高中数学选修常用逻辑用语单元测试题00
高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>02.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除4.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧q B.綈p∧qC.p∧綈q D.綈p∧綈q6.在三角形ABC中,∠A>∠B,给出下列命题:①sin∠A>sin∠B;②cos2∠A<cos2∠B;③tan ∠A2>tan∠B2.其中正确的命题个数是()A.0个B.1个C .2个D .3个7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题 9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题 10.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则mn -m 2≤n2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.12.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.13.若不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是__________.14.已知命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0,若“p∧q”为真命题,则实数a的取值范围是__________.三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.16.(12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分不必要条件,求实数m的取值范围.17.(12分)设命题p:∃x0∈R,x20+2ax0-a=0.命题q:∀x∈R,ax2+4x+a≥-2x2+1.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0解析:因为命题“存在x0∈R,2x0≤0”是特称命题,所以它的否定是全称命题.答案:D2.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若(2x-1)x=0,则x=12或x=0,即不一定推出x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件.答案:B3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:一个命题与它的逆否命题是等价命题,选项B中的命题为已知命题的逆否命题.答案:B4.若向量a =(x,3)(x ∈R ),则“x =4是|a |=5”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:由x =4知|a |=42+32=5;反之,由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分不必要条件,故选A.答案:A5.(2013·新课标全国卷Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:命题p 为假,因为当x <0时,2x >3x .命题q 为真,因为f (x )=x 3+x 2-1在(0,+∞)内单调递增,且f (0)=-1<0,f (1)=1>0,所以在(0,1)内函数f (x )必存在零点.所以綈p ∧q 为真命题,故选B.答案:B6.在三角形ABC 中,∠A >∠B ,给出下列命题: ①sin ∠A >sin ∠B ;②cos 2∠A <cos 2∠B ;③tan ∠A 2>tan ∠B 2. 其中正确的命题个数是( ) A .0个 B .1个 C .2个D .3个解析:当∠A 、∠B 均为锐角时,由函数的单调性及不等式的性质知都成立;当∠B 为锐角,∠A 为钝角或直角时,又有∠A 、∠B 为三角形的内角,所以π2≤∠A <π,0<∠B <π2,∠A +∠B <π,即π4≤∠A 2<π2,0<∠B 2<π4,∠B <π-∠A <π2,即tan ∠A 2>tan ∠B 2,sin ∠B <sin(π-∠A )=sin ∠A ,cos ∠B >cos(π-∠A )=-cos ∠A ≥0,所以cos 2∠A <cos 2∠B .答案:D7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题解析:对A 选项,命题的否定是:“∀x ∈R ,使得x 2+x +1<0”,故不正确,对于B 选项,由x >yA /⇒x 2>y 2,且x 2>y 2A /⇒x >y ,故不正确.对于C 选项,若“p ∨q ”为假命题,则“綈p ∧綈q ”为真命题,故不正确.对于D 选项,若α=0,则cos α=1是真命题,故其逆否命题也为真命题,故正确. 答案:D8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题解析:∵p 真,q 假.故p ∧q 为假,p ∧綈q 为真.綈p ∨q 为假,綈p ∧綈q 为假,选D.答案:D9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题解析:根据逆否命题定义知A选项正确.由正切函数单调性,可判断B选项正确.D 选项作为特称命题正确,对于C选项,“綈p∧q”为假,则綈p,q中至少一个为假,故p∨q真假不定,故选C.答案:C10.给出下列三个命题:①若a≥b>-1,则a1+a≥b1+b;②若正整数m和n满足m≤n,则mn-m2≤n2;③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为()A.0个B.1个C.2个D.3个解析:①a1+a≥b1+b⇒1-11+a≥1-11+b⇒11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2(x>0,y>0),取x=m,y=n-m,知本命题为真命题.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.解析:∵命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”是真命题,其逆命题“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”是假命题,如函数y=x+1.再由互为逆否命题真假性相同知,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是1个.答案:1个12.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 解析:∵命题“ax 2-2ax -3>0不成立”是真命题,∴不等式ax 2-2ax -3≤0对于任意的实数x 恒成立,(1)当a =0时,符合条件;(2)当⎩⎪⎨⎪⎧a <0,Δ≤0,即-3≤a <0.由(1)、(2)得实数a 的取值范围是{a |a =0或a ≤-3}. 答案:-3≤a ≤013.若不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是__________.解析:∵|x -1|<a ⇔1-a <x <1+a ,又∵不等式|x -1|<a 成立的充分条件是0<x <4, ∴⎩⎪⎨⎪⎧ 1-a ≤0,1+a ≥4,即⎩⎪⎨⎪⎧a ≥1,a ≥3,∴a ≥3. 答案:[3,+∞)14.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p ∧q ”为真命题,则实数a 的取值范围是__________.解析:∵“p ∧q ”为真命题,∴p ,q 均为真命题. 由p 为真命题得a ≤1.由q 为真命题得a ≤-2或a ≥1. ∴当p ,q 同时为真时,有a ≤-2或a =1. 答案:a ≤-2或a =1三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.(3分)否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0.(6分)逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.(9分)原命题、逆命题、否命题、逆否命题均为真命题. (12分)16.(12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分不必要条件,求实数m 的取值范围.解:由题意p :-2≤x -3≤2, ∴1≤x ≤5.∴綈p :x <1或x >5.(4分) q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.(8分) 又∵綈p 是綈q 的充分不必要条件, ∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5. ∴2≤m ≤4.(12分)17.(12分)设命题p :∃x 0∈R ,x 20+2ax 0-a =0.命题q :∀x ∈R ,ax 2+4x +a ≥-2x 2+1.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.解:当命题p 为真时,Δ=4a 2+4a ≥0得a ≥0或a ≤-1,当命题q 为真时,(a +2)x 2+4x +a -1≥0恒成立,∴a +2>0且16-4(a +2)(a -1)≤0,即a ≥2.(6分)由题意得,命题p和命题q一真一假.当命题p为真,命题q为假时,得a≤-1;当命题p为假,命题q为真时,得a∈∅;∴实数a的取值范围为(-∞,-1].(12分)18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.解:甲命题为真时,Δ=(a-1)2-4a2<0,即a>13或a<-1.乙命题为真时,2a2-a>1,即a>1或a<-12.(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a的取值范围是{a|a<-12或a>13}.(7分)(2)甲、乙中有且只有一个是真命题,有两种情况:甲真乙假时,13<a≤1,甲假乙真时,-1≤a<-12,∴甲、乙中有且只有一个真命题时,a的取值范围为{a|13<a≤1或-1≤a<-12}.(14分)。
(好题)高中数学选修1-1第一章《常用逻辑用语》检测题(含答案解析)

一、选择题1.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤02.现有下列说法:①若0x y +=,则||x y x y -=-; ②若a b >,则a c b c ->-;③命题“若0x ,则21x x +”的否命题是“若0x ,则21x x +<”. 其中正确说法的个数为( ) A .0B .1C .2D .33.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +< D .x R ∃∈,24cos 0x x +≤ 4.下列结论错误的是( )A .若“p 且q ”与“p ⌝或q ”均为假命题,则p 真q 假.B .命题“存在R x ∈,20x x ->”的否定是“对任意的R x ∈,20x x -≤”.C .“若22am bm <,则a b <”的逆命题为真.D .“1x =”是“2320x x -+=”的充分不必要条件. 5.命题“210x x x ∀>->,”的否定是( ) A .21,0x x x ∃≤-> B .21,0x x x ∀>-≤ C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 6.设x ∈R ,则“20x -=”是“24x =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 7.命题“若1x =,则22x <”的否命题是( )A .“若22,x <则1x =”B .“若1≥x ,则1x ≠”C .“若1x =,则22x >”D .“若1x ≠,则22x ≥”8.若0a >,0b >,则“1a b +≥”是“1≥”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 9.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要10.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( )A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭11.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤ C .,sin 0x x R x e ∃∈+< D .,sin 0x x R x e ∃∈+≤12.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( )A B .C D .