幂函数的概念
幂函数知识点笔记总结

幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。
特殊情况下,指数可以是分数或负数。
2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。
3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。
4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。
2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。
4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。
5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。
三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。
2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。
幂函数与指数函数

幂函数与指数函数幂函数与指数函数是高等数学中的重要概念,它们在数学和实际问题中有广泛的应用。
本文将介绍幂函数和指数函数的定义、性质以及它们在不同领域的应用。
一、幂函数的定义与性质幂函数是指形如y = x^a的函数,其中x为自变量,a为常数。
幂函数的定义域为正实数集。
当a>0时,幂函数是严格递增的;当a<0时,幂函数是严格递减的。
特别地,当a=0时,幂函数为常函数。
幂函数的图像可以分为几种不同的情况。
当a>1时,幂函数的图像在原点处是水平右移的U形曲线,右侧逐渐变得陡峭;当0<a<1时,幂函数的图像在原点处是水平右移的倒U形曲线,右侧逐渐变得平缓;当a<0时,幂函数的图像在原点处是水平右移的S形曲线。
二、指数函数的定义与性质指数函数是指形如y = a^x的函数,其中a为底数,x为自变量。
指数函数的定义域为实数集。
当底数a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。
特别地,当底数a=1时,指数函数为常函数。
指数函数的图像也有几种不同的情况。
当底数a>1时,指数函数的图像在原点处是水平右移的U形曲线,右侧逐渐变得陡峭;当0<a<1时,指数函数的图像在原点处是水平右移的倒U形曲线,右侧逐渐变得平缓;当底数a<0时,指数函数的图像在原点处是水平右移的S形曲线。
三、幂函数与指数函数的应用1. 科学领域幂函数与指数函数在科学领域的应用非常广泛。
在物理学中,幂函数与指数函数可以描述天体运动、物体的增长规律等。
在化学中,幂函数与指数函数可用于描述化学反应速率、物质的衰变等。
2. 经济领域在经济学中,幂函数与指数函数常用于描述经济增长、人口增长等问题。
其中,指数函数可以用来描述指数增长,而幂函数则可以用来描述多项式增长。
3. 网络领域在网络传输中,幂函数与指数函数可以用于描述网络带宽的分配、传输速度的控制等问题。
指数函数在网络拓扑中也有广泛的应用,如指数递增的网络节点连接数量等。
3幂函数-学生讲义

幂函数1、幂函数的概念=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.一般地,形如y xα2、幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象都通过原点,并且在[0,+∞)上是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.注:1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y=αx,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型.3.幂函数的奇偶性,()q pf x x =3、函数图像的变换 平移变换 (1)水平平移()()(0)h h y f x y f x h >==+→向左平移的图像的图像()()(0)-h h y f x y f x h >==→向右平移的图像的图像(2)竖直平移()()(0)+h h y f x y f x h >==→向上平移的图像的图像()()(0)-h h y f x y f x h >==→向下平移的图像的图像对称变换:(1)()()-x y f x y f x =←−−−−→=关于轴对称的图像的图像; (2)()()y y f x y f x =←−−−−→=-关于轴对称的图像的图像; (3)()()y f x y f x =←−−−−→=--关于原点对称的图像的图像 (4)将函数()y f x =的图像在x 轴下方部分沿x 轴翻折到x 轴的上方,去掉原来x 轴下方的部分即可得到函数()y f x =的图像。
幂函数的概念与性质

幂函数的概念与性质幂函数是高中数学中的重要概念之一,它在数学领域拥有广泛的应用。
本文将介绍幂函数的基本概念和性质,帮助读者更好地理解和应用这一数学工具。
一、幂函数的概念幂函数是指形如f(x)=ax^n的函数,其中a和n为常数,n为指数。
其中,a称为底数,n称为指数。
这里要注意的是,底数a必须大于0且不等于1,指数n可以是任意实数。
幂函数在底数和指数的选择上具有很大的灵活性。
当n为正整数时,幂函数表现为递增或递减的特点,如f(x)=2x^3,其图像为一个开口向上的曲线;当n为负整数时,幂函数则表现为递减或递增的特点,如f(x)=\frac{1}{2}x^{-2},其图像为一个开口向下的曲线;当n为小数或分数时,幂函数则表现出递增或递减的平缓特点,如f(x)=\sqrt{x},其图像为一条从原点开始向右上方延伸的曲线。
二、幂函数的性质1. 定义域和值域:幂函数的定义域为实数集,即该幂函数对于任意实数x都有定义。
值域则根据底数a和指数n的取值情况而定。
2. 奇偶性:当指数n为偶数时,幂函数是对称于y轴的偶函数,即f(x)=f(-x);当指数n为奇数时,幂函数则是关于原点对称的奇函数,即f(x)=-f(-x)。
3. 单调性:当指数n为正数时,幂函数是递增的;当指数n为负数时,幂函数则是递减的。
4. 渐近线:当指数n为正数时,幂函数的图像在x轴的右侧将趋近于正无穷,即具有一条水平渐近线y=0;当指数n为负数时,幂函数的图像在x轴的右侧将趋近于正0,其图像也会具有一条水平渐近线y=0。
5. 极值点:幂函数在底数为正且指数为正偶数时,不存在极值点;在底数为正且指数为负偶数时,幂函数存在一个局部极大值点;在底数为负且指数为任意实数时,幂函数既不具有极小值也不具有极大值。
6. 对称轴:幂函数的对称轴一般位于y轴,并且是关于y轴对称的。
当指数n为奇数时,幂函数的对称轴位于原点。
7. 特殊性质:当底数a是自然常数e(约等于2.71828)时,所得到的幂函数称为自然指数函数,常用符号为f(x)=e^x。
幂函数

