地球物理测#(第三章)核测井、GR测井
地球物理测井

地球物理测井发展四个阶段
一、模拟记录阶段 从测井诞生到60年代末,都使用模拟记录测 井仪器,用灵敏度高的检流计测量回路电流得到 探测系统测量端间的电位差变化,反映地层物理 参数(电阻率、声波速度等)随深度的变化,记 录在照相纸或胶片上,模拟记录的特点是采集的 数据量小,传输速率低。使用的主要测井方法有 声速(纵波)测井、感应测井和普通电阻率测井, 配之以井径测井、自然电位测井和自然伽马测井 等。
二、数字测井阶段
自60年代来,测井仪器从模拟记录过渡到数字记录。 这是测井技术发展的要求,测井方法的增多,特别是地 层倾角测量的出现和声波变密度测井都要求高速采集地 下信号,此外,某些测井方法要求在井场作一些校正、 补偿和简单的计算,如中子测井计算中子孔隙度、密度 测井进行脊肋校正等。 数字测井仪器增加了用数字磁带机进行数字记录 ,提高了测量精度,增加了可靠性,且便于将测井资料 输入计算机进行处理,与之相应的测井方法是有深、中 、浅探测的电阻率测井,一般是双感应 — 球形聚焦测井 或双侧向 — 微球聚焦测井,三孔隙度测井,即声速测井 、中子孔隙度测井、补偿密度测井;再加上井径测井、 自然伽马测井和自然电位测井,称为常规的“九条曲线 ”测井。
一般由地层和泥浆之间电化学作用和动电学作用产生的。
1、扩散—吸附电位:
纯砂岩 纯泥岩 -11.6 mV/18 C 59.1 mV /18 C
吸附电位
泥岩 -
+
砂岩
2、过滤电位(一般可忽略): 泥浆柱与地层之间存在压差时,液体发 生过滤作用产生的。
+ 扩散电位
泥岩
+ + + — — — — — + + +
6地球物理测井部分
地球物理勘探实验报告

一、实验目的本次实验旨在使学生掌握地球物理勘探的基本原理和实验方法,提高学生对地球物理勘探技术的认识,为后续课程的学习和研究打下基础。
二、实验原理地球物理勘探是利用地球的各种物理场(如重力场、磁场、电场、地震波等)来探测地下结构和物质分布的技术。
通过观测和分析这些物理场的变化,可以推断地下岩层的性质、地质构造和矿产资源分布等信息。
三、实验内容1. 重力勘探实验(1)实验目的:了解重力勘探的基本原理,掌握重力仪的使用方法。
(2)实验原理:利用重力仪测量地面重力加速度的变化,从而推断地下岩石密度分布。
(3)实验步骤:① 将重力仪放置在预定位置,调整水平,记录初始重力值。
② 沿着预定路线移动重力仪,每隔一定距离记录一次重力值。
③ 将记录的重力值绘制成曲线,分析重力异常分布。
2. 磁力勘探实验(1)实验目的:了解磁力勘探的基本原理,掌握磁力仪的使用方法。
(2)实验原理:利用磁力仪测量地面磁场的变化,从而推断地下磁性矿物的分布。
(3)实验步骤:① 将磁力仪放置在预定位置,调整水平,记录初始磁场值。
② 沿着预定路线移动磁力仪,每隔一定距离记录一次磁场值。
③ 将记录的磁场值绘制成曲线,分析磁场异常分布。
3. 电法勘探实验(1)实验目的:了解电法勘探的基本原理,掌握电法勘探仪器的使用方法。
(2)实验原理:利用电法勘探仪器测量地下电性差异,从而推断地下岩石的导电性和含水性。
(3)实验步骤:① 将电法勘探仪器放置在预定位置,调整水平,记录初始电流值。
② 沿着预定路线移动电法勘探仪器,每隔一定距离记录一次电流值。
③ 将记录的电流值绘制成曲线,分析电流异常分布。
四、实验结果与分析1. 重力勘探实验结果:通过分析重力异常曲线,发现实验区域存在一个重力高异常,推断该异常可能与地下岩层的密度变化有关。
