实验数据表1-1表1-2五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。
A、高于B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小C、不变六、其他实验线路及数据表格图1-2表1-3 电压、电位的测量实验二叠加原理和戴维南定理一、实验目的1、牢固掌握叠加原理的基本概念,进一步验证叠加原理的正确性。
2、验证戴维南定理。
3、掌握测量等效电动势与等效内阻的方法。
二(转载自:小草范文网:电工实验直流电路实验报告)、实验线路1、叠加原理实验线路如下图所示DE1IAIB2C图2-12、戴维南定理实验线路如下图所示ALB图2-2三、实验步骤1、叠加原理实验实验前,先将两路直流稳压电源接入电路,令E1=12V,E2=6V。
直流电路的测量实验报告

直流电路的测量实验报告实验目的1.熟悉直流电路的测量和分析方法。
2.熟悉直流电源、电压表、电流表的使用法及其特性。
实验仪器和器材1.实验仪器直流稳压电源型号:IT6302台式多用表型号:UT805A2.实验(箱)器材电路实验箱元器件:电阻(功率1/2W:100,330,470,510x3,1k);二极管(1N4148)3.实验预习的虚拟实验平台NIMultisim3.实验内容1.测量电阻串联分压电路和并联分流电路。
分析:串联电路总电压为器件分压电压之和,并联电路总电流为支路电流之和。
2.测量直流电源开路电压VS和带负载电压VR。
分析:直流电源可等效为一个理想电压源串联内阻r的电路。
3.测量3回路2激励源电阻线性电路。
分析:节点电流之和为零;回路电压之和为零,测量2激励源分别单独作用电路时的电压或电流。
分析:与2激励源— 1 —共同作用时值的关系:线性电路可叠加。
4.实验原理1.电阻串联与并联电路串联电路电流相同,具有分压作用U=U1+U2并联电路电压相同,具有分流作用I=I1+I22.仪器仪表内阻的影响及激励源内阻的测量a.激励源等效内阻激励源可等效为一个理想电压源VS(电流源)和内阻r串联(并联)电路。
当外加负载输出电流时,激励源端口电压会下降,内阻大下降多,电流大下降多。
等效内阻r的测量:先测开路电压:US=VS再测短路电流(内阻大时):ISr=US/IS或测量外加负载电阻R时的电压(内阻小时):URr=(US-UR)R/UR差值法由于直流电压源等效内阻较小,空载与加负载时的电压变化较小,为了减小测量误差常采用差值法测量△U(US-UR)。
测量电压时电压表的正极接被测电压源正极,电压表的负极接另外一个比较电压源的正极(两电压源负极相连),将比较电压源的电压调整到被测电压源空载时相同,这时电压表为0,被测电压源接负载时,电压表为△U— 2 —r=△UR/URb.仪器仪表内阻:电压表内阻大,电流表内阻小。
直流电路实验报告

直流电路实验报告直流电路实验报告一、实验目的:1. 了解直流电路的基本组成和工作原理;2. 掌握直流电路中的电流、电压的测量方法;3. 学习使用电路元件进行电路搭建;4. 通过实验验证欧姆定律和基尔霍夫定律。
二、实验仪器和材料:实验仪器:直流电源、万用表、电阻箱、导线等。
实验材料:电阻、电流表、电压表等。
三、实验原理:1. 欧姆定律:欧姆定律指出,在一个导体上的电流I与其两端的电压V成正比,即I = V/R,其中R为导体的电阻。
2. 基尔霍夫定律:基尔霍夫定律包括两条定律:(1)电流定律:在任意一个电路节点中,流入该节点的电流等于流出该节点的电流之和。
(2)电压定律:沿着闭合电路的任意一条闭合回路,电压源电压之和等于电阻器电压之和。
四、实验步骤:1. 连接电路:使用导线连接直流电源的正、负极,接入一个电流表。
再将电流表的另一端分别接入不同大小的电阻。
2. 测量电压:使用导线连接直流电源的正、负极,接入一个电压表。
分别在不同的位置测量电路中的电压。
3. 设置电阻值:通过拧动电阻箱上的旋钮,设置不同大小的电阻值。
4. 记录实验数据:分别记录电流表的示数和电压表的示数,以便后续分析计算。
五、实验结果和分析:根据实验测量数据计算得到的电阻值与设置的电阻箱值之间存在一定的误差。
