中考数学专题练习 数据分析(含解析)

合集下载

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。

中考数学试题分项版解析汇编(第01期)专题6.2 数据分析(含解析)-人教版初中九年级全册数学试题

中考数学试题分项版解析汇编(第01期)专题6.2 数据分析(含解析)-人教版初中九年级全册数学试题

专题6.2 数据分析一、单选题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【来源】某某省某某市2018年中考数学试题【答案】B【解析】详解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.点睛:此题考查了众数,众数是一组数据中出现次数最多的数.2.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:甲乙丙丁平均数(米)方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A. 甲B. 乙C. 丙D. 丁【来源】2018年某某省某某市(某某区)中考数学试题【答案】A【点评】考查平均数和方差的意义,方差越小,乘积越稳定.3.下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D. 某日最高气温是,最低气温是,则该日气温的极差是【来源】某某省某某市2018年中考数学试题【答案】B点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.4.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 8【来源】某某省某某市2018年中考数学试题【答案】B【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.点睛:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.如图是某某市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A. 极差是8℃B. 众数是28℃C. 中位数是24℃D. 平均数是26℃【来源】某某省某某市2018年中考数学试题【答案】B点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.6.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A. 22,3B. 22,4C. 21,3D. 21,4【来源】某某省潍坊市2018年中考数学试题【答案】D【解析】分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.详解:∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为,即,∴x=3、y=2,则这组数据的众数为21,平均数为=22,所以方差为×[(19-22)2+(20-22)2+3×(21-22)2+2×(22-22)2+2×(24-22)2+(26-22)2]=4,故选D.点睛:本题主要考查中位数、众数、方差,解题的关键是根据中位数的定义得出x、y的值及方差的计算公式.7.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.选手甲乙平均数(环)方差【来源】某某省某某市2018年中考数学试题【答案】乙点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【来源】某某省某某市2018年中考数学试卷【答案】C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.下列数据:,则这组数据的众数和极差是( )A. B. C. D.【来源】某某省某某市2018年中考数学试题【答案】A【点睛】本题考查了众数和极差的定义,熟练掌握众数和极差的定义是解题的关键.10.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A. 平均数变小,方差变小B. 平均数变小,方差变大C. 平均数变大,方差变小D. 平均数变大,方差变大【来源】某某省某某市2018年中考数学试卷【答案】A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为 S 2==;换人后6名队员身高的平均数为==187,方差为 S 2==∵188>187,>,∴平均数变小,方差变小, 故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1-)2+(x 2-)2+…+(x n -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.一组数据-3,2,2,0,2,1的众数是( ) A. -3 B. 2 C. 0 D. 1【来源】某某省某某市2018年中考数学试题 【答案】B【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键. 12.下列说法正确的是( )A. 了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三X 分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X ,恰好抽到中心对称图形卡片的概率是D. “任意画一个三角形,其内角和是”这一事件是不可能事件【来源】某某省某某市2018年中考数学试题【答案】D【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.详解:A、了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C、三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确.故选:D.点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.13.已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4【来源】某某省某某市2018年中考数学试题【答案】A点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.14.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【来源】某某省2018年中考数学试题【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 15.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【来源】某某省某某市2018年中考数学试题【答案】B点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.16.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 1【来源】某某省滨州市2018年中考数学试题【答案】A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.二、填空题17.一组数据:2,5,3,1,6,则这组数据的中位数是________.【来源】某某省宿迁市2018年中考数学试卷【答案】3【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.18.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.【来源】某某省某某市2018年中考数学试题【答案】6.9%.【解析】分析:根据众数的概念判断即可.详解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.点睛:本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.19.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为________.【来源】某某省某某市2018年中考数学试卷【答案】3点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.20.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分_____.【来源】某某省某某市2018年中考数学试题【答案】78.8分.【解析】分析:根据题意先算出甲、乙、丙三人的综合成绩,再进行比较,即可得出答案.详解:∵甲的综合成绩为(分),乙的综合成绩为(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为分,故答案为:分.点睛:本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.21.春节期间,某某某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为______.【来源】【全国省级联考】2018年某某市中考数学试卷(A卷)【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.三、解答题22.4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。