2. 磁力勘探实验结果:通过分析磁场异常曲线,发现实验区域存在一个磁场高异常,推断该异常可能与地下磁性矿物的分布有关。
3. 电法勘探实验结果:通过分析电流异常曲线,发现实验区域存在一个电流低异常,推断该异常可能与地下岩石的导电性和含水性有关。
测绘技术中的地球物理测量方法详解

测绘技术中的地球物理测量方法详解地球物理测量是测绘技术中的一项重要领域,它通过测量和分析地球表面和地下的物理现象,为地质、环境、水文和工程等领域提供了重要的数据支持。
本文将对地球物理测量方法进行详解,介绍其原理和应用。
一、重力测量重力测量是地球物理测量中最常用的方法之一。
它利用地球上的重力场变化来推断地下物质分布和构造特征。
重力场是地球上所有物质的引力作用所形成的。
通过使用重力仪器测量重力加速度的变化,可以得到地球重力场的分布情况。
重力测量方法常用于勘探矿产资源和研究地壳运动。
在勘探矿产资源方面,通过测量地下矿体与周围岩石的密度差异,可以推断矿体的位置和规模。
在研究地壳运动方面,重力测量可以检测到地壳的水平运动和垂直变形,对地震、断层和火山活动等现象的研究具有重要意义。
二、磁力测量磁力测量是另一种常用的地球物理测量方法。
地球具有强大的磁场,它来源于地球内部的液态外核。
磁力测量利用磁场的变化来研究地下物质的特征。
通过测量地磁场强度和指向的变化,可以推断地下潜在矿产资源的分布情况。
磁力测量方法广泛应用于勘探矿产资源、地质构造和环境监测等领域。
在勘探矿产资源方面,磁力测量可用于寻找铁矿、锰矿等矿床。
在地质构造方面,磁力测量可以研究地壳中的断裂、隆起和下沉等构造特征。
在环境监测方面,磁力测量可用于监测地磁场的变化,预警地质灾害和地震等自然灾害。
三、电法测量电法测量是一种利用地下电阻率差异来研究地下物质分布和构造特征的测量方法。
电法测量通过在地表施加电流,测量地下电场的分布和变化,来推断地下不同岩石或土壤的电导率情况。
电法测量方法广泛应用于地下水资源、土地质量和工程地质等领域。
在地下水资源方面,电法测量可用于确定地下含水层的深度和厚度,并推断水质状况。
在土地质量方面,电法测量可用于检测土壤的物理特性,判定土壤的质地和含水量等参数。
在工程地质方面,电法测量可用于检测地层的稳定性和地下空洞的存在,为工程设计和施工提供依据。
地球物理测井概论

地球物理测井概论
地球物理测井是指以地球物理学的理论和技术来研究和测量地下岩石的结构特征、物质属性及其变化规律,采集、分析、处理地球物理资料,进而获取地下构造、岩性、成因及其它不可见物质成分等信息,或为地质勘探、矿产调查和地质灾害防治提供依据的一种详尽的“深入地下”的技术与方法的总称。
随着社会的发展和科学技术的普及,地球物理测井,俗称“测井”,也和建设、投资项目紧密相关,它是针对建设区附近地层异常、地埋管线、地下空间等情况,通过测量地下岩石层的构成、位置、厚度、水性等定量数据,充分挖掘工程用地空间本质,对建设项目是否可行提供有力的支持。
在地球物理测井中,采用连续振动地震技术,通过不断发射同频率的声波,实
现地下构造的介质参数的测量,掌握岩石层的厚度、变化趋势、漏失或断裂等信息;采用时反差管理技术,通过测量声波的二次反射,来获取地层的位置、厚度信息;采用震源接收方法,全面掌握地下矿层的位置、厚度及组成等特征,用测井定位进行埋藏物质、探测异常体及水文地质分布范围等;采集测井曲线后,运用有关理论来分析地层变化,把这些曲线复原成地层实际横截面,从而来估计工程用地背景情况,为建设项目提供有力的参考。