这可能是由于电阻箱本身的精度问题,或者是测量仪器的误差所致。
不过整体来说,实验结果与理论值比较接近,验证了欧姆定律和基尔霍夫定律。
六、实验心得:通过本次实验,我更加深入地了解了直流电路的基本原理和测量方法。
实验过程中,我学会了正确连接电路、测量电流电压,并且熟悉了使用电阻箱调节电阻值。
在实验中,我还注意到了测量仪器的精度对于实验结果的影响,并且学会了如何减小误差。
这次实验对我来说是一次很有意义的学习经历,增强了我的实验操作能力和实验数据处理能力。
直流的测量实验报告

直流的测量实验报告实验目的本实验旨在探究直流电路中电压、电流、电阻以及电功率的测量方法,并加深对直流电路的了解。
实验器材- 直流电源- 万用表- 电阻- 电流表实验原理直流电路是电流方向不变的电路,电流和电压的大小相对稳定。
所使用的电源为直流电源,电流表为直流电流表。
- 电压测量方法:将万用表设为电压档位,将其正负极分别接触待测电路两端,并读取测量结果。
- 电流测量方法:将电流表接入待测电路中,读取测量结果。
- 电阻测量方法:将电阻连接在电路中,再将电阻两端用万用表测量电压,根据欧姆定律计算电阻值。
- 电功率测量方法:通过测量电压和电流,利用公式P = U \times I 计算电功率值。
实验步骤1. 准备实验器材,并确认电路连线无误。
2. 打开直流电源,调节电压到设定值。
3. 通过万用表测量电压,记录数据。
4. 通过电流表测量电流,记录数据。
5. 将电阻连接在电路中,测量电压,计算电阻值。
6. 利用测量的电压和电流值,计算电功率。
实验数据与结果在3V的电压下,电流表测量结果为0.5A。
连接电阻后测得电压为2V,根据欧姆定律可得电阻值为4Ω。
根据公式P = U \times I,计算得电功率为3V * 0.5A = 1.5W。
分析与讨论实验结果表明,在直流电路中,电流和电压的关系符合欧姆定律,电阻值可以通过电压和电流求得。
实验中测量的电功率与计算值相符,说明实验方法可行。
实验总结通过本次实验,我了解了直流电路的测量方法,并通过计算、测量确认了测量方法的准确性。
同时,我也进一步理解了电流、电压、电阻以及电功率在直流电路中的相互作用。
参考文献。
直流基本实验报告

直流基本实验报告实验名称:直流基本实验实验目的:通过实验了解直流电路的基本原理和实验技能,熟悉直流电源的使用方法,掌握测量电压和电流的方法。
实验器材:直流电源、电流表、电压表、电阻、导线等。
实验原理:直流电路是指电荷流动的方向保持不变的电路。
直流电路的主要特点是电荷只能单向流动,电流大小恒定不变。
在直流电路中,电流沿着电路先从正极流向负极,再由负极流向正极。
熟悉直流电路的组成和特点十分重要,能够为日常生活和工作中电器电路的使用提供基础。
实验步骤:1. 连接电路:首先将直流电源的正极和负极依次与电路中的元件连接好,确保电路连接正确。
2. 测量电压:将电压表的正极和负极分别连接到需要测量电压的两个点上,并读取电压表上的示数。
注意,示数是指电压表上的数字显示,单位是伏特(V)。
3. 测量电流:将电流表连接到电路中需要测量电流的位置上,并读取电流表上的示数。
注意,示数是指电流表上的数字显示,单位是安培(A)。
4. 改变电路:可以通过改变电路中的元件,如改变电阻的大小,来观察电路中电压和电流的变化规律。
5. 做记录:根据实际测量结果,记录电压和电流的大小,并对电路的各种变化进行分析。
数据处理与结果分析:根据实际测量结果,我们可以计算出电路中电的功率、电阻和电压的关系等。
通过对实验数据进行分析,我们可以得出一些结论,如电流大小与电压成正比,电阻大小和电流成反比等。
实验结论:通过本次实验,我了解了直流电路的基本原理和实验技能。
通过测量电压和电流,我对电路中电压和电流的变化规律有了更深入的了解。
另外,我还学会了使用直流电源和测量仪器,为以后实验和工作中的电路测试打下了基础。
实验心得:通过本次实验,我对直流电路的基本原理和实验技能有了更深入的了解。
实验中我遇到了一些问题,比如如何正确连接电路,如何使用电压表和电流表进行测量等,但通过仔细阅读实验指导书和老师的指导,我逐渐掌握了这些操作技巧。