中考数学专题复习题数据的分析(含解析)(2021年整理)

中考数学专题复习题数据的分析(含解析)(2021年整理)

2017-2018年中考数学专题复习题数据的分析(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018年中考数学专题复习题数据的分析(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018年中考数学专题复习题数据的分析(含解析)的全部内容。

2017—2018年中考数学专题复习题:数据的分析一、选择题1.下表是某校合唱团成员的年龄分布年龄岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是A。

平均数、中位数 B. 众数、中位数C。

平均数、方差 D. 中位数、方差2.为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高单位:为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是A。

13,11 B。

14,11 C. 12,11 D。

13,163.某科普小组有5名成员,身高分别为单位::160,165,170,163,增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是A。

平均数不变,方差不变B。

平均数不变,方差变大C。

平均数不变,方差变小 D. 平均数变小,方差不变4.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示丙、丁两人的成绩如图所示欲选一名运动员参赛,从平均数与方差两个因素分析,应选甲乙平均数98方差11A. 甲B。

乙 C. 丙D。

丁5.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834374037那么被遮盖的两个数据依次是A。

中考数学总复习数据分析-精练精析及答案解析

中考数学总复习数据分析-精练精析及答案解析

统计与概率——数据分析1一.选择题(共9小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.472.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.数据0,1,1,x,3, 4的平均数是2,则这组数据的中位数是()A.1 B.3 C.1.5 D. 25.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,906.作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75 C.80 D.607.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.108.一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是789.我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57二.填空题(共8小题)10.近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= _________ .11.数据0、1、1、2、3、5的平均数是_________ .12.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为_________ 分.13.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是_________ 分.14.已知一组数据4,13,24的权数分别是,,,则这组数据的加权平均数是_________ .15.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_________ 元.16.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是_________ .17.在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是_________ .三.解答题(共6小题)18.已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.20.甲、乙两台包装机同时包装质量为500克的白糖,从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?21.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).22.某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数 1 2 3 4 5 6 7 8 9 10 11人数 1 1 6 18 10 6 2 2 1 1 2(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?23.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)甲:10,9,8,8,10,9乙:10,10,8,10,7,9请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.统计与概率——数据分析1参考答案与试题解析一.选择题(共9小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.47考点:算术平均数.分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解答:解:平均数为:(40+42+43+45+47+47+58)÷7,=322÷7,=46(千克);故选:C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.2.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时考点:算术平均数;折线统计图.分析:根据算术平均数的概念求解即可.解答:解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为:=1.5.故选:B.点评:本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B.3 C.1.5 D.2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90考点:中位数;加权平均数.专题:图表型.分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解答:解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选:B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75 C.80 D.60考点:中位数.专题:常规题型.分析:根据中位数的概念求解即可.解答:解:将数据从小到大排列为:45,60,75,80,120,中位数为75.故选:B.点评:本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.10考点:中位数.专题:常规题型.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选:B.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).8.一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是78考点:中位数;算术平均数;众数;极差.专题:常规题型.分析:根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.解答:解:A、将数据从小到大排列为:78,85,91,98,98,中位数是91,故A选项正确;B、平均数是(91+78+98+85+98)÷5=90,故B选项错误;,C、众数是98,故C选项错误;D、极差是98﹣78=20,故D选项错误;故选:A.点评:本题考查了极差、中位数、众数及平均数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.9.我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57考点:中位数;算术平均数.分析:根据中位数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9.25,9.35,9.45,9.57,9.63,9.78,9.82,则中位数为:9.57,平均数为:=9.55.故选:B.点评:本题考查了中位数和平均数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二.