二、填空题13.命题“,sin 3x x π∀∈>R ”的否定是________.14.已知命题“x R ∀∈,240x x a -+>”的否定是______. 15.命题“0x ∃>,30x >”的否定为______.16.设[]x 表示不大于x 的最大整数,则对任意实数x ,给出以下四个命题:①[][]x x -=-;②[]12x x ⎡⎤+=⎢⎥⎣⎦;③[][]22x x =;④[][]122x x x ⎡⎤++=⎢⎥⎣⎦. 则假命题是______(填上所有假命题的序号). 17.给出以下几个结论: ①若0a b >>,0c <,则c ca b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______.18.写出命题“若22am bm <,则a b <”的否命题______. 19.现给出五个命题: ①a ∀∈R ,212a a +>; ②223,,2()2a b R a b a b ∀∈+>--;> ④4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值等于4;⑤若不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,则x 12x <<. 所有正确命题的序号为______20.命题“若a 、b 都是偶数,则+a b 是偶数”的逆命题是_____________________________________.三、解答题21.已知命题:p 实数m 满足22430m am a -+<,其中0a >;命题:q 方程()22 68y m m x =-+表示经过第二、三象限的抛物线.(1)当1a =时,若命题p 为假,且命题q 为真,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围. 22.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求AB ,A B ;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.23.已知:1p x >或2x <-,:q x a >,若q 是p 的充分不必要条件,求a 的取值范围.24.已知集合3{}3|A x a x a =-≤≤+,{|0B x x =≤或4}x ≥. (1)当2a =时,求AB ;(2)若0a >,且“x A ∈”是“Rx B ∈”的充分不必要条件,求实数a 的取值范围.25.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.26.已知0m >,p :(2)(6)0x x +-≤,q :22m x m -≤≤+ . (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.2.B解析:B 【分析】根据绝对值的定义,不等式的性质,命题的否命题的定义分别判断. 【详解】逐一考查所给的说法:①当1x =-,1y =时,0x y +=,不满足||x y x y -=-,①错误;②由不等式的性质可知,若a b >,则a c b c ->-,②正确;③命题的否命题为“若0x <,则21x x +<”,③错误综上可得,正确的说法只有1个. 故选:B .3.D解析:D 【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D4.C解析:C 【分析】对于A ,由或命题为假可得p ⌝和q 均为假命题,从而可判断,对于B ,根据特称命题的否定为全称命题可得解;对于C ,利用特值判断即可;对于D 直接根据条件和结论的关系判断即可. 【详解】对于A ,若“p 且q ”与“p ⌝或q ”均为假命题,则p ⌝和q 均为假命题,所以p 真q 假,A 正确;对于B ,命题“R x ∈存在20x x ->”的否定是“对任意的R x ∈,20x x -≤”.B 正确; 对于C ,“若22am bm <,则a b <”的逆命题为:“若a b <,则22am bm <”,当0m =时不成立,C 不正确;对于D ,“1x =”时,“2320x x -+=”成立,充分性成立, “2320x x -+=”成立时,“1x =或2x =”,必要性不成立, 所以“1x =”是“2320x x -+=”的充分不必要条件,D 正确. 故选:C.5.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C6.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 7.D解析:D 【分析】直接根据否命题的定义解答即可. 【详解】因为求原命题的否命题时,既否定条件又否定结论,所以命题“若1x =,则22x <”的否命题是“若1x ≠,则22x ≥”, 故选:D.8.A解析:A 【分析】根据充分必要条件的定义判断,注意基本不等式的应用即在0,0a b >>的情况下,判断两个命题11a b +≥⇒≥和11a b ≥⇒+≥..解:取1a =,19b =,满足1a b +≥,但213=<,充分性不满足;反过来,1a b +≥≥成立,故必要性成立.故选:A .9.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.10.C解析:C 【分析】根据命题否定的定义写出命题的否定,然后判断. 【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥,故选:C .11.B解析:B 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0xx R x e ∀∈+≤”,故选:B .12.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.二、填空题13.【分析】利用含有一个量词的命题的否定的定义求解【详解】因为命题是全称量词命题所以其否定是存在量词命题即为:故答案为: 解析:,sin 3x x π∃∈≤R【分析】利用含有一个量词的命题的否定的定义求解. 【详解】因为命题“,sin 3x x π∀∈>R ”是全称量词命题,所以其否定是存在量词命题,即为:,sin 3x x π∃∈≤R ,故答案为:,sin 3x x π∃∈≤R14.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.15.【分析】根据特称命题的否定是全称命题可得【详解】由特称命题的否定是全称命题则命题的否定为故答案为:解析:0x ∀>,30x ≤ 【分析】根据特称命题的否定是全称命题可得.由特称命题的否定是全称命题,则命题“0x ∃>,30x >”的否定为0x ∀>,30x ≤. 故答案为:0x ∀>,30x ≤16.①②③【分析】举出反例可判断①②③按照分类即可判断④即可得解【详解】对于①由可得故①为假命题;对于②由可得故②为假命题;对于③由可得故③为假命题;对于④当时此时满足;当时此时满足;故④为真命题;故答解析:①②③ 【分析】举出反例可判断①②③,按照[]102x x ≤-<、[]112x x ≤-<分类,即可判断④,即可得解. 【详解】对于①,由[]2.33-=-,[]2.32-=-可得[][]2.3 2.3-≠-,故①为假命题; 对于②,由31222⎡⎤+=⎢⎥⎣⎦,312⎡⎤=⎢⎥⎣⎦可得313222⎡⎤⎡⎤+≠⎢⎥⎢⎥⎣⎦⎣⎦,故②为假命题; 对于③,由3232⎡⎤⨯=⎢⎥⎣⎦,3222⎡⎤⨯=⎢⎥⎣⎦可得332222⎡⎤⎡⎤⨯≠⨯⎢⎥⎢⎥⎣⎦⎣⎦,故③为假命题;对于④,当[]102x x ≤-<时,[]12x x ⎡⎤+=⎢⎥⎣⎦,[][]22x x =,此时满足[][]122x x x ⎡⎤++=⎢⎥⎣⎦; 当[]112x x ≤-<时,[]112x x ⎡⎤+=+⎢⎥⎣⎦,[][]221x x =+,此时满足[][]122x x x ⎡⎤++=⎢⎥⎣⎦;故④为真命题; 故答案为:①②③. 【点睛】解决本题的关键是准确理解题目中的概念,举出合理反例、合理分类.17.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n nd d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-=1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确. 故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.18.若则【分析】根据否命题的定义即可求出【详解】命题若则的否命题为若则故答案为若则【点睛】本题考查了四种命题之间的关系属于基础题解析:若22am bm ≥,则a b ≥ 【分析】根据否命题的定义即可求出. 【详解】命题“若22am bm <,则a b <”的否命题为若22am bm ≥,则a b ≥, 故答案为若22am bm ≥,则a b ≥ 【点睛】本题考查了四种命题之间的关系,属于基础题.19.②③⑤【分析】①时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于的一次函数再利用一次函数的单调性可求出的取值范围【详解】解:①当时所以①不正确;②因为所以成立解析:②③⑤ 【分析】①1a =时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于k 的一次函数,再利用一次函数的单调性可求出x 的取值范围 【详解】解:①当1a =时,212a a +=,所以 ①不正确;②因为222222232()23(1)()1210a a b a b a b b a b +----++=+=+-++>, 所以223,,2()2a b R a b a b ∀∈+>--成立;③>>>③正确;④由于0,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 0,1x ∈,因为4()cos 4cos f x x x=+≥=,而此时要()cos 20,1x =∉,所以取不到等号,所以4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值不等于4,所以④不正确; ⑤令22()21(1)21f k kx x k x k x =-+-=--+, 因为不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,所以(1)0(1)0f f -<⎧⎨<⎩,即2212101210x x x x ⎧--+<⎨--+<⎩12x <<,所以⑤正确故答案为:②③⑤ 【点睛】此题考查了不等式的性质,利用分析法证明不等式,基本不等式,属于中档题.20.若是偶数则都是偶数【解析】逆命题就是将结论和条件互换位置即可故逆命题应该为:若是偶数则都是偶数故答案为若是偶数则都是偶数解析:若+a b 是偶数,则a 、b 都是偶数 【解析】逆命题就是将结论和条件互换位置即可.故逆命题应该为:若a b +是偶数,则a 、b 都是偶数.故答案为若a b +是偶数,则a 、b 都是偶数.三、解答题21.(1)[3,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】利用一元二次不等式的解法和抛物线的性质,先求得命题,p q 分别为真命题时,实数m 的取值范围,(1)根据命题p 为假且q 为真命题,列出不等式组,即可求解;(2)由p 是q 的必要不充分条件,得到集合q 是集合p 的真子集,列出不等式,即可求解.【详解】由题意,命题p 中,由22430m am a -+<,可得()()30m a m a --<,因为0a >,所以3a m a <<,即命题:3p a m a <<,命题q 中,由方程()2268y m m x =-+表示经过第二、三象限的抛物线, 可得2680m m -+<且()()240m m --<,解得24m <<,即命题:24q m <<,(1)若1a =,可得命题:13p m <<,因为命题p 为假且q 为真命题,所以2431m m m <<⎧⎨≤≤⎩或,解得34m ≤<, 所以的m 的取值范围为[3,4).(2)由p 是q 的必要不充分条件,即集合q 是集合p 的真子集, 由(1)可得234a a ≤⎧⎨≥⎩,解得423a ≤≤, 经检验43a =和2a =满足条件, 所以实数a 的取值范围是4,23⎡⎤⎢⎥⎣⎦. 22.(1){}12A B x x ⋂=<<,{}25A B x x ⋃=-<<;(2)(]1,1-.【分析】(1)解一元二次不等式求出集合B ,再进行交集和并集运算即可求解;(2)由题意可知A 是B 的真子集,结合数轴即可求解.【详解】(1){}{}2422B x x x x =<=-<<当2m =时,{}15A x x =<<, 所以{}12A B x x ⋂=<<,{}25A B x x ⋃=-<<.(2)由题意可得:集合A 是集合B 的真子集,因为211m m -<+恒成立,所以集合A 非空.所以21212m m -≥-⎧⎨+≤⎩,解得:11m -≤≤, 经检验1m =-不符合题意,所以11m -<≤,所以实数m 的取值范围为(]1,1-.23.[)1,+∞【分析】由题意知:命题q 对应的集合是p 对应集合的真子集,借助于数轴即可求解.