化工原理习题课

合集下载

化工原理课后习题答案

化工原理课后习题答案

第一章流体流动1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。

已知该地区大气压强为 98.7×103 Pa。

解:由绝对压强 = 大气压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强 P表 = -真空度 = - 13.3×103 Pa2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。

在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。

若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。

已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/㎥。

试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。

分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1´和4-4´为等压面,2-2´和3-3´为等压面,且1-1´和2-2´的压强相等。

根据静力学基本方程列出一个方程组求解解:设插入油层气管的管口距油面高Δh在1-1´与2-2´截面之间P1 = P2 + ρ水银gR∵P1 = P4,P2 = P3且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h)联立这几个方程得到ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据1.0³×10³×1 - 13.6×10³×0.068 = h(1.0×10³-0.82×10³)h= 0.418m6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。

化工原理课后习题(参考答案)

化工原理课后习题(参考答案)


x
1 / 17 0.0105 1 / 17 100 / 18
p* 798 E= 76 kPa x 0.0105 1 / 17 c 0.584 kmol / m3 (100 1) / 998 .2
0.584 H c / p 0.73kmol /(m3 kPa) 0.798 y * 798 / 100 10 3 7.98 10 3
1 1 m K Y k Y kY
1 m 比较 与 kY kX
(2)
N A KY Y Y *


5-15Байду номын сангаас在一吸收塔中,用清水在总压为0.1MPa、温度20oC条件下吸收混合 气体中的CO2,将其组成从2%降至0.1%(摩尔分数)。20oC时CO2水溶 液的亨利系数为E=144MPa。吸收剂用量为最小用量的1.2倍。试求(1) 液-气比L/G及溶液出口组成X1;(2)总压改为1MPa时的L/G及溶液出口 组成X1 解:(1)
qm qm1 qm 2 20 10 30t / h 30000 kg / h
qv qm / 30000 / 998 .2 30.05m3 / h 流速为 v 1.0m / s
d
4qv 4 30.05 0.103 m 103 mm v 3600 1.0
G(Y1 Y2 ) L( X 1 X 2 )
Y1 Y2 L G min X 1,max X 2
通过
算出最小液气比:(L/G)min
(2)解题过程类似于(1)小题
0.01 1.8 10 4 解 x1 0.01 1 997 / 18
p1 1.662 10 5 1.8 10 4 29.92 kPa

化工原理传热习题课

化工原理传热习题课
K:不变。
Q
t2
t m
练习3: 无相变的冷、热流体在列管式换热器中进行换热, 今若将单管程变成双管程,而其它操作参数不变, 试定性分析K、Q、T2、t2、tm的变化趋势。
t1 T2 T1 t2
答: u , h1 , K ,
T2 , t 2 , t m , Q
双管程列管式
套管式
K: K 不变 Q: Q 排除法
t2 h1、h2不变 T2: T2 t m t m
t2:
T1 T2
0
A
练习2: 在一列管式换热器中用饱和水蒸汽预热某有机溶液(无相 变),蒸汽走壳程,今若蒸汽压力变大,而其它操作参数 不变,试定性分析K、Q、t2、tm的变化趋势。
蒸汽温度 T
h2=3.5kW/m2K cp=4.187 kJ/kgK 216kg/h
Q 8.4 kJ s
油 216kg/h T1=150℃ cp=2.0 kJ/kgK, h1=1.5 kW/m2K
T 2=80℃ t1=20℃
t2 53.4C
K 0.894kW m 2 K (以外表面为基准)
tm,并
解:(1)Q w r 2100 2232 1302kw 凝 3600 Q 1302 Q wct W= = =4.146kg/s ct 4.187 90- 15 ( 2)
A实 85.4m
2
A需 A实
换热面积够用
四管程列管式
【例7-5】(P) 在一逆流换热器中将热气体从150℃冷却 至60℃,气体流经管内,冷却剂为水,温度从15℃升 至35℃,气侧给热系数为50W /(m2· ℃),水侧给热系数 为5000W /(m2· ℃), 现工厂扩大生产能力,气体的流量 增加25%,冷却水的进口温度不变,忽略管壁和污垢 热阻,试求: ⑴ 冷却水的流量不变,气体的出口温度和冷却水 的出口温度; ⑵ 气体流量增加后,拟通过调节冷却水的流量以 使气体出口温度保持在60℃不变,调节后水的流量 和冷却水的出口温度。