填空题(共8小题)10.近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= 22 .考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.11.数据0、1、1、2、3、5的平均数是 2 .考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再求出结果即可.解答:解:数据0、1、1、2、3、5的平均数是(0+1+1+2+3+5)÷6=12÷6=2;故答案为:2.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,关键是根据题意列出算式.12.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4 分.考点:加权平均数.专题:计算题.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.13.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.考点:加权平均数.分析:按3:3:4的比例算出本学期数学学期综合成绩即可.解答:解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).故答案为:88.点评:本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.14.已知一组数据4,13,24的权数分别是,,,则这组数据的加权平均数是17 .考点:加权平均数.分析:本题是求加权平均数,根据公式即可直接求解.解答:解:平均数为:4×+13×+24×=17,故答案为:17.点评:本题主要考查了加权平均数的计算方法,正确记忆计算公式,是解题关键.15.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是13 元.考点:加权平均数;扇形统计图.分析:根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.解答:解:10×60%+16×25%+20×15%=6+4+3=13(元).故答案为13.点评:本题考查的是加权平均数的求法.本题易出现的错误是求10,16,20这三个数的平均数,对平均数的理解不正确.同时考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.16.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是 4 .考点:中位数;算术平均数.分析:首先根据平均数为4,求出x的值,然后根据中位数的概念求解.解答:解:根据题意可得,=4,解得:x=0,这组数据按照从小到大的顺序排列为:0,3,4,5,8,则中位数为:4.故答案为:4.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82 .考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:把这组数据从小到大排列为:77、79、81、83、84、87,最中间两个数的平均数是:(81+83)÷2=82;故答案为:82.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,熟练掌握中位数的概念是本题的关键.三.解答题(共6小题)18.已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.考点:加权平均数.分析:根据加权平均数的计算公式可得合并后男生在总人数中占的百分比,再与小清的结果进行比较即可.解答:解:合并后男生在总人数中占的百分比是:×100%.当a=b时小清的答案才成立;当a=b时,×100%=55%.点评:此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,再进行比较.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.考点:加权平均数;用样本估计总体;扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)用水为3吨的家庭数=150﹣10﹣42﹣32﹣16=50户,淘米水浇花占的比例=1﹣30%﹣44%11%=15%;(2)全校学生家庭月用水总量=3000×150户用水的平均用水量.解答:解:(1)(2)全体学生家庭月人均用水量为=9040(吨).答:全校学生家庭月用水量约为9040吨.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.甲、乙两台包装机同时包装质量为500克的白糖,从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?考点:方差;算术平均数.分析:(1)根据平均数就是对每组数求和后除以数的个数;(2)方差,通常用s2表示,其公式为s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](其中n是样本容量,表示平均数);(3)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.解答:解:(1)甲=(501+500+503+506+504+506+500+498+497+495)÷10=501,乙=(503+504+502+498+499+501+505+497+502+499)÷10=501;(2)S2甲=[(501﹣501)2+(500﹣501)2+…+(495﹣501)2]=12.6,S2乙=[(503﹣501)2+(504﹣501)2+…+(499﹣501)2]=6.4;(3)∵S2甲>S2乙,∴乙包装机包装10袋糖果的质量比较稳定.点评:本题主要考查了平均数、方差的计算以及它们的意义,正确记忆计算公式是解题的关键.21.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).考点:极差;算术平均数;中位数.分析:(1)根据中位数的定义:把数据从小到大排列,位置处于中间的数就是中位数;极差=最大数﹣最小数即可得到答案;(2)根据平均数的计算方法:把所有数据加起来再除以数据的个数即可计算出答案.解答:解:(1)将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97,位置处于中间的是12.92秒,故这7个成绩的中位数12.92秒;极差:12.97﹣12.87=0.1(秒);(2)这7个成绩的平均成绩:(12.97+12.87+12.91+12.88+12.93+12.92+12.95)÷7≈12.92(秒).点评:此题主要考查了极差、中位数、平均数,关键是熟练掌握其计算方法.22.某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数 1 2 3 4 5 6 7 8 9 10 11人数 1 1 6 18 10 6 2 2 1 1 2(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以次数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.解答:解:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)(人).故估计该市九年级男生引体向上项目测试的合格人数是25200人.点评:此题主要考查了平均数、中位数和众数的定义以及利用样本估计总体,熟练掌握中位数和众数的定义以及平均数的计算方法解答是解题关键.23.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)甲:10,9,8,8,10,9乙:10,10,8,10,7,9请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.考点:方差;算术平均数.分析:根据平均数、方差、众数的意义分别进行计算,再进行比较即可.解答:解:根据题意得:甲这6次打靶成绩的平均数为(10+9+8+8+10+9)÷6=9(环),乙这6次打靶成绩的平均数为(10+10+8+10+7+9)÷6=9(环),说明甲、乙两人实力相当,甲的方差为:S2甲=[(10﹣9)2+(9﹣9)2+(8﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]÷6=,乙的方差为:S2乙=[(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(7﹣9)2+(9﹣9)2]÷6=,甲打靶成绩的方差低于乙打靶成绩的方差,说明甲的打靶成绩较为稳定.甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.点评:本题考查方差、平均数、众数的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.- 11 -。