【详解】设{|2A x x =<-或}1x >,{}|=>B x x a ,若有q 是p 的充分不必要条件,则B 是A 的真子集,所以1a ≥,所以a 的取值范围是[)1,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.(1){|45}A B x x ⋂=≤≤;(2)01a <<.【分析】(1)由2a =,得到{|15}A x x =≤≤,再利用交集的运算求解.(2)根据{|0B x x =≤或4}x ≥,得到{|04}R B x x =<<,然后根据“x A ∈”是“R x B ∈”的充分不必要条件,由A 是R B 的真子集,且A ≠∅求解.【详解】(1)∵当2a =时,{|15}A x x =≤≤,{|0B x x =≤或4}x ≥,∴{|45}A B x x ⋂=≤≤;(2)∵{|0B x x =≤或4}x ≥,∴{|04}R B x x =<<,因为“x A ∈”是“R x B ∈”的充分不必要条件, 所以A 是R B 的真子集,且A ≠∅,又{|33}(0)A x a x a a =-≤≤+>,∴30,34,a a ->⎧⎨+<⎩, ∴01a <<.【点睛】本题主要考查集合的基本运算以及逻辑条件的应用,属于基础题.25.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.26.(1)[)4,+∞;(2)[)(]3,26,7-.【分析】(1)p 是q 的充分条件转化为集合的包含关系即可求解;(2)“p q ∨”为真命题,“p q ∧”为假命题转化为,p q 一真一假,分情况讨论,然后求并集即可.【详解】解:(1):26p x -≤≤,∵p 是q 的充分条件,∴[]2,6-是[]2,2m m -+的子集,022426m m m m >⎧⎪-≤-⇒≥⎨⎪+≥⎩,∴m 的取值范围是[)4,+∞.(2)由题意可知,当5m =时,,p q 一真一假,p 真q 假时,即[]2,6x ∈-且()(),37,x ∈-∞-+∞,所以x ∈∅, p 假q 真时,()(),26,x ∈-∞-+∞且[]3,7x ∈-,所以[)(]3,26,7x ∈--, 所以实数x 的取值范围是[)(]3,26,7-.【点睛】考查由充分条件确定参数的范围以及由命题的真假确定参数的范围,中档题.。
(压轴题)高中数学选修1-1第一章《常用逻辑用语》检测题(含答案解析)

一、选择题1.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭C .1,04x x R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭2.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +<3.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃4.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤ C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<5.“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知命题:p “x R ∀∈,10x ->”,则p ⌝为( ) A .x R ∃∈,10x -≤ B .x R ∀∈,10x -< C .x R ∃∈,10x -<D .x R ∀∈,10x -≤8.设a ∈R ,则“1a >-”是“2log (23)1a ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件10.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π11.命题“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是( ) A .0,4x π⎡⎤∃∉⎢⎥⎣⎦,cos sin x x <B .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x < C .0,4x π⎡⎤∀∉⎢⎥⎣⎦,cos sin x x < D .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x ≤ 12.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题13.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______. 14.命题“如果22x a b <+,那么2x ab <”,请写出它的逆否命题____________. 15.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题;16.若“x ∃∈R ,220x x a ++<”是假命题,则实数a 的取值范围是________. 17.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”)18.已知集合A ={x |﹣1<x <2},B ={x |﹣1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是_____.. 19.对下列命题: (1)4sin (0)sin y x x xπ=+<<的最小值为4; (2)若{}n a 是各项均为正数的等比数列,则{}ln n a 是等差数列;(3)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且最大边长为c ,若222a b c +>,则ABC 一定是锐角三角形;(4)若向量(4,2)a =,(,1)b λ=,且,a b 是锐角,则实数的取值范围为1,2⎛⎫-+∞ ⎪⎝⎭; 其中所有正确命题的序号为_________(填出所有正确命题的序号).20.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________.三、解答题21.已知p :[]1,2x ∀∈-,2210x x m -+->,q :x ∃∈R ,()212102x m x +-+=.若______为真命题,求实数m 的取值范围. 请在①p q ⌝∧,②p q ∧⌝,③p q ⌝∨⌝这三个条件中选一个填在横线上,并解答问题.注:如果选择多个条件分别解答,按第一个解答计分.22.设命题21:01x p x -<-,命题2:2110q x a x a a ,若p 是q 的充分不必要条件,求实数a 的取值范围?23.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B . (1)求AB ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围.24.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221xy a+=的离心率e 满足3e ⎫∈⎪⎪⎝⎭. (1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值.25.已知命题2:230p x x --≥;命题2:40q x x -<.若p 是真命题,q 是假命题,求实数x 的范围.26.已知函数()af x x =和()24g x x ax a =++.(1)命题p :()f x 是[)0,+∞上的增函数,命题q :关于的方程()0g x =有实根,若p q ∧为真,求实数a 的取值范围;(2)若“[]1,2x ∈”是“()0g x ≤”的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 2.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.3.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.4.A解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.B解析:B 【分析】先求出两条直线垂直的充要条件,再根据所得条件和已知条件的关系可得两者的条件关系. 【详解】直线0x y +=和直线0x ay -=的充要条件为()1110a ⨯+⨯-=即1a =, 1a =可以推出21a =,但21a =推不出1a =,故“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的必要而不充分条件, 故选:B.6.A解析:A 【分析】根据充分和必要条件的定义即可求解. 【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <, 当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>, 根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.7.A解析:A 【分析】对全称量词的否定用特称量词,直接写出p ⌝ 【详解】∵:p “x R ∀∈,10x ->”, ∴p ⌝:x R ∃∈,10x -≤ 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.8.B解析:B 【分析】先解不等式2log (23)1a ->,再用集合法判断. 【详解】由2log (23)1a ->解得:52a >记()51,,,2A B ⎛⎫=-+∞=+∞ ⎪⎝⎭∵B A ⊆,∴“1a >-”是“2log (23)1a ->”的必要不充分条件.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.9.A解析:A 【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论; 对于D:利用充要条件判断. 【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确; 对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误 故选:A. 【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.10.B解析:B 【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=.故满足条件的选项为B. 故选:B.11.B解析:B 【分析】由全称命题的否定是特称命题可得选项.由全称命题的否定是特称命题得:“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是“0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <”,故选:B.12.B解析:B 【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可. 【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.二、填空题13.【分析】将问题转化为成立分和利用判别式法求解【详解】因为成立当时不恒成立当时解得综上:实数a 的取值范围是故答案为: 解析:[2,)+∞【分析】将问题转化为x R ∀∈,210ax a ++-≥成立,分0a =和 0a ≠,利用判别式法求解. 【详解】因为x R ∀∈,210ax a ++-≥成立,当0a =时,10-≥,不恒成立,当0a ≠时,()08410a a a >⎧⎨∆=--≤⎩,解得2a ≥,综上:实数a 的取值范围是[2,)+∞, 故答案为:[2,)+∞14.如果那么【分析】根据逆否命题的概念即可写出它的逆否命题【详解】原命题的逆否命题为:如果那么解析:如果2x ab ≥,那么22x a b ≥+. 【分析】根据逆否命题的概念,即可写出它的逆否命题 【详解】原命题的逆否命题为:如果2x ab ≥,那么22x a b ≥+.15.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①② 【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②16.【分析】根据题意可知命题是真命题可得出由此可求得实数的取值范围【详解】由于命题是假命题则该命题的否定是真命题解得因此实数的取值范围是故答案为:解析:[)1,+∞【分析】根据题意可知,命题“x R ∀∈,220x x a ++≥”是真命题,可得出0∆≤,由此可求得实数a 的取值范围, 【详解】由于命题“x ∃∈R ,220x x a ++<”是假命题,则该命题的否定“x R ∀∈,220x x a ++≥”是真命题,440a ∴∆=-≤,解得1a ≥. 因此,实数a 的取值范围是[)1,+∞. 故答案为:[)1,+∞.17.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.18.