化工原理第一章习题课

化工原理第一章习题课

局部阻力系数ζ (进口为0.5,出口为1) 当量长度le 4.非圆形管当量直径
4A de C
管内湍流 Re 2000

机械能衡算方程
u 2 P we gz wf 2
J/kg
例:为了测出平直等径管AD上某泄漏点M的位置,采用 如图所示的方法,在A、B、C、D四处各安装一个压力表, 并使LAB=LCD 。现已知AD段、AB段管长及4个压力表读 数,且管内流体处于完全湍流区。试用上述已知量确定泄 漏点M的位置,并求泄漏量点总流量的百分数。
2.ρ——流体密度,kg/m3(平均值)
P1 P2 3.柏式应用于可压缩流体, P1 0.2 用平均压强来计算ρm代入
机械能衡算方程
u 2 P we gz wf 2
J/kg
w f w f w f ——管路总阻力,J/kg
'
1.静止流体或理想流体 w f 0

( Hg ) g
Hf , ab;

( Hg ) g
Hf , cd ;
机械能衡算方程
u 2 P we gz wf 2
J/kg
P

Байду номын сангаас
——静压能(流动力),J/kg
1.△P——两截面上压强差,若两容器开口,△P=0 绝压,表压,真空度(负表压)的概念 流体静力学基方方程式
P Pa gh
U形管压差计测两截面(容器)总势能差
gz P R( A ) g
如图所示,贮槽内水位维持不变。管路直径100mm,管路 上装有一个闸阀,距管口入口端15m处安有以水银为指示 液的U形管压差计。测压点与管路出口端之间的直管长度为 20m。求1)当闸阀关闭时,测得R=600mm,h=1500mm, 当闸阀部分开启时,测得R=400mm,h=1400mm。摩擦系 数可取0.025。问每小时流量?2)当闸阀全开时,U管压差 计的静压强为若干?闸阀全开时,le/d=15,摩擦系数不变。

化工原理(二)习题课

化工原理(二)习题课

饱和蒸汽,塔顶采用全凝器且为泡点回流,塔釜用间接
蒸汽加热。已知两组分间的平均相对挥发度为3.0,精馏 段操作线方程为,塔顶产品中易挥发组分的回收率为 0.95,试求: (1) 操作回流比、塔顶产品中易挥发组分的摩尔分率; (2) 塔底产品的流量和塔底产品中易挥发组分的摩尔分率
(4) 最小回流比; (5) 提馏段操作线方程和q线方程; (6) 塔顶第2块理论板上升蒸汽的组成;
(1)水分蒸发量及干燥产品量;
(2)干燥器出口处空气的温度以及新鲜空气的用量(m3/;
(3)预热器的加热量(不计热损失); (4)在I-H 图上定性表示出预热及 干燥过程中空气状态的变化图。
(7) 若塔顶第1块实际板的液相默弗里板效率为
0.7,求塔顶第2块实际板上升蒸汽的组成。
3、用常压连续干燥器干燥处理量为900 kg/h的湿物料, 要求湿物料含水量由10%降至2%(均为湿基)。干燥介 质为温度t0= 25 ℃,湿度H0= 0.011 kg/(kg干空气) 的新 鲜空气。空气经预热器加热至t1= 110 ℃后进入干燥器, 经过理想干燥过程后,在干燥器出口处空气的湿度为 0.023 kg/(kg干空气)。试求:
(1) 吸收剂用量(kg/h)及出塔洗油中苯的含量; (2)气相总体积传质系数Kya;
(3) 所需填料层高度,m;
(4)增大填料层高度,若其它操作条件不变, 定性分析出塔气组成和塔底吸收液组成的变化情况, 并图示操作线的变化。
2、
用一精馏塔分离某二元理想混合物,进料量为
100kmol/h,其中易挥发组分的摩尔分率为0.4,进料为
1、在一填料塔中,用含苯0.0001(摩尔分数,下同)的
洗油逆流吸收混合气体中的苯。已知混合气体的流量为 2400m3/h(标准状态),进塔气中含苯0.06,要求苯的 吸收率为90%。该塔塔径为0.6m, 操作条件下的平衡关 系为ye=24x,气相总传质单元高度为1.36m,实际操作 液气比为最小液气比的1.3倍,洗油摩尔质量为 170kg/kmol。试求:

化工原理第一章习题课(李鑫)