总之,地球物理测井具有重要的建设应用价值,为工程设计及施工布置提供关
键的参考,通过深入地下,更好地洞察地质情况,是建筑项目实施有序、科学可行的基础。
地球物理测井

二、普通电阻率测井
在井中测量被钻孔穿过的矿、岩层的电阻率,并根据电 阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些 地质问题的测井方法。
普通电阻率测井又称视电阻率测井,它是使用最早、应用 较广的电阻率测井方法 。
1、测量原理
A——供电电极 B——供电回路电极 M、N——测量电极
供电回路
测量回路
电源 B
检流计
A
电极矩
M
o
N
井下介质电阻率的测定
当电极B位于无穷远处时,距供电电极A一定 距离的测量电极M、N两点是的电位差为:
IR 1 1
U MN
UM
UN
4
( AM
) AN
解上式得 : 4 AM AN UMN K UMN
MN
I
I
K是与各电极之间距离有关的系数,称为电极系 系数。A、M、N组成电极系电极之间的距离是固 定的,因此电极系系数K是一个常数。
1)岩矿石的岩性; 2)岩石孔隙中地层水性质; 3)岩石的孔隙度以及孔隙结构; 4)孔隙中流体性质及其含量; 5)岩石中泥质成分(泥质含量影响岩石的导电性)。
1)岩矿石的岩性
岩石是由矿物和孔隙中流体以及胶结物组成,大多数沉积岩,当 其不含导电流体时,由造岩矿物组成的岩石骨架几乎是不导电的。 许多沉积岩之所以能导电,则是因为它们在地下不同程度的具有 一定的孔隙,在其中充填了一定数量的盐水溶液造成的。于是, 电流通过孔隙水流过岩石,岩石因此具有了一定的导电性。
本章主要内容:
(1)普通电阻率测井 (2)侧向测井 (3)电化学测井
石墨、无烟煤等电阻率很低
主要岩矿石电阻率及其变化范围
ρ沉<ρ变<ρ火
什么是地球物理勘探

什么是地球物理勘探人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中,埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况以及岩石的物理性质。
岩石物理性质是指岩石的导电性、磁性、密度、地震波传播等特性。
地下岩石情况不同,岩石的物理性质也随之而变化。
我们把以岩石间物理性质差异为基础,以物理方法为手段的油气勘探技术,称为地球物理勘探技术,简称物探技术。
通过观测不同岩石引起的重力差异来了解地下地层的岩性和起伏状态的方法,称为重力勘探。
油气生成于沉积盆地,应用重力勘探可以确定沉积盆地范围。
通过观测不同岩石的磁性差异,来了解地下岩石情况的方法,称为磁力勘探。
在沉积盆地中,往往会分布着各种磁性地质体,磁力勘探可以圈定其范围,确定其性质。
通过观测不同岩石的导电性差异来了解地下地层岩石情况的方法,称为电法勘探,与油气有关的沉积岩往往导电性良好(电阻率低),应用电法勘探可以寻找和确定这类地层。
通过观测用人工方法(如爆炸)激发的地震波在不同岩石中的速度变化及其他特征来了解地下岩石情况的方法,称为地震勘探。
在以上这四种方法中,重力、磁力、电法三种方法联合起来应用往往可以找出可能有油气的盆地在哪里,盆地中哪里是隆起,哪里是坳陷,哪里是可能最有利的构造等等。
这种工作是在找油的开始阶段做的,一般叫做普查。
地震勘探是地球物理勘探最主要的一种勘探方法,具有勘探精度高,能更清晰地确定油气构造形态、埋藏深度、岩石性质等优点,成为油气勘探的主要手段,并被广泛应用。