(1+∞)【分析】由充分必要条件与集合的关系得:A B 列不等式组运算得解【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件得:A B 即即m >1故答案为:(1+∞)【点睛】本题考查了充分必要条件与集合间解析:(1,+∞). 【分析】由充分必要条件与集合的关系得:A B ,列不等式组运算得解 【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件, 得:A B ,即1112m m +>-⎧⎨+>⎩,即m >1,故答案为:(1,+∞). 【点睛】本题考查了充分必要条件与集合间的包含关系,属简单题.19.(2)(3)【分析】(1)根据基本不等式等号成立的条件可判断;(2)由等比数列的通项公式代入得进而可证明等差;(3)由大边对大角结合余弦定理可判断;(4)由数量积小于0结合两向量不共线可得解【详解】解析:(2)(3) 【分析】(1)根据基本不等式等号成立的条件可判断;(2)由等比数列的通项公式11n n a a q -=,代入得1ln (1)ln ln n a n q a =+-,进而可证明等差;(3)由大边对大角结合余弦定理可判断; (4)由数量积小于0结合两向量不共线可得解. 【详解】(1)根据基本不等式知当sin 0x >时,4sin 4sin x x +≥=,当且仅当sin 2x =时取得最小值4,但是sin (0,1)x ∈,所以4取不到,故不正确;(2)若{}n a 是各项均为正数的等比数列,设首项为1a ,公比为q ,则11n n a a q -=,所以1ln (1)ln ln n a n q a =+-,所以111ln (ln ln )[ln (1)ln ]ln ln n n a a n q a n q q a +-=+-+-=, 所以{}ln n a 是等差数列,故正确;(3)ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且最大边长为c ,则角C 最大,且222cos 02a b c C ab+-=>,所以角C 为锐角,则ABC 一定是锐角三角形,故正确;(4)若向量(4,2)a =,(,1)b λ=,且,a b 是锐角, 则420a b λ⋅=+>,且24λ≠,解得12λ>-且2λ≠,故不正确. 故答案为:(2)(3). 【点睛】本题是一道综合试题,涉及基本不等式及等差等比数列的通项公式,余弦定理和向量的所成角求参,属于中档题.20.乙【解析】四人供词中乙丁意见一致或同真或同假若同真即丙偷的而四人有两人说的是真话甲丙说的是假话甲说乙丙丁偷的是假话即乙丙丁没偷相互矛盾;若同假即不是丙偷的则甲丙说的是真话甲说乙丙丁三人之中丙说甲乙两解析:乙 【解析】四人供词中,乙、丁意见一致,或同真或同假,若同真,即丙偷的,而四人有两人说的是真话,甲、丙说的是假话,甲说“乙、丙、丁偷的”是假话,即乙、丙、丁没偷,相互矛盾;若同假,即不是丙偷的,则甲、丙说的是真话,甲说“乙、丙、丁三人之中”,丙说“甲、乙两人中有一人是小偷”是真话, 可知犯罪的是乙.【点评】本体是逻辑分析题,应结合题意,根据丁说“乙说的是事实”发现,乙、丁意见一致,从而找到解题的突破口,四人中有两人说的是真话,因此针对乙、丁的供词同真和同假分两种情况分别讨论分析得出结论.三、解答题21.选①:1m ≤-;选②:23m <<;选③:3m <.【分析】首先求出p 为真命题以及q 为真命题时,实数m 的取值范围,然后再利用复合命题的真假表确定实数m 的取值范围.【详解】若p 为真命题,[]1,2x ∀∈-,2210x x m -+->,只需()2max 21m x x >-++, 设()()()2222121122f x x x x x x =-++=--+=--+≤, 所以2m >,所以p 为假命题时,2m ≤若q 为真命题,x ∃∈R ,()212102x m x +-+=, 只需()2114202m ∆=--⨯⨯≥,解得3m ≥或1m ≤-, 若q 为假命题,则13m <<若选①,p q ⌝∧为真命题,则p ⌝真且q 真,,若p ⌝为真命题,即p 为假命题时,所以2m ≤, q 为真命题,所以p q ⌝∧为真命题,实数m 的取值范围为1m ≤-;若选②,p q ∧⌝为真命题,则p 真且q ⌝真,只需p 真且q 假,22313m m m >⎧⇒<<⎨<<⎩, 若选③,p q ⌝∨⌝为真命题,不妨假设p q ⌝∨⌝为假命题,则p ⌝假且q ⌝假,即p 真且q 真,此时3m ≥,所以p q ⌝∨⌝为真命题时,3m <22.10,2⎡⎤⎢⎥⎣⎦. 【分析】首先求出命题p 与q ,再根据p 是q 的充分不必要条件建立不等式组,求解即可.【详解】由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<, 由2:2110q x a x a a ,解得1a x a ≤≤+,即1q a x a ≤≤+:,要使得p 是q 的充分不必要条件,则1112a a +≥⎧⎪⎨≤⎪⎩,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查由充分不必要条件求参数的范围的问题,将命题之间的充分不必要条件转化为集合之间的关系是解决此类问题的关键,属于中档题.23.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A , ∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件, ∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.24.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =. 【分析】 (1)当1a >时,根据离心率e满足3e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭ (2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意, 综上52m =. 25.(][),14,-∞-+∞【分析】 求解一元二次不等式得到命题p 为真命题,命题q 为假命题的x 的取值集合,取交集得答案.【详解】由2230x x --≥,得1x ≤-或3x ≥,p ∴是真命题的x 的取值范围为(][),13,-∞-+∞;由240x x -<,得04x <<,q ∴是假命题的x 的取值范围为(][),04,-∞+∞.∴满足p 是真命题,q 是假命题的实数x 的取值范围是(][),14,-∞-+∞.【点睛】本题考查命题的真假判断与应用,考查一元二次不等式的解法,是基础题.26.(1)14a ≥;(2)4,9⎛⎤-∞- ⎥⎝⎦ 【分析】(1)首先计算p 真,p 真时a 的范围,再根据p q ∧为真得到不等式组,即可得到答案. (2)首先根据题意得到()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,再解不等式组即可. 【详解】(1)因为()af x x =是[)0,+∞上的增函数,所以0a >,即p 真:0a >, 方程()0g x =有实根,则21640a a -≥,14a ≥或0a ≤.即q 真:14a ≥或0a ≤. 因为p q ∧为真,所以0104a a a >⎧⎪⎨≥≤⎪⎩或,解得14a ≥. (2)因为“[]1,2x ∈”是“()0g x ≤”的充分条件, 所以()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得49a . 所以实数a 的取值范围:4,9⎛⎤-∞- ⎥⎝⎦. 【点睛】本题主要考查了根据复合命题的真假求参数,同时考查了充分条件,属于中档题.。
(易错题)高中数学选修1-1第一章《常用逻辑用语》检测题(有答案解析)

一、选择题1.下列命题中假命题是( )A .020R,log 0x x ∃∈=B .2R,0x x ∀∈>C .00R,cos 1x x ∃∈=D .R,20x x ∀∈> 2.已知命题:p 对任意1x >,有ln 1x x x >-成立,则p ⌝为( ) A .存在01x ,使000ln 1x x x -成立B .存在01x >,使000ln 1x x x -成立C .对任意01x ,有000ln 1x x x ≤-成立D .对任意01x >,有000ln 1x x x -成立3.“22320x x --<”的一个必要不充分条件可以是( ) A .1x >- B .01x <<C .1122x -<< D .1x < 4.已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 5.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( )A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥ 7.已知命题:p “x R ∀∈,10x ->”,则p ⌝为( )A .x R ∃∈,10x -≤B .x R ∀∈,10x -<C .x R ∃∈,10x -<D .x R ∀∈,10x -≤ 8.“a b >”是“||||a a b b >”的( )A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件 9.已知x ∈R ,则“21x >”是“2x <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不必要也不充分条件10.命题“21,1x x ∀>>”的否定是( )A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤ 11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“a b =”是“()sin sin 2sin C A A B -=-”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件12.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________.14.若命题“22,210x R x x m ∀∈-+->”为真命题,则实数m 的取值范围为________________________15.命题“0x ∃>,30x >”的否定为______.16.已知函数()f x 的定义域为R .若存在常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()cos f x x =;②()x f x e =;③3()f x x x =-.其中,具有性质P 的函数的序号是__________.17.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”)18.若“x R ∃∈,220x x a --=”是假命题,则实数a 的取值范围为______.19.设集合0,{03}1x A x B x x x ⎧⎫=<=<<⎨⎬-⎩⎭,那么“m A ∈”是“m B ∈”的_______条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个)20.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题: ①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.三、解答题21.设集合2{|230}A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求A B 和A B ; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.22.已知命题p :2680x x -+<,命题q :21m x m -<<+.(1)若p 为假命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.23.已知命题p :x R ∀∈,2210x ax -+>,命题q :函数(21)y a x =-单调递增, (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题q 为真命题,求实数a 的取值范围;(3)若命题p q ∧是假命题,命题p q ∨是真命题,求实数a 的取值范围;24.已知p :[]1,2x ∀∈-,2210x x m -+->,q :x ∃∈R ,()212102x m x +-+=.若______为真命题,求实数m 的取值范围. 请在①p q ⌝∧,②p q ∧⌝,③p q ⌝∨⌝这三个条件中选一个填在横线上,并解答问题.注:如果选择多个条件分别解答,按第一个解答计分.25.已知命题p :实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若1a =,且命题p 和命题q 均为真命题,求实数x 的范围;(2)若p 是q 的必要不充分条件,求a 的范围.26.已知命题2:230p x x --≥;命题2:40q x x -<.若p 是真命题,q 是假命题,求实数x 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对数函数的运算性质,可判定A 是真命题;根据特例,可判定B 是假命题, C 为真命题;根据指数函数的图象与性质,可判定D 为真命题.