化工原理第一章习题课(李鑫)
H H2 H1
【例2-2】
• 解:(1)两槽液面的高度差H • 在压力表所在截面2-2´与高位槽液面3-3´间列柏 努利方程,以贮槽液面为基准水平面0-0´ , • 得:
2 u32 p3 u 2 p2 gH2 gH h f , 23 2 2
H
• • • • •
3
3
【例2-5】 将高位槽内料液向塔内加料。高位槽和塔内的压力均为 大气压。要求料液在管内以0.5m/s的速度流动。设料液在管内压头 损失为1.2m(不包括出口压头损失),试求高位槽的液面应该比塔 入口处高出多少米?
用压缩空气将密闭容器(酸蛋)中的硫酸压送至敞口高位槽, 如附图所示。输送量为0.1m3/min,输送管路为φ 38×3mm的无缝钢 管。酸蛋中的液面离压出管口的位差为10m,且在压送过程中不变。 设管路的总压头损失为3.5m(不包括出口),硫酸的密度为1830 kg/m3,问酸蛋中应保持多大的压力?
流体能自动从高(机械能)能位 流向低(机械能)能位
2 4.32J / kg
6.92 2 9.81 1 14.13J / kg 2 2 u p (表) p 2 (表) 2 2
9.81

1
1
Et2<Et3
小管中的水自下而上流动。
1m 2 4
大气
2 2 2 4
1m
喉径
2 4
2
2
2
u4 2 9.81 1 4.43m / s 大气 u2=(d4/ d2)2 u4 =(1/ 0.8)2 4.43=6.92m/s 2 u2 p 2 ( 表 ) 4 1-1 与 2-2 间 gz 1 2
1m
p 2 (表)

化工原理习题课


3.某敞口高位槽送水的管路如图所示,所有管径均为50mm, 某敞口高位槽送水的管路如图所示,所有管径均为 某敞口高位槽送水的管路如图所示 , 管长L 管长 OC=45m, LCB=15m(均包括所有局部阻力当量长 , ( ),当阀 全关, 当阀a全关 打开时, 度),当阀 全关,阀b打开时,压力表 B的读数为 打开时 压力表P 2.4×104Pa。假设阻力系数 均为 均为0.03,水的密度为 × 。假设阻力系数λ均为 , 1000kg/m3。 (1)试计算B管道 )试计算 管道 (CB段)的流速; 段 的流速; (2)若维持阀 的开度 )若维持阀b的开度 不变,逐渐打开阀a, 不变,逐渐打开阀 , 直到CB、 两管中流 直到 、CD两管中流 速相等,此时B管的流 速相等,此时 管的流 速又为多少? 速又为多少?
化工原理习题课
流体流动及流体输送机章
1.用离心泵把 ℃的水从储槽送至水洗塔顶部,槽内水位维持 用离心泵把20℃的水从储槽送至水洗塔顶部, 用离心泵把 恒定。各部分相对位置如本题附图所示。 恒定。各部分相对位置如本题附图所示。管路的直径均为 Φ76mm×2.5mm,在操作条件下,泵入口处真空表的读数为 × ,在操作条件下, 24.66×103Pa;水流经吸入管与排出管(不包括喷头)的能量 × ;水流经吸入管与排出管(不包括喷头) 计算,由于管径不变,故式中u为吸入或排出 损失可分别按与 计算,由于管径不变,故式中 为吸入或排出 管的流速m/s。排水管与喷头连接处的压强为 管的流速 。排水管与喷头连接处的压强为98.07×103Pa × 表压)。 (表压)。 试求:( )水在管内的 试求:(1) :( 流速u;( ;(2) 流速 ;( )泵的有效 功率;( ;(3) 功率;( )已知泵的效 率为60%,求操作条件下 率为 , 泵的轴功率。 泵的轴功率。

化工原理第一章习题课

化工原理第一章习题课(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、概念题1.某封闭容器内盛有水,水面上方压强为p 0,如图所示器壁上分别装有两个水银压强计和一个水银压差计,其读数分别为R 1、R 2和R 3,试判断: 1)R 1 R 2(>,<,=); 2)R 3 0(>,<,=);3)若水面压强p 0增大,则R 1 R 2 R 3 有何变化(变大、变小,不变)2.如图所示,水从内径为d 1的管段流向内径为d 2管段,已知122d d =,d 1管段流体流动的速度头为,m h 7.01=,忽略流经AB 段的能量损失,则=2h m ,=3h m 。

3.如图所示,管中水的流向为A →B ,流经AB 段的能量损失可忽略,则p 1与p 2的关系为 。

21)p p A > m p p B 5.0)21+> m p p C 5.0)21-> 21)p p D <4.圆形直管内,Vs 一定,设计时若将d 增加一倍,则层流时h f 是原值的 倍,高度湍流时,h f 是原值的 倍(忽略管壁相对粗糙度的影响)。

