人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

合集下载

高中物理选修3-5原子结构知识点

高中物理选修3-5原子结构知识点

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。

汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。

当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。

2.电子的发现对人类认识原子结构的重要性。

①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。

②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。

(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。

2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。

①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。

3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。

②金箔:1μm,能透光,有3000多层原子厚。

③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。

(1909年~~1911年两年的时间)。

选修3-5《原子结构》知识梳理

选修3-5《原子结构》知识梳理

原子物理【知识建构】第三节 原子结构一、 考情分析二、考点知识梳理 (一)、原子的核式结构模型 1、汤姆生的“枣糕”模型(1)1897年汤姆生发现了______,使人们认识到原子..有复杂结构,揭开了研究原子的序幕. (2)“枣糕”模型:原子是一个球体,正电荷均匀分布在整个球内,电子像枣糕里的枣子一样镶嵌在原子里.2、卢瑟福的核式结构模型(1)α粒子散射实验的结果:α粒子通过金箔时,________不发生偏转,仍沿原来的方向前进,_______发生较大的偏转,________偏转角超过900,有的甚至被_______,偏转角几乎达到______.(2)核式结构模型:在原子的中心有一个______,叫做________,原子的__________和几乎_________都集中在原子核里,带负电的电子在核外空间里_________.原子核所带的单位正电荷数_______核外的电子数,所以整个原子是呈_______的.电子绕着核旋转所需的向心力就是_________________.(3)从α粒子散射实验的数据估算出原子核大小的数量级为___________ m,原子大小的数量级为__________ m。

(4)a粒子散射的简单解释。

①由于电子质量远远小于α粒子的质量(电子质量约为α粒子质量的1/7300),即使α粒子碰到电子,其运动方向也不会发生明显偏转,就象一颗飞行的子弹碰到尘埃一样,所以电子不可能使α粒子发生大角度散射。

而只能是因为原子中除电子外的带正电的物质的作用而引起的;②使α粒子发生大角度散射的只能是原子中带正电的部分,按照汤姆生的原子模型,正电荷在原子内是均均分布的,α粒子穿过原子时,它受到两侧正电荷的斥力有相当大一部分互相抵消,因而也不可能使α粒子发生大角度偏转,更不可能把α粒子反向弹回,这与α粒子散射实验的结果相矛盾,从而否定了汤姆生的原子模型。

③实验现象中,α粒子绝大多数不发生偏转,少数发生较大偏转,极少数偏转超过︒90,个别甚至被弹回,都说明了原子中绝大部分是空的,带正电的物质只能集中在一个很少的体积内(原子核)。

高二物理3-5知识点总结(3)

高二物理3-5知识点总结(3)

高二物理3-5知识点总结(3)高二物理3-5知识点3:原子结构一、原子核式结构模型1、电子的发现和汤姆生的原子模型:⑴电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

⑵汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、粒子散射实验和原子核结构模型⑴粒子散射实验:1909年,卢瑟福及助手盖革和马斯顿完成的。

①装置:如下图②现象:a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数粒子发生较大角度的偏转。

c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

⑵原子的核式结构模型:由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。

散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径约为10-15m,原子轨道半径约为10-10m。

⑶光谱①观察光谱的仪器,分光镜②光谱的分类,产生和特征发射光谱连续光谱产生特征由炽热的固体、液体和高压气体发光产生的由连续分布的,一切波长的光组成明线光谱由稀薄气体发光产生的由不连续的一些亮线组成吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱③ 光谱分析:一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