【详解】根据对数函数的运算性质,可知2log 10=,可得命题“020R,log 0x x ∃∈=”为真命题,所以A 是真命题;当0x =时,20x =,所以命题“2R,0x x ∀∈>”为假命题,所以B 是假命题; 当0x =时,可得cos01=,所以命题“00R,cos 1x x ∃∈=”为真命题,所以C 为真命题; 根据指数函数的图象与性质,可知20x >恒成立,所以命题“R,20x x ∀∈>”为真命题,所以D 为真命题.2.B解析:B【分析】根据全称命题的否定形式可求p ⌝.【详解】命题:p 对任意1x >,有ln 1x x x >-,其否定为:存在01x >,使000ln 1x x x -成立, 故选:B.3.A解析:A【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可.【详解】22320x x --<等价于122x -<<, 对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件; 对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A .【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.4.B解析:B【分析】根据全称命题的否定直接写出答案.命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.C解析:C【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案.【详解】若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',又m ⊥β,∴m '⊥β,又∵m '⊂α,∴α⊥β,若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',∵m n ⊥,∴m n '⊥,又∵α⊥β,α∩β=n ,∴m β'⊥,∴m β⊥,故“m ⊥β”是“α⊥β”的充要条件,故选:C .【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.6.C解析:C【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可.【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>.故选:C7.A解析:A【分析】对全称量词的否定用特称量词,直接写出p ⌝【详解】∵:p “x R ∀∈,10x ->”,∴p ⌝:x R ∃∈,10x -≤故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.8.D解析:D【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件.故选:D.【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题. 9.A解析:A【分析】 解不等式21x >,利用集合的包含关系判断可得出结论. 【详解】 解不等式21x >,可得2210x x x--=<,解得02x <<, {}02x x << {}2x x <,因此,“21x>”是“2x <”的充分不必要条件. 故选:A.10.D解析:D【分析】根据命题的否定的定义写出命题的否定.【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A【分析】由题意结合三角恒等变化化简,由等腰三角形的性质可判定充分性和必要性是否成立即可.在ABC 中,()sin sin 2sin sin()sin 2sin()C A A B A B A A B -=-⇔+-=-2cos sin sin 22sin cos A B A A A ⇔==sin sin A B ⇔=或cos 0A =所以a b =或90A ︒=因此“a b =”是“()sin sin 2sin C A A B -=-”成立的充分不必要条件.故选:A12.B解析:B【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可.【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件.故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.二、填空题13.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为:解析:000,23x x x R ∃∈> 【分析】直接利用存在量词命题的定义求解.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x x x R ∃∈>, 故答案为:000,23x x x R ∃∈>14.【分析】根据全称命题是真命题可知判别式小于零即得结果【详解】全称命题是真命题即在R 上恒成立则判别式解得或故答案为:解析:(),-∞⋃+∞ 【分析】根据全称命题是真命题可知判别式小于零,即得结果.【详解】全称命题是真命题,即22210x x m -+->在R 上恒成立,则判别式()24410m ∆=--<,解得m <或m >,故答案为:(),-∞⋃+∞. 15.【分析】根据特称命题的否定是全称命题可得【详解】由特称命题的否定是全称命题则命题的否定为故答案为:解析:0x ∀>,30x ≤【分析】根据特称命题的否定是全称命题可得.【详解】由特称命题的否定是全称命题,则命题“0x ∃>,30x >”的否定为0x ∀>,30x ≤.故答案为:0x ∀>,30x ≤16.②③【分析】由新定义结合三角恒等变换指数函数的单调性及一元二次不等式的知识代入计算即可得解【详解】对于①若则所以即因为为常数所以不恒成立所以不恒成立故①错误;对于②因为函数单调递增所以所以恒成立故②解析:②③【分析】由新定义,结合三角恒等变换、指数函数的单调性及一元二次不等式的知识,代入计算即可得解.【详解】对于①,若()()f x c f x c +>-,则()()cos cos x c x c +>-,所以cos cos sin sin cos cos sin sin x c x c x c x c ->+,即sin sin 0x c <,因为sin c 为常数,所以sin sin 0x c <不恒成立,所以()()f x c f x c +>-不恒成立, 故①错误;对于②,因为0c >,函数()x f x e =单调递增,所以x c x c +>-,所以()()f x c f x c +>-恒成立,故②正确;对于③,若()()f x c f x c +>-,则33()()()()x c x c x c x c +-+>---,化简可得2330cx c c +->,当30c c ->即1c >时,2330cx c c +->恒成立,即()()f x c f x c +>-恒成立, 故③正确.故答案为:②③.【点睛】本题以全称命题为依托,综合考查了三角恒等变换、指数函数的单调性及一元二次不等式的知识,属于中档题.17.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键 解析:假【分析】根据否命题的定义,写出并判断命题的真假.【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假.【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.18.【分析】写出命题的否定根据的否定为真命题由即可求出的范围【详解】若是假命题则其否定若是真命题所以解得故实数a 的取值范围为故答案为:【点睛】本题主要考查命题的否定及根据命题的真假求参数值属于基础题 解析:(,1)-∞-【分析】写出命题p 的否定,根据p 的否定为真命题,由∆<0即可求出a 的范围.【详解】若“x R ∃∈,220x x a --=”是假命题,则其否定若“x R ∀∈,220x x a --≠”是真命题,所以2(2)41()440a a ∆=--⨯⨯-=+<,解得1a <-,故实数a 的取值范围为(,1)-∞-. 故答案为:(,1)-∞-.【点睛】本题主要考查命题的否定及根据命题的真假求参数值,属于基础题. 19.充分不必要【分析】先化简集合A 再利用集合法判断即可【详解】因为所以A B 所以是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法属于基础题解析:充分不必要【分析】先化简集合A ,再利用集合法判断即可.【详解】 因为{}001,{03}1x A x x x B x x x ⎧⎫=<=<<=<<⎨⎬-⎩⎭, 所以A B ,所以“m A ∈”是“m B ∈”的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法,属于基础题.20.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④【分析】利用线面关系逐一分析即可.【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误;对于②,由线面平行的判定定理知:若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知:若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确;对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥,故OA m ⊥,OB m ⊥,则m γ⊥,又γ⊂n ,则m n ⊥,故正确;故答案为:②③④【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.三、解答题21.(1){}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)(],1-∞.【分析】(1)解一元二次不等式,得集合{}13A x x =-<<,然后代入2a =,得集合B ,利用交集与并集的定义求解;(2)由题意判断出B A ,分类讨论B =∅与B ≠∅两种情况. 【详解】(1){}{}223013A x x x x x =--<=-<<.因为2a =,所以{}04B x x =<<, 所以{}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)因为p 是q 成立的必要不充分条件,所以B A , 当B =∅时,22a a -≥+,得0a ≤当B ≠∅时,1223a a -≤-<+≤,得01a <≤,所以实数a 的取值范围(],1-∞.22.(1)(][),24,-∞-⋃+∞;(2){}34m m ≤≤.【分析】(1)求解一元二次不等式即可求出实数x 的取值范围;(2)把p 是q 的充分条件,转化为集合的包含关系,列不等式组求解.【详解】解:(1)∵p 为假命题,则2680x x -+≥成立,解2680x x -+≥得2x ≤或4x ≥,∴实数x 的取值范围是(][),24,-∞-⋃+∞.(2)∵p 是q 的充分条件,又∵p :24x <<,q :21m x m -<<+, ∴{}{}2421x x x m x m <<⊆-<<+, ∴2241m m -≤⎧⎨≤+⎩. 解得34m ≤≤.∴实数m 的取值范围是{}34m m ≤≤.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.23.(1)()1,1-;(2)1,2⎛⎫+∞⎪⎝⎭;(3)[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦. 【分析】(1)由x R ∀∈,2210x ax -+>恒成立,利用判别式法求解.(2)根据函数(21)y a x =-单调递增,由210a ->求解.(3)根据命题p q ∧是假命题,命题p q ∨是真命题,则由p 、q 一真一假求解.【详解】(1)因为命题p 为真命题,即x R ∀∈,2210x ax -+>恒成立,所以2440a ∆=-<,解得11a -<<,所以实数a 的取值范围是()1,1-.(2)若命题q 为真命题,即函数(21)y a x =-单调递增,则210a ->, 解得12a >, 所以实数a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. (3)因为命题p q ∧是假命题,命题p q ∨是真命题,所以p 、q 一真一假,①若p 真、q 假,则1112a a -<<⎧⎪⎨≤⎪⎩,解得112a -<≤; ②若p 假、q 真,则1112a a a ≤-≥⎧⎪⎨>⎪⎩或,解得1a ≥; 综上:[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦24.选①:1m ≤-;选②:23m <<;选③:3m <.【分析】首先求出p 为真命题以及q 为真命题时,实数m 的取值范围,然后再利用复合命题的真假表确定实数m 的取值范围.