5.某水平直管中,输水时流量为Vs ,今改为输2Vs 的有机物,且水μμ2=,水ρρ5.0=,设两种输液下,流体均处于高度湍流状态,则阻力损失为水的倍;管路两端压差为水的 倍。

6.已知图示均匀直管管路中输送水,在A 、B 两测压点间装一U 形管压差计,指示液为水银,读数为R (图示为正)。

则: 1)R 0(>,=,<)2)A 、B 两点的压差p ∆= Pa 。

)()ρρ-i Rg A gh Rg B i ρρρ+-)() )()ρρρ--i Rg gh C gh Rg D i ρρρ--)()3)流体流经A 、B 点间的阻力损失f h 为 J/kg 。

4)若将水管水平放置,U 形管压差计仍竖直,则R ,p ∆ ,f h 有何变化7.在垂直安装的水管中,装有水银压差计,管段很短,1,2两点间阻力可近似认为等于阀门阻力,如图所示,试讨论:1)当阀门全开,阀门阻力可忽略时,1p 2p (>,<,=);2)当阀门关小,阀门阻力较大时,1p 2p (>,<,=),R (变大,变小,不变);3)若流量不变,而流向改为向上流动时,则两压力表的读数差p ∆,R ;(变大,变小,不变)。

化工原理习题课


PM

Et2

ZM
g

(
L2 d

M2

1) u2 2
(4)
当阀关小时,式(4)中u减小,而ξM-2增大,因此难以由式(4) 直接判断出PM的变化趋势,使分析过程变得复杂。因此适当的选 取衡算范围以避免式中同时出现两个或两个以上的变量成相反变
化的情况。
例3 如图所示,高位水箱下面接一φ32x2.5的水管,将水引向
一楼某车间,其中,ABC段管长为15m。假设摩擦系数λ约为 0.025,球心阀全开及半开时的阻力系数分别为6.4和9.5,其他 局部阻力损失可忽略。试问:
(1)当球心阀全开时,一楼 水管内水的流量为多少?
(2)今若在c处接一相同直径 的管子(如图虚线所示), 也装有同样的球心阀且全 开,以便将水引向离底层 3m处的二楼。计算当一楼水管上阀门全开或半开时, 一、二楼水管及总管内水的流量各为多少?
例4 一油田用φ600X25、长L= 100km 水平铺设的管线将原 油输送至某炼油厂油库。已知原油粘度μ= 0.187Pa.s 密度ρ=890kgm3。因油管允许承受的最高压力为6MPa
(表压),故全程需设:两个泵站,如图所示。第一个泵 站设在油田处,试问要使油管达到最大输送能力,第二 个泵站应设在何处?此时输送量为多少?假设局部阻力 损失忽略不计,管壁绝对粗糙度ε=0.1m
PN

Et2

ZN
g

(
L2 d


N2

1)
u2 2
(3)
当阀门关小时,式(3)中等号右边除u减小外,其余各量均不变,

(
L2 d


N

化工原理6.9 习题课答案(精馏)

1、用一连续精馏塔分离苯-甲苯溶液,原料中含苯 0.40,塔顶馏出液含苯0.95,塔釜残液含苯0.02
(以上均为质量分率),原料为气液混合物,其中 蒸汽占1/3(摩尔比),苯-甲苯平均相对挥发为 2.5,设泡点回流,塔釜采用间接蒸汽加热,塔顶 采用全凝器,试求: (1)原料中气液相组成及塔顶易挥发组分的回收率;
3.998106 kJ / h 1110.6kW
(3) q 0
y xF 0.3
y 2.47x 1 1.47x
ye 0.3
xe 0.148
Rmin
xD ye ye xe
0.9 0.3 3.95 0.3 0.148
R Rmin 3.95
V' V 1 qF V F R 1D F 3.95 1 30 100 48.5koml / h
F, xF D, xD
W, xW
0.8
Dx D Fx F
xF xW xD xW
xD xF
0.2 0.3
xW xW
0.3 0.2
xW 0.0857
全塔为提馏段,且泡点加料 L F
L V
F D
1 D/F
xF
1
xW /xD
xF
1.876
W F D F 1 1.876 1 0.876 V DD
(2) q 1
Rmin
1
1
xD xF
1 xD
1 xF
1 2.47
1
0.9 0.3
2.471 0.9
1 0.3
1.80
R Rmin 1.80
V' V R 1D 1.80 1 30 84koml / h
Q' V 'r FC P ts t 84 32600 100161.5 98 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016/3/30
3. 如图所示,用内径d=100mm的管道,从水箱中引水。 如水箱中水面恒定,水面高出管道出口中心高度H= 4m,忽略水箱入管道的入口阻力损失。水在管内流动 损失,沿管长均匀发生,hf A-B=3· u2/(2g)。求: (1)水在管内的流速u及流量Q (2)管道中点处M的静压强PM。假设AB高度差为3m
2016/3/30
(1)列0-0与2-2截面柏努利方程: Z0+P0/ρg+u00 /2g=Z2+P2/ρg+u22 /2g+∑hf 以2-2截面为基准面,Z2=0,u0=0,P0=P2 ∴4=u22 /2g+3u22 /2g=4×u22 /2g 解得 u2=4.43 m.s-1 ∴V=uA=0.785×0.12×4.43 =0.0348 m3.s-1=125 m3.h-1
d 3
d 2 s g ut 18
5 18 2 Re 18 1 . 81 10 1 3 4.639 105 m s g 1.205 5000 1.205 9.807