初中数学:数据的分析专项练习含答案

初中数学:数据的分析专项练习含答案

一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数 B.方差 C.平均数 D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数 B.中位数 C.方差 D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数 B.方差 C.众数 D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数 B.中位数 C.众数 D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数 B.中位数 C.平均数 D.方差8.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数 B.中位数 C.众数 D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差 B.平均数和中位数C.众数和平均数 D.众数和中位数10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定甲²二.填空题11.用于衡量一组数据的波动程度的三个量为极差、方差、标准差.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是中位数(填众数或方差或中位数或平均数)13.某服装店销售一款新式女式T恤,试销期间对该款不同型号女式T恤的销售量统计如下表:该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题15.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下(单位:cm):甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表:(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.解:(1)甲班的方差=1/10×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;乙班的中位数为168;补全表格如下:(2)选择方差做标准,∵甲班方差<乙班方差,∴甲班可能被选取.16.某酒店共有6名员工,所有员工的工资如下表所示:(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由;若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.17.在洋浦一新开业的以经营男式皮鞋为主的鞋店当服务员的阿丽是个做事善于观察的小姑娘,上班一段时间后,她发现各种尺码的男式皮鞋销量并不均衡,于是她把这个发现记录下来交给了她的老板:你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。

中考数学总复习《数据的分析》专项测试卷-附参考答案

中考数学总复习《数据的分析》专项测试卷-附参考答案

中考数学总复习《数据的分析》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数,中位数,众数和方差等数个统计量中,该鞋厂最关注的是( )A.平均数B.中位数C.众数D.方差2.测试五位学生的“一分钟跳绳”成绩,得到五个不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.中位数B.平均数C.方差D.极差3.一组数据2,3,4,6,6,7的众数是( )A.3B.4C.5D.64.第七届世界军人运动会将于2019年10月18日至27日在武汉举行.光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选.经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者.下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是( )A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为65.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A.中位数B.众数C.平均数D.加权平均数6.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.方差B.标准差C.中位数D.平均数7.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20,20B.30,20C.30,30D.208.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9,8,7,7,9乙:10,8,9,7,6应该选( )参加.A.甲B.乙C.甲、乙都可以D.无法确定二、填空题(共5题,共15分)9.为了解日常生活中两个变化的量中,一个量随着另一个量的变化趋势,我们常常把这两个变化的量分别作为横坐标、纵坐标,在平面直角坐标系中描出相应的点.可以选择其中的个点作一条直线,使其他的点都这条直线,则可以用这条直线近似地表示一个量随着另一个量的变化趋势.10.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.12.已知一组数据−3,x,−2,3,1,6的中位数为1,则其标准差为.13.在某次八年级数学能力测试中,60名考生成绩的频数分布直方图如图所示(分数取正整数,满分100分).根据图中提供的信息,成绩在80分以上(含80分)的频数在总数的百分比为.三、解答题(共3题,共45分)14.我国是世界上严重缺水的国家之一,为了倡导”节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图.(1) 求这10个样本数据的平均数、众数和中位数;(2) 根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?15.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下面的问题:(1) 甲成绩的平均数是环,乙成绩的中位数是环;(2) 分别计算甲、乙两人成绩的方差,并从计算结果分析哪名运动员的射击成绩较稳定.16.某鞋厂为了了解初中男生穿鞋的鞋号情况,对某中学八年级(1)班的20名男生所穿鞋号进行了调查,结果如图所示.(1) 写出男生鞋号数据的平均数、中位数、众数;(2) 在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】两;靠近10. 【答案】 218911. 【答案】 712. 【答案】 713. 【答案】 240014. 【答案】(1) 这组样本数据的平均数是 6.8.这组数据的众数是 6.5.中位数是 6.5.(2) ∵10 户中月均用水量不超过 7 t 的有 7 户,有 50×710=35∴ 估计出小刚所在班 50 名同学家庭中月均用水量不超过 7 t 的约有 35 户.15. 【答案】(1) 8;7.5(2) x 乙=110×(7+10+7+7+9+8+7+9+9+7)=8(环) s 甲2=110×[(6−8)2+(10−8)2+(8−8)2+(9−8)2+(8−8)2+(7−8)2+(8−8)2+(10−8)2+(7−8)2+(7−8)2]=1.6(环 2),s 乙2=110×[(7−8)2+(10−8)2+(7−8)2+(7−8)2+(9−8)2+(8−8)2+(7−8)2+(9−8)2+(9−8)2+(7−8)2]=1.2(环 2).∵s 甲2>s 乙2∴ 乙运动员的射击成绩较稳定.16. 【答案】(1) 平均数 =(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1(码).观察题图可知:有 7 人的鞋号为 40 码,人数最多,即众数是 40 码.中位数是第 10,11 人的平均数,即 39 码.(2) 鞋厂最感兴趣的是众数.。