【详解】若p 为真命题,[]1,2x ∀∈-,2210x x m -+->,只需()2max 21m x x >-++, 设()()()2222121122f x x x x x x =-++=--+=--+≤, 所以2m >,所以p 为假命题时,2m ≤若q 为真命题,x ∃∈R ,()212102x m x +-+=, 只需()2114202m ∆=--⨯⨯≥,解得3m ≥或1m ≤-, 若q 为假命题,则13m <<若选①,p q ⌝∧为真命题,则p ⌝真且q 真,,若p ⌝为真命题,即p 为假命题时,所以2m ≤, q 为真命题,所以p q ⌝∧为真命题,实数m 的取值范围为1m ≤-;若选②,p q ∧⌝为真命题,则p 真且q ⌝真,只需p 真且q 假,22313m m m >⎧⇒<<⎨<<⎩, 若选③,p q ⌝∨⌝为真命题,不妨假设p q ⌝∨⌝为假命题,则p ⌝假且q ⌝假,即p 真且q 真,此时3m ≥, 所以p q ⌝∨⌝为真命题时,3m <25.(1)(2,3);(2)(1,2]【分析】(1)当1a =时,根据一元二次不等式的解法,可求得命题p 解集,同理可得命题q 的解集,根据题意,即可求得结果;(2)求得命题p 解集,根据题意,得到命题q 是命题p 的子集,建立不等式组,即可求得结果.【详解】(1)当1a =时,命题p :2430x x -+<,解得13x <<,命题q :2260280x x x x ⎧--≤⎨+->⎩,解得23x <≤, 又命题p 和命题q 均为真命题,所以23x <<;故x 的范围为(2,3)(2)命题p :()(3)0x a x a --<,因为0a >,解得3a x a <<,由(1)可得命题q :23x <≤,因为p 是q 的必要不充分条件,所以p q ⇐,且p q ,所以332a a >⎧⎨≤⎩,解得12a <≤,故a 的范围为(1,2] 【点睛】本题考查充分条件和必要条件的应用,根据命题真假求参数问题,关键点在于,根据p 是q 的必要不充分条件,得到命题q 是命题p 的子集,即可列出不等式,考查学生对基础知识的掌握程度,属基础题.26.(][),14,-∞-+∞【分析】 求解一元二次不等式得到命题p 为真命题,命题q 为假命题的x 的取值集合,取交集得答案.【详解】由2230x x --≥,得1x ≤-或3x ≥,p ∴是真命题的x 的取值范围为(][),13,-∞-+∞;由240x x -<,得04x <<,q ∴是假命题的x 的取值范围为(][),04,-∞+∞.∴满足p 是真命题,q 是假命题的实数x 的取值范围是(][),14,-∞-+∞.【点睛】本题考查命题的真假判断与应用,考查一元二次不等式的解法,是基础题.。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
(压轴题)高中数学选修1-1第一章《常用逻辑用语》测试题(包含答案解析)(1)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( )A .p ⌝:x R ∀∈,0x x +≤B .p ⌝:x R ∃∈,0x x +≤C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个无理数,它的平方不是有理数B .任意一个无理数,它的平方是有理数C .存在一个无理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 3.已知命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是( )A .2,20x x x ∀∉-+>RB .2000,20x x x ∃∈-+≤RC .2000,20x x x ∃∈-+<RD .2000,20x x x ∃∉-+≤R4.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥ 5.现有下列说法:①若0x y +=,则||x y x y -=-;②若a b >,则a c b c ->-;③命题“若0x ,则21x x +”的否命题是“若0x ,则21x x +<”.其中正确说法的个数为( )A .0B .1C .2D .36.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.设x ∈R ,则“20x -=”是“24x =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.“1a =”是“直线()20a a x y ++=和直线210x y ++=互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.命题“21,1x x ∀>>”的否定是( )A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤ 11.命题“[]1,0x ∀∈-,2320x x -+>”的否定是( )A .[]1,0x ∀∈-,2320x x -+<B .[]1,0x ∀∈-,2320x x -+≤C .[]01,0x ∃∈-,200320x x -+≤D .[]01,0x ∃∈-,200320x x -+<12.命题“1x ∃>,21x ≥”的否定是( )A .1x ∃≤,21x ≥B .1x ∃≤,21x <C .1x ∀≤,21x ≥D .1x ∀>,21x <二、填空题13.设:14x α<≤,:10x β<,则α是β的______________条件(用“充分非必要”,“必要非充分”,“充要”,“既非充分又非必要”填空)14.为迎接2022年北京冬奥会,短道速滑队组织甲、乙、丙等6名队员参加选拔赛,已知比赛结果没有并列名次记“甲得第一名”为p ,“乙得第一名”为q ,“丙得第一名”为r ,若p q ∨是真命题,()p r ⌝∨是真命题,则得第一名的是______________.15.已知命题:0p x ∀>,x e ex >,写出命题p 的否定:___________.16.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________.17.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______. 18.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 19.已知命题p :“[1,2]x ∀∈,20x a -≥”,命题q :“∃x ∈R ,2220x ax a ++-=”,若命题“p q ⌝∧”是真命题,则实数a 的取值范围是_______. 20.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.三、解答题21.已知“{}22x x x ∃∈-<<,使等式220x x m --=”是真命题.(1)求实数m 的取值范围M :(2)设关于x 的不等式()(1)0x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的充分条件,求a 的取值范围.22.设集合2{|230}A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求A B 和A B ; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.23.己知集合{}2|230A x x x =--<,{|()(1)0}B x x m x m =---≥.(1)当1m =时,求A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.24.已知命题p :指数函数(2)x y a =-是R 上的增函数,命题q :方程22122x y a a +=-+表示双曲线.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.25.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B .(1)求A B ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据全称命题的否定是特称命题进行否定即可得答案.【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<.故选:C.2.A解析:A【分析】特称命题否定为全称命题,改量词否结论【详解】解:命题“存在一个无理数,它的平方是有理数”的否定为“任意一个无理数,它的平方不是有理数”,故选:A3.C解析:C【分析】根据全称命题的否定是特称命题,即可求出.【详解】因为全称命题的否定是特称命题,所以命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是2000,20x x x ∃∈-+<R .故选:C . 4.B解析:B【分析】利用特称命题的否定可得出结论.【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.5.B解析:B【分析】根据绝对值的定义,不等式的性质,命题的否命题的定义分别判断.【详解】逐一考查所给的说法:①当1x =-,1y =时,0x y +=,不满足||x y x y -=-,①错误;②由不等式的性质可知,若a b >,则a c b c ->-,②正确;③命题的否命题为“若0x <,则21x x +<”,③错误综上可得,正确的说法只有1个.故选:B .6.A解析:A【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系.【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥;由l β//,αβ⊥,m α⊥,不能确定//l m .∴“//l m ”是“αβ⊥”的充分不必要条件.故选:A7.A解析:A【分析】根据充分必要条件的定义判断.【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±,不一定是2x =,不必要,因此应为充分不必要条件.故选:A .8.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.9.A解析:A【分析】根据两直线平行,可求得a 的值,根据充分、必要条件的定义,即可求得答案.【详解】若直线()20a a x y ++=和直线210x y ++=互相平行, 则21021a a +=≠,解得1a =或2a =-, 所以“1a =”是“1a =或2a =-”的充分不必要条件.故选:A10.D解析:D【分析】根据命题的否定的定义写出命题的否定.【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.C解析:C【分析】利用全称命题的否定为特称命题可直接得.【详解】根据全称命题的否定是特称命题可得,“[]1,0x ∀∈-,2320x x -+>”的否定为“[]01,0x ∃∈-,200320x x -+≤”.故选:C.12.D解析:D【分析】直接利用特称命题的否定是全称命题写出结果即可.【详解】因为特称命题的否定是全称命题,所以,命题“1x ∃>,21x ≥”的否定是“1x ∀>,21x <”. 故选:D.二、填空题13.充分非必要【分析】利用集合间的关系判断充分条件必要条件即可【详解】A 是B 的真子集故是的充分非必要条件故答案为:充分非必要解析:充分非必要【分析】利用集合间的关系判断充分条件、必要条件即可.【详解】{}|14A x x =<≤{}|10B x x =<A 是B 的真子集,故α是β的充分非必要条件故答案为:充分非必要14.乙【分析】直接利用复合命题的真假判断推理得到答案【详解】由是真命题可知pq 中至少有一个是真命题因为比赛结果没有并列名次说明第一名要么是甲要么是乙;且r 是假命题;又是真命题则是真命题即p 是假命题故得第 解析:乙【分析】直接利用复合命题的真假判断推理得到答案.【详解】由p q ∨是真命题,,可知p 、q 中至少有一个是真命题,因为比赛结果没有并列名次,说明第一名要么是甲,要么是乙;且r 是假命题;又()p r ⌝∨是真命题,则p ⌝是真命题,即p 是假命题.故得第一名的是乙.故答案为:乙.【点睛】复合命题真假的判定:(1) 判断简单命题的真假;(2) 根据真值表判断复合命题的真假.15.【分析】全称命题的否定全称量词改为存在量词结论否定【详解】解:命题的否定为故答案为:解析:0x ∃>,x e ex ≤【分析】全称命题的否定,全称量词改为存在量词,结论否定.【详解】解:命题:0p x ∀>,x e ex >的否定为0x ∃>,x e ex ≤故答案为:0x ∃>,x e ex ≤16.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案.【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤. 故答案为:()21,,4x x ∀∈+∞≤ 17.【分析】将问题转化为成立分和利用判别式法求解【详解】因为成立当时不恒成立当时解得综上:实数a 的取值范围是故答案为:解析:[2,)+∞【分析】将问题转化为x R ∀∈,210ax a ++-≥成立,分0a =和 0a ≠,利用判别式法求解.【详解】因为x R ∀∈,210ax a ++-≥成立,当0a =时,10-≥,不恒成立,当0a ≠时,()08410a a a >⎧⎨∆=--≤⎩, 解得2a ≥,综上:实数a 的取值范围是[2,)+∞,故答案为:[2,)+∞18.