同时,实验过程中,我还发现了一些实验数据与理论计算结果存在一定的差距,通过思考和讨论,我认识到这可能是由于实验中存在测量误差或电路组成的不完善等原因。
电工直流电路实验报告

电工直流电路实验报告实验目的:通过搭建直流电路,探究电阻、电流、电压和电功率的关系,加深对直流电路的理解。
实验器材和材料:1. 直流电源2. 电阻3. 万用表4. 连接导线实验步骤:1. 搭建直流电路,电源正极连接电阻的一端,负极连接电阻的另一端。
2. 用万用表分别测量电阻两端电压和电流,记录数据。
3. 分别更换不同阻值的电阻,按照同样的方法测量电压和电流,记录数据。
4. 分析实验结果,绘制电流、电压、电功率随电阻变化的曲线图。
实验结果及分析:在搭建的实验电路中,随着电阻阻值的增加,电阻两端的电压也随之增加,而电路中的电流却随之减小。
这说明在直流电路中,电流和电压是成反比例关系的,即如果电压增大,则电流减小;如果电压减小,则电流增大。
同时,根据计算公式P=UI,可以得出电功率也随着电阻的变化而变化。
当电阻阻值越大时,通过电路的电流越小,因此在实验结果图中,电功率随电阻值的增大而逐渐减小。
实验结论:通过本次实验,我们得出了以下结论:1. 直流电路中,电流和电压呈反比例关系。
2. 直流电路中,电阻越大,电路中的电流越小,电功率也随之减小。
实验反思:在本次实验过程中,我们遇到的主要问题是电源电压不稳定,导致实验结果有一定误差。
在今后的实验中,我们需要更加注意实验器材的选用和使用,保证实验结果的准确性和可靠性。
总结:本次实验通过实际的搭建直流电路以及实验数据的记录和分析,深入探究了电阻、电流、电压和电功率之间的关系。
通过本次实验,我们对直流电路的运作原理有了更加深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R VR 实验报告参考(直流部分)实验一 基本实验技术一、实验目的:1. 熟悉电路实验的各类仪器仪表的使用方法。
2. 掌握指针式电压表、电流表阻的测量方法及仪表误测量误差的计算。
3. 掌握线性、非线性电阻元件伏安特性的测绘。
4. 验证电路中电位的相对性、电压的绝对性。
二、需用器件与单元:三、实验容:(一) 电工仪表的使用与测量误差及减小误差的方法 A 、基本原理:通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的阻,分别用R V 和R A 表示。
如图2-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表阻R V 无穷大,才不会改变A R Am I IRI AI R图 2-2S可调恒流源V R VmU R+-U+-VURU+-S图 2-3可调恒压源电路原来的状态。
如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的阻R A 必须等于零,。
但实际使用的电压表和电流表一般都不能满足上述要求,即它们的阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使电路原来的状态产生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表阻引入的测量误差,称之为方法误差。
显然,方法误差值的大小与仪表本身阻值的大小密切相关,我们总是希望电压表的阻越接近无穷大越好,而电流表的阻越接近零越好。
可见,仪表的阻是一个十分关注的参数。
通常用下列方法测量仪表的阻: 1.用‘分流法’测量电流表的阻设被测电流表的阻为R A ,满量程电流为I m,测试电路如图2-2所示,首先断开开关S,调节恒流源的输出电流I,使电流表指针达到满偏转,即I =I A =I m。
然后合上开关S, 并保持I 值不变,调节电阻箱R的阻值,使电流表的指针指在1/2满量程位置,即2mS A II I == 则电流表的阻R R =A 。
2.用‘分压法’测量电压表的阻设被测电压表的阻为R V ,满量程电压为U m,测试电路如图2-3所示,首先闭合开关S,调节恒压源的输出电压U ,使电压表指针达到满偏转,即U =U V =U m。