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)一、选择题1.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A .3,2 B .3,4C .5,2D .5,4【答案】B 【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.2.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45,∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1++++++=,(26282826242122)257故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.7.回忆位中数和众数的概念;8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.11.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x,2s,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( ) A .5,5 B .6,6C .5,6D .6,5【答案】D 【解析】 【分析】根据中位数和众数的定义分别进行解答即可. 【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6; 5出现了6次,出现的次数最多,则众数是5. 故选D .【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.13.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.下列说法中正确的是( ).A .“打开电视,正在播放《新闻联播》”是必然事件B .一组数据的波动越大,方差越小C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查 【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B 、一组数据的波动越大,方差越大,故本选项错误;C 、数据1,1,2,2,3的众数是1和2,故本选项错误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.18.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.19.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.20.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.。

九年级数学数据分析专题检测试卷

九年级数学数据分析专题检测试卷

九年级数学数据分析专题检测试卷(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.有19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差2.某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定3.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确结论的个数为()A.1B.2C.3D.44.综合实践活动中,同学们做泥塑工艺制作.小明将活动组各同学的作品完成情况绘成了下面的条形统计图.根据图表,我们可以知道平均每个学生完成作品()件.A.12B.8.625C.8.5D.95.某公司员工的月工资如下表:职员职员职员职员职员职员职员员工经理副经理月工资/元 43 500 2 000 1 900 1 800 1 600 1 600 1 600 1 000800则这组数据的平均数、众数、中位数分别为()A. B.C. D.6.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个B.2个C.3个D.4个7.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.75C.82D.878.样本方差的计算公式中,数字20和30分别表示样本的()A.众数、中位数B.方差、偏差C.数据个数、平均数D.数据个数、中位数9.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是()A.3.5B.3C.0.5D.-310.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是()A.甲运动员得分的方差大于乙运动员得分的方差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定二、填空题(每小题3分,共24分)11.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98 102 97 103 105这棵果树的平均产量为 kg,估计这棵果树的总产量为 kg.12.在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.13.已知一组数据它们的中位数是,则______.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.15.若已知数据的平均数为,则数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:测试成绩素质测试小李小张小赵计算机70 90 65商品知识50 75 55语言80 35 80公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重4,3,2,则这三人中将被录用.17.20XX年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是_____cm.18.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55 135 149 191乙55 135 151 110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(共46分)19.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件数如下:加工零件数/件540 450 300 240 210 120 人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理?为什么?20.(6分)为调查八年级某班学生每天完成家庭作业所需时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为60,55,75,55,55,43,65,40. (1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21.(6分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类型的人数绘制成扇形统计图(如图①)和条形统计图(如图②),经确认扇形统计图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是12nx x x x n+++=;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7;第三步:4567554x .