m 2 + m − 1 = 2, −1 ± 13 ⇒m= . 2 2 m + 2m ≠ 0
4 ) 若f ( x ) 为幂函数, m 2 + 2m = 1,∴ m = −1 ± 2. (
,
+2
= 1,∴ m = − 1 ±
2 5 − 2 5 3 5
(2).213,.233 0 0 (4).2 0.5 ,0.4 0.3 0
【解析】 (1 ) 0 .8 > 3 0 .7 3 ( 2) . 21 3 < 0 . 23 3 0 (3) . 1 > 3 . 8 4 [ 介值: , 0 1] ( 4) . 2 0
0 .5 2 5 − 2 5 3 5
主要内容
一、幂函数的概念 二、幂函数的图像与性质 三、幂的大小比较 四、综合问题
一、幂函数的概念
的函数叫做幂函数,其中x是自变量, 形如 y = xa 的函数叫做幂函数,其中x是自变量, a 是常数且 a ∈ R 。
a
定义域: 定义域:使 x
有意义的实数的集合。 有意义的实数的集合。
注意: 不是幂函数。 注意:y = kx a + b 不是幂函数。
> ( − 1 .4 )
< 0 .4
0 .3
[ 介值: 0.3 或 0.4 0.5 ] 0.2
四、综合问题
2010·安徽蚌埠质检 安徽蚌埠质检) 6 (2010·安徽蚌埠质检)
已知幂函数f ( x) = x a的部分对应值如下表:
x
f (x)
1
1 2
2 2
1
则不等式f ( x ) ≤ 2的解集是( A.{x − 4 ≤ x ≤ 4} C. x − 2 ≤ x ≤ 2
幂函数

幂函数形如幂函数幂函数的多值反函数。
但实际上,我们还是只取主值。
折叠无理数幂无理数幂可以由有理数列逼近得到折叠复数幂扩大的幂函数定义为为一个多值函数特性介绍对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:a小于0时,x不等于0;a的分母为偶数时,x不小于0;a的分母为奇数时,x取R。
[1]特殊情况幂函数图由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在各象限的各自情况。
[1]可以看到(右图上至下:x1/8,x1/4,x1/2,x1,x2,x4,x8):(1)所有的图形都通过(1,1)这点.(a≠0) a>0时图象过点(0,0)和(1,1)。
(2)单调区间:当a为整数时,a的正负性和奇偶性决定了函数的单调性:①当a为正奇数时,图像在定义域为R内单调递增;②当a为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;③当a为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);④当a为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。
当a为分数时,a的正负性和分母的奇偶性决定了函数的单调性:①当a>0,分母为偶数时,函数在第一象限内单调递增;②当a>0,分母为奇数时,函数在第一、三象限各象限内单调递增;③当a<0,分母为偶数时,函数在第一象限内单调递减;④当a<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减);(3)当a>1时,幂函数图形下凸(竖抛);当0<a<1时,幂函数图形上凸(横抛)。
幂函数与指数函数的概念与性质