然后断开开关S, 并保持U 值不变,调节电阻箱R的阻值,使电压表的指针指在1/2满量程位置,即2mR V U U U ==则电压表的阻R R =V 。
图2-1电路中,由于电压表的阻R V 不为无穷大,在测量电压时引入的方法误差计算如下:,R 2上的电压为:UR R R U 2122+=,若R 1=R 2,则U 2=U /2现用一阻R V 的电压表来测U 2值,当R V 与R 2并联后,2V 2V 2R R R R R +=',以此来代替上式的R 2 ,则得UR R R R R R R R R U ⋅+='2V 2V 12V 2V 2++绝对误差为UR R R R R R R R R R U R R R R R R R R R R R R U U U ⨯+++=⋅+-+='-=∆))(()++( 1V V 221212212V 2V 12V 2V 21222若V 21R R R ==,则得6U U =∆ 相对误差0000002220033.310026100 =⨯=⨯'-=∆U U U U U UB.实验容1.根据‘分流法’原理测定直流电流表1mA 和10mA 量程的阻实验电路如图2-2所示,其中R 为电阻箱,用⨯100Ω、⨯10Ω、⨯1Ω三组串联,1mA 电流表用表头和电位器RP2串联组成,10mA 电流表由1mA 电流表与分流电阻并联而成(具体参数见实验一),两个电流表都需要与直流数字电流表串联(采用20mA 量程档),由可调恒流源供电,调节电位器RP2校准满量程。
实验电路中的电源用可调恒流源,测试容见表2-1,并将实验数据记入表中。
表2-1 电流表阻测量数据被测表量程 (mA )S 断开,调节恒源,使I =I A =I m(mA ) S 闭合,调节电阻R , 使I R =I A =I m/2(mA )(Ω)计算阻R A (Ω) 1 6 3 39 39 1020108 82.根据‘分压法’原理测定直流电压表1V 和10V 量程的阻实验电路如图2-3所示,其中R 为电阻箱,用⨯1kΩ、⨯100Ω、⨯10Ω、⨯1Ω四组串联,1V 、10V 电压表分别用表头、电位器RP1和倍压电阻串联组成(具体参数见实验一),两个电压表都需要与直流数字电压表并联,由可调恒压源供电,调节电位器RP1校准满量程。
实验电路中的电源用可调恒压源,测试容见表2-2,并将实验数据记入表中。
表2-2 电压表阻测量数据被测表量程 (V ) S 闭合,调节恒压源,使U =U V =U m(V ) S 断开,调节电阻R ,使U R =U V =U m/2(V )R (Ω) 计算R V (Ω) 1 0.4 0.2 809 809 108416k16k3.方法误差的测量与计算实验电路如图2-1所示,其中R 1=300Ω, R 2=200Ω,电源电压U =10V (可调恒 压源〕,用直流电压表10V 档量程测量R 2上的电压U 2之值,并计算测量的绝对误差和相 对误差,实验和计算数据记入表2-3中。
R V计算值U2实测值U’绝对误差D U= U2-U’2相对误差D U/ U2´100%216k 4 3.2 0.8 20%4.实验报告要求(1)根据表2-1和表2-2数据,计算各被测仪表的阻值,并与实际的阻值相比较;(2)根据表2-3数据,计算测量的绝对误差与相对误差;(二) 线性、非线性电阻元件伏安特性A、基本原理:任何一个二端元件的特性可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
1. 线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1-1中a所示,该直线的斜率等于该电阻器的电阻值。
2. 一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1-1中b曲线所示。
3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中c所示。
图1-1正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