+++==(棵). ①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵?22.(7分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:分数 50 60 70 80 90 100 人数甲班 1 6 12 11 15 5 乙班351531311请根据表中提供的信息回答下列问题:(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班?(2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的是哪个班? 23.(7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩(分)甲乙 丙 笔试 75 80 90 面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式 进行民主评议,三人得票率(没有弃权票,每位职工只能推 荐1人)如图所示,每得一票记作1分. (1)请算出三人的民主评议得分.(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm )收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高163 171 173 159 161 174 164 166 169 164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?25.(7分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 95 110 91 104 500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小.(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.九年级数学数据分析专题检测试卷参考答案1.B 解析:19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛,中位数就是第10位同学的成绩,因而要判断自己能否进入决赛,他只需知道这19位同学成绩的中位数就可以.故选B .2.B 解析:本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士总成绩相同的条件下,∵ >,∴ 乙的成绩比甲的成绩稳定.3.A 解析:将这组数据从小到大排列为:2,2,3,3,3,3,3,3,6,6,10,共11个数,所以第6个数据是中位数,即中位数为3.因为数据3的个数为6,所以众数为3.平均数为,由此可知①正确,②③④均错误,故选A.4.B 解析:625.862412610692481276=+++⨯+⨯+⨯+⨯.5.C 解析:元出现了次,出现的次数最多,所以这组数据的众数为元;将这 组数据按从大到小的顺序排列,中间的(第5个)数是元,即其中位数为元; ,即平均数为2 200元.6.B 解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有 多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数是将原数据按由小到大顺序排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生 改变,也可能不发生改变,所以⑤错.7.A 解析:利用求平均数的公式解决.设第五次测验得分,则588768295x++++, 解得.8.C 9.D 解析:设其他29个数据的和为,则实际的平均数为,而所求出的平均数为,故. 10.D 11. 解析:抽取的5棵果树的平均产量为; 估计这棵果树的总产量为. 12.71 解析:13. 解析:将除外的五个数从小到大重新排列后为中间的数是,由于中位数是,所以应在20和23中间,且21220=+x,解得. 14. 解析:设中间的一个数即中位数为,则,所以中位数为. 15. 解析:设的平均数为,则31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++=x ,于是y . 16.小张 解析:∵ 小李的成绩是:9565234280350470=++⨯+⨯+⨯,小张的成绩是:9772234235375490=++⨯+⨯+⨯,小赵的成绩是:65234280355465=++⨯+⨯+⨯,∴ 小张将被录用.17.168 解析:众数是在一组数据中,出现次数最多的数据,这组数据中168出现了3次,出现的次数最多,故这组数据的众数为168.18. ①②③ 解析:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确. 19.解:(1)平均数:540450300224062103120226015++⨯+⨯+⨯+⨯=(件);中位数:240件,众数:240件.(2)不合理,因为表中数据显示,每月能完成件以上的一共是4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性.因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.20.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55. (2)这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.21.分析:(1)A 类型人数为20×20%=4,B 类型人数为20×40%=8,C 类型人数为20×30%=6,D 类型人数为20×10%=2,所以条形统计图中D 类型数据有错.(2)这20个数据中,有4个4,8个5,6个6,2个7,所以每人植树量的众数是5棵,中位数是5棵.(3)小宇的分析是从第一步出现错误的,公式不正确,应该使用4458667220x ⨯+⨯+⨯+⨯=计算出正确的平均数.把这个平均数乘260可以估计这260名学生共植树的棵数. 解:(1)D 有错. 理由:10%×20=2≠3. (2)众数为5棵. 中位数为5棵. (3)①第一步. ②4458667220x ⨯+⨯+⨯+⨯==5.3(棵).估计这260名学生共植树:5.3×260=1 378(棵).点拨:(1)众数是一组数据中出现次数最多的数据.(2)求一组数据的中位数时,一定要先把这组数据按照大小顺序排列.(3)在求一组数据的平均数时,如果各个数据都重复出现若干次,应选用加权平均数公式112212(=)k kk x w x w x w x n w w w n+++=+++求出平均数.22.解:(1)甲班中分出现的次数最多,故甲班的众数是分; 乙班中分出现的次数最多,故乙班的众数是分. 从众数看,甲班成绩好.(2)两个班都是人,甲班中的第名的分数都是分,故甲班的中位数是分; 乙班中的第名的分数都是分,故乙班的中位数是分.甲班成绩在中位数以上(包括中位数)的学生所占的百分比为 ;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为 .从中位数看,成绩较好的是甲班.(3)甲班的平均成绩为 ;乙班的平均成绩为 .从平均成绩看,成绩较好的是乙班.23.