幂函数与指数函数的概念与性质幂函数和指数函数是数学中常见的函数类型,它们在数学和实际生活中的应用非常广泛。
本文将重点介绍幂函数和指数函数的概念和性质,以帮助读者更好地理解和运用这两种函数。
一、幂函数的概念与性质幂函数是一类以自变量的幂次为指数的函数,表达形式为f(x) = x^n。
其中,n为常数,可以是整数、分数或负数。
幂函数可以分为正幂函数和负幂函数。
1. 正幂函数当n为正数时,幂函数为正幂函数,表达式为f(x) = x^n。
正幂函数的图像随着n的变化而发生改变。
- 当n > 1时,正幂函数的图像在原点右侧逐渐变陡;当x > 1时,f(x)的值变得更大,呈现出指数增长的趋势。
- 当0 < n < 1时,正幂函数的图像在原点右侧逐渐变缓;当0 < x< 1时,f(x)的值变得更大,呈现出指数衰减的趋势。
- 当n = 1时,正幂函数是线性函数,图像为一条直线,斜率为1。
2. 负幂函数当n为负数时,幂函数为负幂函数,表达式为f(x) = x^n。
负幂函数的图像在定义域内是连续的,它们在x轴上的负半轴上逐渐变陡,而在x轴上的正半轴上逐渐变缓。
二、指数函数的概念与性质指数函数是以一个正实数为底数,以自然对数e(约等于2.71828)为底,以变量的指数作为乘幂的函数,表达形式为f(x) = a^x。
指数函数的性质如下:1. 底数为a的指数函数与底数为1/a的指数函数互为倒数关系。
即f(x) = a^x 和 g(x) = (1/a)^x 互为倒数。
2. 指数函数在不同的底数和指数变化下,有不同的增长趋势:- 当a > 1时,指数函数呈现出指数增长的趋势,随着x的增大,f(x)的值变得更大。
- 当0 < a < 1时,指数函数呈现出指数衰减的趋势,随着x的增大,f(x)的值变得更小。
三、幂函数与指数函数的关系幂函数和指数函数之间存在密切的联系,可以通过归纳法来证明它们的相互转化关系。
幂函数的基本概念与性质

幂函数的基本概念与性质幂函数是数学中一类重要的函数类型,其表示形式为$f(x) = ax^b$,其中a和b为常数,且b是实数。
幂函数的基本概念包括定义域、值域、图像特征等,而幂函数的性质则涉及到增减性、奇偶性、最值和渐近线等方面。
本文将详细探讨幂函数的基本概念与性质,以帮助读者更好地理解这一函数类型。
一、幂函数的基本概念1. 定义域:幂函数的定义域为所有使得底数$x$的幂指数$b$合法的实数。
通常来说,当$b$为有理数时,定义域为全体实数;若$b$为无理数,定义域则需根据具体情况进行讨论。
2. 值域:幂函数的值域根据幂指数$b$的正负以及常数$a$的正负可以得到不同的结果。
当$b$为正数时,如果$a$也为正数,则值域为全体正实数;若$a$为负数,则值域为全体负实数。
当$b$为负数时,根据奇偶性的不同,值域也有所不同。
3. 图像特征:幂函数的图像特征主要与幂指数$b$的正负、常数$a$的正负以及其他可能的变化因素有关。
当$b$为正数时,幂函数呈现递增趋势,且随着$b$的增大,图像会更加陡峭;当$b$为负数时,幂函数会呈现递减趋势,且随着$b$的增大,图像会更加平缓。
二、幂函数的性质1. 增减性:当幂函数的幂指数$b$为正数时,函数是递增的,即随着自变量$x$的增大,函数值$f(x)$也随之增大。
相反,当$b$为负数时,函数是递减的,即随着自变量$x$的增大,函数值$f(x)$会减小。
2. 奇偶性:幂函数的奇偶性取决于底数$x$的幂指数$b$的奇偶性。
当$b$为偶数时,函数是偶函数,即$f(-x) = f(x)$;当$b$为奇数时,函数是奇函数,即$f(-x) = -f(x)$。
3. 最值:当幂函数的幂指数$b$为正数时,最小值为函数的定义域中最小的值,最大值为正无穷。
当幂指数$b$为负数时,最小值为负无穷,最大值为函数的定义域中最小的值。
同时,最值的具体取值还与常数$a$的正负有关。
4. 渐近线:当幂函数的幂指数$b$大于1时,函数的图像会趋近于$y=0$的水平渐近线;当幂指数$b$小于1时,函数的图像会趋近于$x$轴的正半轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
x (7)y
(x
1)2
答案:(2)(5)(6)
幂函数定义
❖ 一般地,我们把形如 y x( R)的函数叫
做幂函数,其中x 是自变量, 是常数
指数函数
幂函数
y ax (a 0且a 1) y x( R)
自变量在指数位置
自变量在底数位置
练习
判断下列函数哪几个是幂函数
(1)y
3x (2)y
1 x3
(3)y
2x 3 (4)y
x3 1
(5)y
1 (6)y
幂函数的概念
我们先来看几个具体问题:
1. 如果张红买了每千克 一元的蔬菜w千克,那么她需要支付的钱
p w (这里p是w的函数)
s a 2.如果正方形的边2长为a,那么正方形的面积 (这里s 是 a的函数)
3.如果立方体的边长为a,那么立方体的体积
v a 3 (这里vபைடு நூலகம்a的函数)
4.如果一个正方形场地的面积为s,那么这个正方形的边长
a s1/2 (这里a是s的函数)
5.如果某人t秒骑车行进1千米,那么他骑车的平均速度
v t 1 (这里v是t的函数)
比较 归纳
y x y x2
y x3
y y x1/2
这五个函数式的共同特征:
(1)指数是常数 (2)底数是自变量 (3)函数式前的系数都是1
(4)形式都是 y x ,其中 是常数
x1