高中物理人教版选修3-5-知识点总结

高中物理人教版选修3-5-知识点总结

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。

此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。

高中物理选修3-5原子结构知识点

高中物理选修3-5原子结构知识点

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。

汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。

当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。

2.电子的发现对人类认识原子结构的重要性。

①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。

②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。

(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。

2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。

①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。

3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。

②金箔:1μm,能透光,有3000多层原子厚。

③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。

(1909年~~1911年两年的时间)。

选修3-5原子结构整章知识点

选修3-5原子结构整章知识点

选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。

2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。

(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。

2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。

(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。

(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。

按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。

3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。

(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。

(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。

即光谱。

(2)分类:光谱分为线状谱和连续谱。

(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。

2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。

(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。

3. 氢原子光谱:巴耳末公式:,式中R是里德伯常量,其值为R=1.10×l07m-1,n只能取整数,不能连续取值,波长也只会是分立的值。

人教版高二物理选修3-5 原子物理 知识归纳

人教版高二物理选修3-5 原子物理 知识归纳
(3)能量量子化:在微观世界中,能量不是连续的,只能是取分离值,这种现象称为能量量子化。(能量不连续,一份份间断)
光的粒子性
(一).光电效应
1.定义:在光的照射下,物体发出电子的现象叫做光电效应,发出的的电子称为光电子。“光子找电子,一起生了个光电子” (1)光电效应实验规律:
a .光电效应实验规律探究装置(如上右图)
3.查德威克验证了其老师(卢瑟福)12 年前的猜想,发现这种不带电的粒子是电中性,质量几乎核质子相同。命名为中子 01n
基本关系:
核电荷数=质子数( Z )=元素的原子序数=核外电子数 质量数( A )=核子数=质子数+中子数
核子数:质子核中子质量差别非常微小,二者统称为核子,质子数核中子数之和称为核子数。
波尔的原子模型
一.波尔原子模型三条假设:(特别重要)
1.能级定态假设。氢原子处于基态和激发态两种状态(其中基态为最低能级) 2.轨道量子化假设。轨道介于两个不同数值之间的某个值(轨道是一个范围,不能完全确定)
3.跃迁假设。在能级之间跃迁满足: h Em En 这一辐射公式。
二.能级和能级图:
1.能级:原子的可能状态是不不连续的,相对应的能量也是不连续的,这些能量称为能级。
二.光谱分析
1.每一种原子都有一定特征的线状谱。 2.在各种原子的吸收谱中,每一条明线都与原子发出的某种吸收光的频率相对应。——一条明线谱对一种频率的光。 3.由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质或确定它的化学组成,这种方法称为光谱分析。
三.氢原子光谱 1.在充满稀薄氢气的放电管两级间加上 2 ~ 3kV 的高压,使氢气放电,让其在电场中发光。通过分光镜观察氢原子光谱。
1.
粒子守库仑力作用:

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P = mv。

单位是skg .动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以m动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。

这样,电子在电场中,竖直向上偏转的距离为221112122eL U d at mv b==.离开电场时竖直向上的分速度为11eLU v at mvb⊥==. 电子离开电场后做匀速直线运动,经2t 时间到达荧光屏22L t v=. 2t 时间内向上运动的距离为12222eUL L d v t mv b⊥==.这样,电子向上的总偏转距离为1121222L eU d d d L L mv b ⎛⎫=+=+ ⎪⎝⎭, 可解得2121(/2)e Udm B bL L L =+. 【总结升华】 要分析清楚带电粒子在电场和磁场中的运动情况. 举一反三【变式】(2015 安徽二模)如图所示,一种射线管由平行金属板A 、B 和平行于金属板的细管C 组成,放射源O 在A 极板的左端,可以向各个方向发射不同速度、质量为m 、电荷量为e 的电子,若极板长为L ,间距为d ,当A 、B 板加上电压U 时,只有某一速度的电子能从细管C 水平射出,细管C 离两板等距,则从放射源O 发射出的电子这一速度为( )A L eU d mB 2L eU d mC .221(d )eU L dm + D 221(d )2eU L d m+【答案】C【思路点拨】当A 、B 加上电压U 时,只有某一速度的电子能从细管C 中水平射出,逆过来看,该粒子做类平抛运动,通过类平抛运动的规律求出粒子的末速度,即为放射源O 发射出的电子的速度。

相关文档
最新文档