2
2016/3/30
• 4. 对某悬浮液进行恒压过滤。已知过滤时间为300s时, 所得滤液体积为0.75m3,且过滤面,则又 需过滤时间为 多少 解:由 得 q 2qe q K
(2)列M点与出口截面的柏努利方程 ZM+PM/ρg+uM2 /2g=Z2+P2 / ρg+u22 /2g+∑hf M-2 1+PM /ρg+uM2 /2g=u22 /2g+3/3×u22 /2g
∵ uM=u2 ∴PM/ρg=3/3×u22 /2g-1
2016/3/30

水在一倾斜管中流动,如附图所示,已知压差计读数 为200mm,试问测量段的阻力为多少?
• 某板框压滤机共有10个框, 框空长、宽各为500 mm, 在一定压力下恒压过滤30min后, 获得滤液5m3, 假设滤 布阻力可以忽略不计, 试求: • (1) 过滤常数K; • (2) 如果再过滤30min, 还能获得多少m3滤液?
2016/3/30
(1)过滤面积
m2
m2/s
m2/s
(2) 过滤获得的滤液量
2016/3/30
4. 在内管为φ180×10mm的套管换热器中,将流量为 3500kg.h-1的某液态烃从 100℃冷却到60℃,其平均比热为 2.38kJ.kg-1.K-1,环隙走冷却水,其进出口温度分别为40℃和 50℃,平均比热为4.17kJ.kg-1K-1,基于传热外面积的总传热 系数K0=1800w.m-2K-1, 设其值恒定,忽略热损失。试求: (1)冷却水用量; (2)分别计算两流体为逆流和并流情况下的平均温差及所 需管长。
(1)若在层流区重力沉降,则水中颗粒直径与空气中颗粒
直径之比为多少。
(2)若在层流区离心沉降,已知旋风分离因数与旋液分离
因数之比为2,则水中颗粒直径与空气中颗粒直径之比为多 少
2016/3/30
解:(1) 由