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为:解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案.【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a .故答案为:1a >.19.【分析】分别求出为真命题时的范围然后可得答案【详解】若命题为真则即若命题为真则解得或所以若命题是真命题则有所以故答案为:解析:1+,【分析】 分别求出,p q 为真命题时的范围,然后可得答案.【详解】若命题p 为真,则10a -≥,即1a ≤若命题q 为真,则24840a a ∆=-+≥,解得1a ≥或2a ≤-所以若命题“p q ⌝∧”是真命题,则有112a a a >⎧⎨≥≤-⎩或,所以1a > 故答案为:1+,20.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一)【分析】由题意举出反例即可得解.【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+,所以x ,y ,z 的值依次可以为3,2,1.故答案为:3,2,1(答案不唯一).三、解答题21.(1)[)1,8M =-;(2)17a -≤≤.【分析】(1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的范围即可求解; (2)先求出集合N ,有已知条件可得N 是M 的子集,结合数轴即可求解【详解】(1)若“{}22x x x ∃∈-<<,使等式220x x m --=”是真命题,则()22211m x x x =-=--,因为22x -<<,所以()[)2111,8m x =--∈-,所以[)1,8M =-,(2)由不等式()(1)0x a x a ---<可得1a x a <<+,所以{}|1N x a x a =<<+,若“x ∈N ”是“x M ∈”的充分条件,则N 是M 的子集,所以118a a ≥-⎧⎨+≤⎩解得17a -≤≤, 经检验1a =-、7a =符合题意,所以a 的取值范围是17a -≤≤【点睛】结论点睛:从集合的观点分析充分、必要条件,根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.(1){}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)(],1-∞.【分析】(1)解一元二次不等式,得集合{}13A x x =-<<,然后代入2a =,得集合B ,利用交集与并集的定义求解;(2)由题意判断出B A ,分类讨论B =∅与B ≠∅两种情况. 【详解】(1){}{}223013A x x x x x =--<=-<<.因为2a =,所以{}04B x x =<<, 所以{}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)因为p 是q 成立的必要不充分条件,所以B A , 当B =∅时,22a a -≥+,得0a ≤当B ≠∅时,1223a a -≤-<+≤,得01a <≤,所以实数a 的取值范围(],1-∞.23.(1)AB R =;(2)(,2][3,)-∞-⋃+∞. 【分析】(1)当1m =时,分别求出集合A 与集合B ,再进行交集运算即可求解.(2)先求出集合A 与集合B ,由题意可得A 是B 的真子集,结合数轴即可求解.【详解】(1)∵{}()(){}{}2|230|310|13A x x x x x x x x =--<=-+<=-<<, 当1m =时,{}{|(1)(2)0|1B x x x x x =--≥=≤或}2x ≥,所以AB R =.(2){}|13A x x =-<<,{|B x x m =≤或}1x m ≥+.又x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集.所以11m +≤-或3m ≥,解得3m ≥或2m ≤-;即实数m 的取值范围为(,2][3,)-∞-⋃+∞.【点睛】结论点睛:集合的观点分析充分与必要条件(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 24.(1)1a <(2)(-∞,2][1-,2)【分析】(1)若命题p 为真命题,结合指数函数的性质即可求实数a 的取值范围;(2)根据复合命题真假关系进行求解即可.【详解】(1)命题p 为真命题时,21a ->,即1a <.(2)若命题q 为真命题,则(2)(2)0a a -+<,所以22a -<<,因为命题“p q ∨”为真命题,则p ,q 至少有一个真命题,“p q ∧”为假命题,则p ,q 至少有一个假命题,所以p ,q 一个为真命题,一个为假命题当命p 为真命题,命题q 为假命题时,122a a a <⎧⎨-⎩或,则2a -; 当命题p 为假命题,命题q 为真命题时,122a a ⎧⎨-<<⎩,则12a <. 综上,实数a 的取值范围为(-∞,2][1-,2).【点睛】本题主要考查复合命题真假关系的应用,求出命题为真命题的等价条件是解决本题的关键.25.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A ,∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件,∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.26.(1)112a >;(2)11124a <<. 【分析】(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<;当p假q真时,有11214aa⎧≤⎪⎪⎨⎪>⎪⎩则a无解.综上所述11 124a<<.【点睛】由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.。
(典型题)高中数学选修1-1第一章《常用逻辑用语》测试卷(答案解析)

一、选择题1.命题“对任意的[3,)x ∈+∞,都有29x ”的否定是( ) A .对任意的[3,)x ∈+∞,都有29x < B .对任意的(,3)x ∈-∞,都有29x C .存在[3,)x ∈+∞,使得29x <D .存在[3,)x ∈+∞,使得29x2.命题“x R ∃∈,2230x x -+<”的否定是( ) A .x R ∃∈,2230x x -+≥ B .x R ∀∈,2230x x -+≥ C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥3.命题“1x ∀≥,使得2270x x -+>”的否定是( )A .01x ∃≥,使得200270x x -+≤B .01x ∃<,使得200270x x -+≤C .1x ∀<,使得2270x x -+≤D .1x ∀≥,使得2270x x -+≤ 4.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤ C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<5.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+> C .x R ∃∈,2210x x -+≥ D .x R ∃∈,2210x x -+≤ 6.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题()0:1,p x ∃∈+∞,使得0012x x +=;命题:q x R ∀∈,22350x x -+>.那么下列命题为真命题的是( ) A .p q ∧B .()p q ⌝∨C .()p q ∨⌝D .()()p q ⌝∧⌝8.命题p :存在0x R ∈,且使得0sin 1x =的否定形式为( ) A .存在0x R ∈,且使得0sin 1x ≠ B .不存在0x R ∈,且使得0sin 1x ≠ C .对于任意x ∈R ,都有sin 1x = D .对于任意x ∈R ,都有sin 1x ≠9.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( ) AB.CD.10.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -< C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -<12.命题“21,0x x x ∀>->”的否定为( ) A .21,0x x x ∀>-≤ B .21,0x x x ∃>-≤ C .21,0x x x ∀≤-≤D .21,0x x x ∃≤-≤二、填空题13.命题“0x ∃≥,220x x -<”的否定是__________.14.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.15.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 16.命题“若a 、b 都是偶数,则+a b 是偶数”的逆命题是_____________________________________.17.命题:“x R ∀∈,2210x x ++>”的否定为____________; 18.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整 数,记作{}x m =.在此基础上给出下列关于函数{}()f x x x =-的四个命题: ①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =是周期函数,最小正周期为1; ④函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数. 其中正确的命题的序号是________.19.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“p ⌝”中是真命题的为_________.20.设有两个命题:(1)不等式|||1|x x a -->的解集为∅;(2)函数()f x =a 的取值范围为三、解答题21.已知命题2:30p x mx -+≥对x R ∀∈恒成立,命题:q 方程22126x ym m+=--表示的曲线为焦点在x 轴上的椭圆,且p q ∨为真命题,求m 的取值范围.22.已知命题p :x R ∀∈,()2140x a x +-+>,命题q :[]1,2x ∃∈,220ax -≥.(1)若p ⌝为真,求实数a 的取值范围;(2)若p q ∧为假,p q ∨为真,求实数a 的取值范围.23.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.24.已知,x y 都是非零实数,且x y >,求证:11x y<的充要条件是0xy >.25.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221xy a+=的离心率e 满足e ∈⎝⎭. (1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值.26.已知0a >,且1a ≠,命题p :函数()log 1a y x =+在()0,x ∈+∞内单调递减;q :曲线()2231y x a x =+-+与x 轴交于不同的两点.如果p 和q 有且只有一个真命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以“对任意的[3,)x ∈+∞,都有29x ”的否定是“存在[3,)x ∈+∞,使得29x <”,2.B解析:B 【分析】利用特称命题的否定可得出结论. 【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.3.A解析:A 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以,命题1x ∀≥,使得2270x x -+>的否定为01x ∃≥,使得200270x x -+≤,故选:A4.A解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.D解析:D 【分析】本题可根据全称命题的否定是特称命题得出结果. 【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”, 故选:D.6.A【分析】根据两者之间的推出关系可得两者之间的条件关系. 【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件, 故选:A.7.B解析:B 【分析】利用基本不等式可知命题p 为假命题,再由二次函数的判别式为负可知命题q 为真命题,最后根据复合命题的真值表可得()p q ⌝∨为真命题. 