什么是地球物理测井井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。
地质学中的地球物理探测技术

地质学中的地球物理探测技术地球物理探测技术是地质学中的一大重要分支,主要通过测量地球内部的物理性质,以揭示地球内部的结构和构造,并了解地球演化的历史和过程。
其包括测量地球重力、磁场、电性、声波等各种物理现象,可以应用于地质勘探、矿产资源寻找、灾害预测等方面。
本文就来分别介绍地球物理探测中的重力、磁性、电性和声波等技术及其应用。
一、重力探测技术重力探测技术是利用地球的引力变化来探测地下物质的一种方法。
测量中,首先在地表上设置重力测量仪器,然后通过对重力的测量来确定地下物质的密度分布。
因为地下物质的密度不同,如地壳的密度要比地幔高,而花岗岩的密度又要比沉积岩高,所以通过对重力的测量,可以推测出地下物质的变化规律及分布情况。
重力探测技术在石油、天然气的勘探中应用很广。
由于地下油气形成后常常会跑到密度比较小的地质层里,因此通过对重力的测量,可以预测可能的油气区域。
在地质灾害预测方面,也可以通过重力探测来寻找地下空腔、断层带、岩体变形等预兆。
二、磁性探测技术磁性探测技术是利用地球的磁场变化来探测地下物质的一种方法。
由于地球内部存在着同心球状的磁场,不同地区的地磁场的强度和方向也不尽相同。
利用磁性探测技术可以探测出地下物质的磁性变化,从而揭示地下岩石的磁化程度及其分布规律。
磁性探测技术在矿床勘探中应用广泛,因为矿物常常具有比周围的地壳物质更高的磁滞、磁导率等特性,而这种不同的特征往往非常微弱并不易被发现,所以对于矿床的发现而言,其具有的敏感度非常有优势。
三、电性探测技术电性探测技术是利用地球内部的电性变化来探测地下物质的一种方法。
在地下钻探中,通过地面电极、探测体和接收器三个部件建立起自由电流电场,并分别在探测体和接收器记录电场的变化,最终通过分析电学特性,来推测出地下物质的变化规律及分布情况。
电性探测技术在地下水、岩土工程和矿产资源勘查方面应用广泛。
在地下水资源寻找中,可以通过测量电性来预测水层位置、厚度和水质的状况。
地球物理测量

地球物理测量地球物理测量是一种研究地球内部结构和物理现象的科学方法。
通过测量地球的重力场、磁场、地震以及地电场等因素,可以深入了解地球的内部构造、地壳运动和地质特征,为地质勘探、环境保护和自然灾害预测提供重要的科学依据。
地球物理测量主要包括地震学、重力学、地磁学和地电学等领域。
地震学是研究地震现象及其引起的地震波传播规律的学科。
通过监测地震波在地球内部传播的速度和路径,可以判断地球内部的介质性质和地球构造的变化。
地震学对于地壳运动、地震灾害预测和油气资源勘探都具有重要的意义。
重力学是研究地球重力场的学科。
地球的重力场是由地球内部的密度分布和形状引起的,通过测量地球重力场的强度和方向变化,可以推断地球内部的密度变化和地球形状的变化。
重力测量在勘探矿产资源、测量山体移动和地壳变形等方面发挥着重要作用。
地磁学是研究地球磁场的学科。
地球的磁场是由地球内部的物质运动所产生的,磁场的变化可以揭示地球内部的物质运动和地球磁性物质的分布。
地磁测量在地理勘探、地质灾害预测和导航定位等方面具有广泛应用。
地电学是研究地球电场的学科。
地球电场是由空气和地面之间的电荷分布引起的,在地球内部由于地层和水体的地下水存在导致的电荷分布也会产生地电场。