分析:通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算. 解:(1)甲、乙、丙的民主评议得分分别为:50分、80分、70分. (2)甲的平均成绩为:75935021872.6733++=≈(分),乙的平均成绩为:80708023076.6733++=≈(分), 丙的平均成绩为:90687022876.0033++==(分). 由于76.677672.67>>,所以乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么 甲的个人成绩为:472.9433⨯75+3⨯93+3⨯50=++(分), 乙的个人成绩为:477433⨯80+3⨯70+3⨯80=++(分), 丙的个人成绩为:477.4433⨯90+3⨯68+3⨯70=++(分),由于丙的个人成绩最高,所以丙将被录用. 24.解:(1)平均数为()163171173159161174164166169164166.4cm 10+++++++++=,中位数为166164165cm 2+=(),众数为164cm ().(2)选平均数作为标准:身高x 满足166.412%166.412%x ⨯-⨯+()≤≤(),即163.072169.728x ≤≤时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高为“普通身高”.(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为428011210⨯=. 25.解:(1)甲班的优秀率:52, 乙班的优秀率:53.(2)甲班5名学生比赛成绩的中位数是97个; 乙班5名学生比赛成绩的中位数是100个.(3)甲班的平均数=100597+118+96+100+89=(个), 甲班的方差;乙班的平均数=1005104+91+110+95+100=(个), 乙班的方差. ∴ .即乙班比赛数据的方差小.(4)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.======*以上是由明师教育编辑整理======。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据分析一、选择题1.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是s2=0.82,s2乙=1.11,s2丙=0.53,s2丁=1.58,在本次测试中,成绩最稳定的是()甲A.甲B.乙C.丙D.丁3.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较4.某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?()A.1 B.4 C.19 D.215.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙二、填空题6.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是(填“甲”或“乙”)7.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选参加全运会.8.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.9.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算, =10, =10,试根据这组数据估计中水稻品种的产量比较稳定.10.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差(填“变大”、“不变”或“变小”).11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为,,,则三人中射击成绩最稳定的是.12.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是.(填“小明”或“小华”)13.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是.14.甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是.15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是.(写出所有正确说法的序号)16.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.三、解答题17.某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为、;(2)甲乙两班比赛数据的中位数分别为、;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.18.某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.数据分析参考答案与试题解析一、选择题1.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,【考点】方差;算术平均数.【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.【点评】本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是s2=0.82,s2乙=1.11,s2丙=0.53,s2丁=1.58,在本次测试中,成绩最稳定的是()甲A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差越大,波动性越大,越不稳定进行判断.【解答】解:∵s2丙<s2甲<s2乙<s2丁=1.58,∴在本次测试中,成绩最稳定的是丙.故选C.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是( ) A .甲组数据比乙组数据的波动大 B .乙组数据的比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲组数据与乙组数据的波动不能比较 【考点】方差.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.【解答】解:由题意得,方差<,A 、甲组数据没有乙组数据的波动大,故本选项错误;B 、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C 、甲组数据没有乙组数据的波动大,故本选项错误;D 、甲组数据没有乙组数据的波动大,故本选项错误; 故选B .【点评】本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波动性的大小,方差越大,波动性越大.4.某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?( )A .1B .4C .19D .21【考点】方差.【分析】先根据中位数的定义算出Q 2的值,再根据四分位距找出Q 1与Q 3的值,最后进行相减即可. 【解答】解:共有60个数,则中位数是第30和31个数的平均数是(55+55)÷2=55, 则Q 2=55,∵Q1=39,Q3=58,∴此社团成员年龄的四分位距S:58﹣39=19;故选C.【点评】此题考查了四分位距,掌握四分位距公式,找出Q1与Q3的值是解题的关键.5.