4. 稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图1-1中d所示。
在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。
注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。
B 、实验容:1. 测定线性电阻器的伏安特性按图1-2接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V ,记下相应的电压表和电流表的读数UR 、I 。
图 1-2 图 1-3UR (V ) 2.3 3.0 4.5 6.0 7.9 9 I (mA )2.0 2.7 4.1 5.2 7.0 7.4按图1-3接线,R 为限流电阻器。
测二极管D 的正向特性时,其正向电流不得超过25mA ,二极管D 的正向施压UD+可在0~0.75V 之间取值。
在0.5~0.75V 之间应多取几个测量点。
测反向特性时,只需将图1-3 中的二极管D 反接,且其反向施压UD -可达30V 。
正向特性实验数据UD+ (V)0.100.30 0.50 0.55 0.60 0.65 0.70 0.75 I (mA ) 2.00 5.8012.0013.0213.4016.4419.7022.05反向特性实验数据 UD -(V) 0 -5 -10 -15 -20 -25 -30 I (mA )3. 测定稳压二极管的伏安特性(1)正向特性实验:将图1-3中的二极管换成稳压二极管,重复实验容3中的正向测量。
UZ+为2CW51的正向施压。
+-UmA+-R1KV+-UZ(V)0 0 0I(mA)8.222 9.145 9.564(2)反向特性实验:2CW51反接,测量2CW51的反向特性。
测量2CW51二端的电压UZ-及电流I,由UZ-可看出其稳压特性。
UZ-(V)30 32 34I(mA) 1.004 1.235 1.569实验注意事项(1)测二极管正向特性时,稳压电源输出应由小至大逐渐增加,应时刻注意电流表读数不得超过25mA。
(2)进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,勿使仪表超量程,仪表的极性亦不可接错。
5 实验报告(1)根据各实验数据,分别在方格纸上绘制出光滑的伏安特性曲线。
(其中二极管和稳压管的正、反向特性均要求画在同一图中,正、反向电压可取为不同的比例尺)(2)根据实验结果,总结、归纳被测各元件的特性。
稳压二极管其伏安特性曲线与普通二极管相似,但反向击穿曲线比较陡,在一定围变化时,反向电流很小,当反向电压增高到击穿电压时,反向电流突然猛增,稳压管从而反向击穿,此后,电流虽然在很大围变化,但稳压管两端的电压的变化却相当小。
实验二基本电路定律实验一、实验目的:1.用实验的方法验证基尔霍夫定律、叠加定理、戴维南及定理的正确性,以提高对定理的理解和应用能力。
2.通过实验加深对电位、电压与参考点之间关系的理解。
3.通过实验加深对电路参考方向的掌握和运用能力。
二、需用器件与单元:三、实验容:(一)基尔霍夫定律A、基本原理:基尔霍夫电流、电压定律:测量电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫定律(KCL)和电压定律(KVL)。
电路中任一节点电流的代数和等于零;电路中任一回路上全部组件端对电压代数和等于零。
KCL: ∑i=0KVL: ∑u=OB、实验容:1.验证基尔霍夫定理1)、实验线路2)、实验步骤(1)、实验前先任意设定三条支路的电流参考方向,如图所示。
(2)、分别将两路直流稳压电源接入电路(一路E1为+12V电源,另一路E2为0~30V 可调直流稳压源),令E1=+12V,E2=+6V。
(3)将弱电线插入标识“I”的两端,导线另两端接至直流电流表的“+、-”两端。
(4)将弱电线分别插入三条支路的三个标识“I”插座中,读出并记录电流值。
(5)用直流电压表分别测量两路电源及电阻元件上的电压值,并记录之。