通过测量地球电场的强度和方向变化,可以推断地表和地下的电荷分布情况,进而研究地壳运动、岩石性质和地下水的分布。
地球物理测量是地球科学研究中的重要手段之一,它通过测量地球内部的各种物理字段的变化,揭示了地球内部的动力学特征和构造演化过程。
地球物理测量与地质学、地球化学、地理学等学科相互配合,形成了综合研究地球的方法体系。
地球物理测量在勘探和开发矿产资源方面发挥着重要作用。
通过重力测量可以发现地下的矿体和油气藏;通过地磁测量可以寻找地下矿体和火山活动;通过地电测量可以判断地下的水体分布等。
地球物理测量还可以用于环境保护和自然灾害预测。
通过地震学的研究,可以预测地震的发生和地震波在地下的传播路径,为地震灾害的防范和救援提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然伽马测井
二、GR 测井基本原理
穿过
射线
泥浆
至 仪器 外壳
经传输 至地面 仪器处理
使与单位 时间的电 脉冲数成 正比
进入探 测器
记录连 续电流所产 生的电位差
见P120图7-6砂泥岩剖面GR测井曲线 GR曲线
自然伽马测井
三、GR 曲线特征(均匀理想模型地层点测)
GR(API)
当上下围岩相同时, 曲线对称于地层中 部,低放射性地层对 应GR低,高放射性 地层对应GR高
2、放射性剂量单位
单位质量的物质被射线照射时所吸收的能量来度量射线强度 为放射性剂量。用伦琴表示。而测井用的单位是微伦琴/小 时,单位时间内的射线剂量为剂量率。
伽马测井的核物理基础
3、条件单位
测井时记录的是单位时间的脉冲数,不同的仪器记录器在统
一标准下刻度。
采取相同的单位:微伦琴/小时
API
三、核衰变的统计涨落
火成岩 >变质岩> 沉积岩
自然伽马测井
沉积岩骨架不含重矿物,除钾岩外,其他岩石本身基本上不含 放射性,但在形成过程中会多少地吸附些放射性元素。
强度最低的:硬石膏、石膏、不含钾的盐岩
除强了度钾较低岩的及:骨砂架岩含、灰放岩射、性白元云素岩的岩石外,岩石的GR强
强度较高的:浅海相和陆相沉积的泥岩、泥灰岩、钙质泥岩、
同一放射性元素在相同的时间间隔内,衰变次数不完全相同, 总是围绕一平均值上下起伏。 统计涨落是由核衰变本身的特性所决定的,与环境和人的因素 无关。
伽马测井的核物理基础
核射线探测器---闪烁记数管
它由光电倍增管和碘化钠晶体组成。它是利用被伽玛射线激发的
物质的发光现象来探测射线的。
碘
化
伽玛射线
钠
晶
体
光电 倍增 管电 子数 逐级 倍增
V合适
自然伽马测井
五、GR曲线的解释及应用
1、划分岩层
砂泥岩剖面(骨架不含放射性矿物)
随着泥质含量的增加, GR值增加。 泥岩-高值;砂岩-低值
GR 泥 岩
砂
岩
碳酸盐岩剖面相同
泥
岩
H
砂
岩
自然伽马测井
给定岩性剖面,请定性的画出GR曲线。 GR
泥灰岩
灰岩
泥岩
白云岩
GR
回 的忆 大岩 小石 关的 系
大量电子最后到 达阳极使阳极电 压瞬时下降产生 电压负脉冲,输 入测量线路予以 记录
用单位时间记录的脉冲数来反映 伽玛射线的强度
自然伽马测井
GR测量的是岩层的自然放射性强度(不用任何放射性源)
一、岩石的自然放射性
岩石中主要的放射性元素:
92U238
90Th232
19K40
岩石的自然放射性强度主要取决于其三者的比例,其含量与岩性以 及形成过程中的物理化学条件有关,因此,岩性不同,GR不同。
核测井的适用条件:一般的泥浆井、油基泥浆井、 高矿化度泥浆井、空气钻井(裸眼井、套管井)