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙【考点】方差;算术平均数.【分析】本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.【解答】解:∵ =610千克, =608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选D.【点评】本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本题的关键.二、填空题6.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是甲(填“甲”或“乙”)【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选丙参加全运会.【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S2甲=1.22,S2乙=1.68,S2丙=0.44,∴S2丙最小,∴则应该选丙参加全运会.故答案为:丙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.【点评】此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].9.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算, =10, =10,试根据这组数据估计甲中水稻品种的产量比较稳定.【考点】方差.【分析】根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.【解答】解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲,故答案为:甲【点评】此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差变小(填“变大”、“不变”或“变小”).【考点】方差.【分析】根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【解答】解:∵李刚再跳两次,成绩分别为7.7,7.9,∴这组数据的平均数是=7.8,∴这8次跳远成绩的方差是:S2= [(7.6﹣7.8)2+(7.8﹣7.8)2+2×(7.7﹣7.8)2+(7.8﹣7.8)2+(8.0﹣7.8)2+2×(7.9﹣7.8)2]=,<,∴方差变小;故答案为:变小.【点评】本题考查方差的定义,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为,,,则三人中射击成绩最稳定的是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,找出方差最小的数即可.【解答】解:∵,,,∴最小,∴三人中射击成绩最稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是小明.(填“小明”或“小华”)【考点】方差;折线统计图.【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定.【解答】解:从图看出:小明的成绩波动较小,说明他的成绩较稳定.故答案为小明.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是丁.【考点】方差.【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【解答】解:∵,,,,∴最小,∴成绩最稳定的同学是丁;故答案为:丁.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是①④.(写出所有正确说法的序号)【考点】方差;对顶角、邻补角;全面调查与抽样调查;随机事件;概率的意义.【专题】压轴题.【分析】根据方差、随机事件、对顶角、概率的意义对每个命题进行判断即可.【解答】解:①对顶角相等,正确;②打开电视机,“正在播放《新闻联播》”是随机事件,错误;③若某次摸奖活动中奖的概率是,则摸5次不一定会中奖,错误;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查,正确;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则甲组数据比乙组数据更稳定,错误.正确的有:①④;故答案为:①④.【点评】此题考查了方差、随机事件、对顶角、概率的意义,关键是根据有关定义和性质对每个命题是否正确作出判断.16.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1 .【考点】方差.【专题】压轴题;新定义.【分析】根据题意可知“最佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.【解答】解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.【点评】此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.三、解答题17.某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为60% 、40% ;(2)甲乙两班比赛数据的中位数分别为100 、99 ;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.【考点】方差;统计表;中位数.【分析】(1)根据甲班和乙班每人踢100个以上(含100)的人数,除以总人数,即可求出甲乙两班的优秀率;(2)根据中位数的定义先把数据从小到大排列,找出最中间的数即可;(3)根据平均数的计算公式先求出甲和乙的平均数,再根据方差公式进行计算即可;(4)分别从甲和乙的优秀率、中位数、方差方面进行比较,即可得出答案.【解答】解:(1)甲班的优秀率为:×100%=60%,乙班的优秀率为:×100%=40%;(2)甲班比赛数据的中位数是100;乙班比赛数据的中位数是99;(3)甲的平均数为:(100+98+102+97+103)÷5=100(个),S甲2=[(100﹣100)2+(98﹣100)2+(102﹣100)2+(97﹣100)2+(103﹣100)2]÷5=;乙的平均数为:(99+100+95+109+97)÷5=100(个),S乙2=[(99﹣100)2+(100﹣100)2+(95﹣100)2+(109﹣100)2+(97﹣100)2]÷5=;(4)应该把团体第一名的奖状给甲班,理由如下:因为甲班的优秀率比乙班高;甲班的中位数比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好.【点评】本题考查了中位数、平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.【考点】方差;加权平均数;中位数;极差;统计量的选择.【专题】压轴题.【分析】(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.【解答】解:(1)一班的方差=×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.【点评】本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.。

相关文档
最新文档