【详解】当()01,x ∈+∞,由基本不等式可知0012x x +≥(因为01x >,故等号不可取), 故命题p 为假命题,不等式22350x x -+>中,()234250∆=--⨯⨯< 故22350x x -+>恒成立,故命题q 为真命题,故p q ∧为假命题,()p q ⌝∨为真命题,所以()p q ∨⌝为假命题,()()p q ⌝∧⌝为假命题 故选: B8.D解析:D 【分析】根据含存在性量词的命题的否定,直接得出结论. 【详解】存在0x R ∈,且使得0sin 1x =的否定形式为: 对于任意x ∈R ,都有sin 1x ≠,故答案为:D9.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.10.B解析:B 【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可. 【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.11.D解析:D 【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可. 【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.12.B解析:B 【分析】由含量词命题否定的定义,写出命题的否定即可. 【详解】命题“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤, 故选:B. 【点睛】关键点点睛:该题考查的是有关含有一个量词的命题的否定问题,正确解题的关键是要明确全称命题的否定是特称命题,注意表达形式即可.二、填空题13.【分析】根据全称命题与存在性命题的关系准确改写即可求解【详解】根据全称命题与存在性命题的关系可得命题的否定为故答案为: 解析:20,20x x x ∀≥-≥【分析】根据全称命题与存在性命题的关系,准确改写,即可求解. 【详解】根据全称命题与存在性命题的关系,可得命题“2200,x x x ∃-≥<”的否定为“20,20x x x ∀≥-≥”.故答案为:20,20x x x ∀≥-≥.14.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可. 【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时, 由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+, 所以有22021m m m --+>⇒-<<,即(2,1)∈-m , 当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+ 因为p 是q 的充分不必要条件, 所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩,因此实数a 的取值范围是[3,2]--. 故答案为:[3,2]--15.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①② 【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②16.若是偶数则都是偶数【解析】逆命题就是将结论和条件互换位置即可故逆命题应该为:若是偶数则都是偶数故答案为若是偶数则都是偶数解析:若+a b 是偶数,则a 、b 都是偶数 【解析】逆命题就是将结论和条件互换位置即可.故逆命题应该为:若a b +是偶数,则a 、b 都是偶数.故答案为若a b +是偶数,则a 、b 都是偶数.17.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可. 【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤. 故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.18.①②③【分析】根据函数的基本性质结合题中条件逐项判断即可得出结果【详解】①由定义知:所以即的值域为;故①对;②因为所以函数的图象关于直线对称;故②对;③因为所以函数是周期函数最小正周期为;故③对;④解析:①②③ 【分析】根据函数的基本性质,结合题中条件,逐项判断,即可得出结果. 【详解】 ① 由定义知:{}1122x x -<-≤,所以{}102x x ≤-≤,即{}()f x x x =-的值域为10,2⎡⎤⎢⎥⎣⎦;故①对; ② 因为{}{}()()f k x k x k x x x f x -=---=---=-,所以函数()y f x =的图象关于直线()2kx k Z =∈对称;故② 对; ③ 因为{}{}(1)11()f x x x x x f x +=+-+=-=,所以函数()y f x =是周期函数,最小正周期为1;故③ 对;④ 当12x =-时,1m =-,1122f ⎛⎫-= ⎪⎝⎭;当12x =时,0m =,1122f ⎛⎫= ⎪⎝⎭,此时1122⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭f f ,故④ 错.故答案为:①②③ 【点睛】本题主要考查命题真假的判定,熟记函数的基本性质即可,属于常考题型.19.【解析】∵若则或即不成立;故命题:是的充分条件为假命题;∵函数的定义域是∴命题为真命题;由复合命题真值表得:非p 为真命题;为真命题;假命题故答案为点睛:本题考查的知识点是复合命题的真假判定其中判断出解析:,p q p ⌝∨【解析】∵若0ab =,则0a =或0b =,即0a =不成立;故命题p :0ab =是0a =的充分条件,为假命题;∵函数y =[)3,+∞,∴命题q 为真命题;由复合命题真值表得:非p 为真命题;p q ∨为真命题;p q ∧假命题,故答案为,p q p ⌝∨.点睛:本题考查的知识点是复合命题的真假判定,其中判断出命题p 与命题q 的真假,是解答本题的关键,对复合命题真值表要牢记;根据充要条件的定义及函数定义域的求法,我们先判断出命题p 与命题q 的真假,再根据复合命题真值表,逐一判断题目中三个命题的真假,即可得到答案.20.【分析】分别求出两个命题为真时的的取值范围然后根据复合命题的真假确定结论【详解】其取值范围是不等式的解集为即恒成立若(1)为真命题则若(2)为真命题则(1)(2)均为真命题可得所以若(1)(2)至少 解析:(,1)(2,)-∞⋃+∞【分析】分别求出两个命题为真时的a 的取值范围,然后根据复合命题的真假确定结论. 【详解】1,1,121,01,1,0x x x x x x ≥⎧⎪--=-<<⎨⎪-≤⎩,其取值范围是[]1,1-,不等式|||1|x x a -->的解集为∅即|||1|x x a --≤恒成立,若(1)为真命题,则1a ≥, 若(2)为真命题,则240a -≤,22a -≤≤, (1)(2)均为真命题,可得12a ≤≤,所以若(1)(2)至少有一个是假命题,则1a <或2a >. 故答案为:(,1)(2,)-∞⋃+∞. 【点睛】本题考查由复合命题的真假求参数取值范围,解题时可先求出每个命题为真时的参数范围,然后根据复合命题的真值有确定结论.在遇到“至少”、“至多”等时可从反面入手比较简单.三、解答题21.[(4,6)-【分析】分别求出命题,p q 为真时m 的范围,然后求并集求得结论. 【详解】若p 为真命题,则2120m ∆=-≤,即m -≤若q 为真命题,则206026m m m m ->⎧⎪->⎨⎪->-⎩,得46m <<由于p q ∨为真命题,则m -≤46m <<∴m的取值范围为[(4,6)-.故答案为:[(4,6)-.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:22.(1)3a ≤-或5a ≥;(2)[)13,5,2⎛⎫-+∞ ⎪⎝⎭.【分析】(1)p ⌝为真,则p 为假,由判别式求出实数a 的取值范围,并取补集即可;(2)p q ∧为假,p q ∨为真,则p 、q 一真一假,由p 真q 假和p 假q 真分别求出a 的取值范围取并集即可. 【详解】(1)若p 为真:22(1)162150a a a ∆=--=--<,解得35a -<<,∵p ⌝为真,∴p 为假,∴3a ≤-或5a ≥. (2)由(1)得:p 真35a -<<, 若q 为真:[]1,2x ∃∈,22a x ≥,∴12a ≥,∵p q ∧为假,p q ∨为真,∴p 、q 一真一假.①p 真q 假:3512a a -<<⎧⎪⎨<⎪⎩,∴132a -<<; ②p 假q 真:3512a a a ≤-≥⎧⎪⎨≥⎪⎩或,∴5a ≥. 综上:a 的取值范围是[)13,5,2⎛⎫-+∞ ⎪⎝⎭.【点睛】方法点睛:本题考查根据含有一个量词的命题的真假求参数的问题,p 或q 与p 且q 的真假判断如下:1. p 和q 都为真,则p 且q 为真;p 和q 有一个为假或者都为假,则p 且q 为假;2. p 和q 都为假,则p 或q 为假;p 和q 有一个为真或者都为真,则p 且q 为真. 23.(1){|0}m m ≤;(2)1{|}2m m ≥. 【分析】(1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围. 【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤故m 的范围为{|0}m m ≤ (2)因为,MN M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型. 24.见解析 【分析】根据充要条件的定义进行证明即可. 【详解】(1)必要性:由11x y <,得11x y-<0,即0y x xy -<, 又由x y >,得0y x -<,所以0xy >. (2)充分性:由0xy >及x y >,得x y xy xy>,即11x y <.综上所述,11x y<的充要条件是0xy >. 【点睛】本题主要考查充分条件和必要条件的证明,根据充分条件和必要条件的定义是解决本题的关键.25.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =.【分析】(1)当1a >时,根据离心率e满足e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭(2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意,综上52m =.26.15,1,22⎡⎫⎛⎫+∞⎪⎪⎢⎣⎭⎝⎭【分析】根据对数函数和复合函数的单调性,可知p 为真命题时01a <<.由二次函数的性质,可知q 为真命题时52a >或102a <<,再根据p 和q 有且只有一个真命题,分p 为真命题,q 为假命题和p 假命题, q 为真命题两种情况讨论,即可求出结果.【详解】若p 为真命题,由“函数()log 1a y x =+在区间()0,∞+内单调递减”, 可知:01p a <<; 若q 为真命题,由“曲线()2231y x a x =+-+与x 轴交于不同的两点”,所以()22340a ∆=-->,解得52a >或12a <; 又0a >,且1a ≠, 所以5:2q a >或102a <<;又p 和q 有且只有一个真命题,当p 为真命题,q 为假命题时,0115022a a a <<⎧⎪⎨≤≤≤⎪⎩或,得1,12a ⎡⎫∈⎪⎢⎣⎭; 当p 假命题, q 为真命题时,0151022a a a a ≤≥⎧⎪⎨><<⎪⎩或或,即5,2a ⎛⎫+∞ ⎝∈⎪⎭.综上,a 的取值范围为: 15,1,22⎡⎫⎛⎫+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查了函数的性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.。
高中数学选修2-1第一章《常用逻辑用语》单元测试题(含答案)

1”的逆命题、否命题、逆否命题,并判断它们的真假.
3
18.( 本小题满分 12 分 ) 写出下列命题的否定,并判断其真假.
(1) p:不论 m取何实数,方程 x2+mx-1=0 必有实数根;
(2) p:存在一个实数
x,使得
x
3 <0;
(3) p:若 an=- 2n+1,则 ? n∈N,使 Sn<0;
(4) p:有些偶数是质数.
19.( 本小题满分 12 分 ) 设命题 p:c2< c 和命题 q:对? x∈ R,x2+ 4cx +1> 0,且 p∨ q 为真, p∧q 为假,求实数 c 的取值范围.
-x-1≤0” 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.命题“若 a?A,则 b∈ B”的逆否命题是 ________. 14.“对顶角相等”的否定为 ________,否命题为 ________. 15.a=3 是“直线 l 1:ax+2y+3a=0 和直线 l 2: 3x+( a-1) y=a-7 平行
1
6.下列命题是真命题的是 ( )
A.“若 x= 0,则 xy=0”的逆命题
B.“若 x= 0,则 xy=0”的否命题
C.若 x>1,则 x> 2
D.“若 x= 2,则 ( x-2)( x-1) =0”的逆否命题
7.设 l ,m是两条不同的直线, α 是一个平面,则下列命题是真命题的是 ( )
ห้องสมุดไป่ตู้
A.若 l ⊥m,m? α,则 l ⊥α
4
20.( 本小题满分 12 分) 已知 p: | x-3| ≤2, q:( x-m+1)( x-m-1) ≤0, 若綈 p 是綈 q 的充分而不必要条件,求实数 m的取值范围.