d 2 s g ut 18
d
所以
dw da
18 u t s g
m3
m3
2016/3/30

在一φ60×3.5mm的钢管外层包有两层绝热材料,里层 为40mm的氧化镁粉,平均导热系数λ=0.07W/m·℃,外 层为20mm的石棉层,其平均导热系数λ=0.157W/m·℃。 现用热电偶测得管内壁温度为500℃,最外层表面温度 为80℃,管壁的导热系数λ=45W/m·℃。试求每米管长 的热损失及两层保温层界面的温度。
2016/3/30
20℃的空气在直径为80mm的水平管流过。现于管路中 接一文丘里管,如本题附图所示。文丘里管的上游接 一水银U管压差计,在直径为20mm的喉颈处接一细管 ,其下部插入水槽中。空气流过文丘里管的能量损失 可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m3/h。当地大气压强为 101.33×103Pa。
2016/3/30
• 解:文丘里管上游测压口处的压强为 • p1=ρHggR=13600×9.81×0.025 • =3335Pa(表压) • 喉颈处的压强为 • p2=-ρgh=-1000×9.81×0.5=-4905P(表压) • 空气流经截面1-1'与2-2'的压强变化为
p1 p 2 101330 3335 101330 4905 0.079 7.9% 20% p1 101330 3335
2016/3/30
• 冷却水用量 • wh Cph (T1 -T2 )=wc Cpc(t2 -t1 ) • 3500×2.38×(100-60)=wc× 4.17×(50-40) • wc =7990kg.h-1 • Δt逆=(50-20)/ln(50/20)=32.75℃ • Δt并=(60-10)/ln(60/10)=27.91℃ • Q=KAΔtm • Q=7990×4.17×(50-40)=3.332×106kJ.h-1 • ∴ A=3.332×105/[(1800/1000)×32.75×3600] • =1.57 (m2) • πd0 l=1.57 • 3.14×0.18×l=1.57 ∴ l逆=2.77(m ) • A并=3.332×106/[(1800/1000)×27.91×3600]=1.84 (m2) • 3.14×0.18×l并=1.84 ∴ l并=3.26 (m )
2016/3/30
• 解:取贮槽液面为1―1截面,管路出口内侧为2―2截面, 并以1―1截面为基准水平面,在两截面间列柏努利方程。
2 u12 p1 u2 p2 gZ1 We gZ2 h f 2 2
式中 Z1=0 Z2=15m p1=0(表压) p2=-26670Pa(表压) u1=0
HG z2 R2 P
(2)将式(a)减去式(b)并 经整理得 故
HG z1 R1 P
(a)
(b)
2016/3/30
2. 当20℃的甘油(ρ=1261kg.m-3,μ=1499厘泊)在内径为 100mm的管内流动时,若流速为2.0m.s-1时,其雷诺准数 Re为__________,其摩擦阻力系数λ为________.
s a w s w a

2500 1.205 1.005 10 3 2500 998 .2 1.81 10 5
9.612
2016/3/30
(2) 由
2 d 2 s uT ur 18 R
2 uT Kc gR

d 2 s ur gKc 18

18u r d s gKc
所以
dw da
s a w K ca s w a K cw

2500 1.205 1.005 10 3 2 2500 998 .2 1.81 10 5 1
1.分别由a管或由b管输送空气时,压差计读数分别为R1或R2, 试推导R1、R2分别同Z1、Z2的关系。 2.当(Z1-Z2)=1.5m,R1=0.15m,R2=0.06m时,试求 石油产品的密度ρ及Zio
2016/3/30
解 • (1)在本例附图所示的流程中,由于空气通往石油产 品时,鼓泡速度很慢,可以当作静止流体处理。因此 可以从压差计读数R1,求出液面高度Z1,即
解 (a)每米管长的热损失 r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
2016/3/30
(b)保温层界面温度t3
t3=131.2℃
2016/3/30
• 一列管换热器,由φ25×2 mm的136根不锈钢管组成。平 均比热为4.187 kJ/kg.℃的某溶液在管内作湍流流动, 其流 量为15000kg/h, 并由15℃被加热到100℃。温度为110℃ 的饱和水蒸汽在壳方冷凝。已知单管程时管壁对溶液的 对流传热系数 为520w/m2. ℃, 蒸汽对管壁的对流传热系 数 为 1.16×104w/m2. ℃, 不锈钢管的导热系数λ =17 w/m. ℃, 忽略垢层热阻和热损失, 试求4管程时的列管长 度(有效长度)。
13.593
2016/3/30
• 3. 某一球形颗粒在空气中自由重力沉降。已知该颗粒 的密度为5000kg/m3,空气的密度为1.205kg/m3,空气 的粘度为1.8110-5Pas。则在层流区沉降的最大颗粒直 径为多少。 解:(1) 由
Re
dut


Re ut d
而 所以
故可按不可压缩流体来处理。
2016/3/30
• 在截面1-1‘与2-2’之间列柏努利方程式,以管道中心线 作基准水平面。两截面间无外功加入,即We=0;能量 损失可忽略,即 h f =0。据此,柏努利方程式可写为
2 u12 p1 u2 p gZ1 gZ2 2 2 2
2 u12 3335 u2 4905 2 1.2 2 1.2
2016/3/30
1、 某液体在一等径直管中始终处于层流装状态流动, 若体积流量不变,管内径减小为原来的一半,假定管内 的相对粗糙度不变,则层流时,流动阻力变为原来的
多少倍
解:(1) 由
l u2 64 l u 2 32lu hf du d 2 d 2 d 2
2 2 u2 u1 13733
2 2
据连续性方程

4
d1 A1 0.08 u u1A1=u2A2 u2 u1 u1 1 d A2 0 . 02 2
Vs 3600
d 12 u1 3600

4
相关文档
最新文档