它是唯一能够确定岩石及其孔 核测井的优点: 隙流体化学元素含量的测井方法 。
伽马测井的核物理基础
一、原子核的衰变及放射性
1、原子的结构
原子:由原子核及其核外电子层组成的一种很微小的粒子。
原子核由质子和中子组心胸有多大,事业就有多大 包容有多少,拥有就有多少
伽马测井的核物理基础
核测井(放射性测井):以物质的原子核物理性质为基 础的一组测井方法。它是根据岩石及其孔隙流体和井内介质
(套管、水泥等)的核物理性质,研究钻井地质剖面,寻找有用 矿藏,研究油田开发工程的一类测井方法。
3、统计涨落误差
由于涨落误差的存在, 实测的GR曲线出现许 多“小锯齿”
自然伽马测井
4、测井速度
当h一定:GR受V测和时间 常数的影响t=h/v;v增加, t<时间常数,探测器无法 全部探测到地层发出的GR, 导致GR下降,还会使其发 生崎变,深度错位。
积分电路的特点所至
自然伽马测井
GR(API)滞后现象 V增加
同位素:质子数相同的同一类原子。 例:氢的同位素:氕、氘、氚
伽马测井的核物理基础
3、核衰变
核衰变:放射性元素的原子核自发地释放出一种带电粒子 (或),蜕变成另外某种原子核,同时放射出伽马() 射线的过程。
放射性: 自发地释放出、 , 射线的性质
放射性核衰变的规律:放射性核数随时间按指数递减的规律 变化。 即:
射程短
射线
是频率很高 的电磁波、 能量高
穿透能 力强
射程长
中性粒子射线不是由核衰变产生的, 是由特殊的中子源产生的,特点是: 能量高、穿透力强
探测器能探测 到的射线:
中子射线、 射线
伽马测井的核物理基础
二、常用GR强度单位
1、放射性强度单位
1居里:单位时间内发生衰变的原子核数。 1居里=1克镭的源强=1克镭当量/克(每克物质的放射性强度 单位相当于1克镭)=3.7*1010次/秒
NN0et
t:时间 :衰变系数 N:放射性元素个数
伽马测井的核物理基础
半衰期:从N0个原子开始衰变到N0/2时所经历的时间。 用T表示:
T ln 2
放射性元素不同,其半衰期也不同(见P115) 4、放射性射线的性质
核衰变放出三种射线:、、
伽马测井的核物理基础
射线 射线
带电
能量衰减快、 穿透能力弱
h>3d 曲线幅度不受 岩层厚度的影响; h<3d 曲线的最大或 最小受岩层厚度的 影响(?)
自然伽马测井
自然伽马测井
四、影响因素
1、岩层厚度的影响
岩层厚度增加或减小,GR曲线减小或增大。
2、井参数影响
d增加
裸眼井:对GR吸收增加,但泥浆中所含一定 的放射性补偿了一部分,影响小
套管井:水泥环厚度增加-----GR减小
度含随砂岩泥岩石等颗粒变细而增加。 通强常度情高的况:下钾:岩地、层深水的泥GR岩值、的页高岩低主要取决于泥质含量
强度最高的:放射性软泥、澎土岩、火山灰
自然伽马测井
沉积岩的自然放射性有以下变化规律: a.随泥质含量的增加而增加; b.随有机物含量增加而增加,如沥青质泥岩的放射性很高。在还原 条件下,六价铀能被还原成四价铀,从溶液中分离出来而沉淀在地 层中,且有机物容易吸附含铀和钍的放射性物质; c.随着钾盐和某些放射性矿物的增加而增加。
石膏
自然伽马测井
2、确定地层的泥质含量
不含放射性矿物的地层,GR主要取决于地层的泥质含量。
当泥质含量低时:
Vsh
GRGRmin GRm axGRm in
当泥质含量高时:
gcur=2(老地层) gcur=3.7(新地层)
I sh
GR GRmin GRmax GRmin
Vsh 2gcurIsh 1 2 gcur 1