盈亏问题一共有以下六种情况知识分享
盈亏问题笔记

盈亏问题笔记
盈亏问题是一种常见的数学问题,通常涉及到一些物品或服务的购买或销售,其中涉及到盈利或亏损的情况。
以下是一些关于盈亏问题的笔记:
1. 定义:盈亏问题是指在一个购买或销售过程中,由于价格、数量、成本等因素的变化,导致盈利或亏损的情况。
2. 常见场景:盈亏问题可以出现在各种场景中,如商品打折、购买股票、房屋出租等。
3. 解决方法:解决盈亏问题通常需要采用数学模型或者公式来描述问题,然后通过计算来找出最佳的解决方案。
4. 盈亏平衡点:在盈亏问题中,有一个概念叫做盈亏平衡点。
这个点是指在这个点上,盈利和亏损相等,即利润为零。
找到盈亏平衡点是解决盈亏问题的重要步骤之一。
5. 变量和方程:在解决盈亏问题时,通常需要引入一些变量和建立方程来描述问题。
例如,在商品打折的问题中,我们可以设商品的原价为x元,折扣率为y,销售数量为z件,那么总售价就是x×y×z元。
6. 案例分析:通过一些具体的案例分析,可以帮助我们更好地理解盈亏问题的解决方法。
例如,可以分析商品打折、股票购买、房屋出租等场景中的盈亏问题,找出最佳的解决方案。
总之,盈亏问题是一种常见的数学问题,通过建立数学模型和公式来描述问题,可以有效地解决这类问题。
同时,具体的案例分析也可以帮助我们更好地理解盈亏问题的解决方法。
盈亏问题的最简单讲解

盈亏问题的最简单讲解一、定义与概念盈亏问题是一种常见的问题,主要涉及如何计算成本、收益和利润等经济指标。
盈亏问题通常涉及到商品的购买、销售、租赁等经济活动,其中涉及到成本和收益的核算。
二、盈亏问题的类型成本盈亏问题:主要涉及成本的核算和利润的计算。
例如,购买原材料的成本、生产产品的成本、销售产品的成本等。
销售盈亏问题:主要涉及销售收入的核算和利润的计算。
例如,销售产品的收入、销售服务的收入、租赁资产的收入等。
租赁盈亏问题:主要涉及租赁费用的核算和利润的计算。
例如,租赁设备的费用、租赁场地的费用、租赁软件的费用等。
三、盈亏问题的解决方法建立数学模型:通过建立数学模型,可以方便地计算成本、收益和利润等经济指标。
常用的数学模型包括线性方程、二次方程和不等式等。
收集数据:收集相关的数据是解决盈亏问题的关键。
需要收集的数据包括成本数据、销售数据、租赁数据等。
计算成本和收益:根据收集到的数据,可以计算出成本和收益。
常用的计算方法包括加法和乘法等。
计算利润:利润是收益减去成本后的净值。
通过计算利润,可以判断盈亏问题的结果。
四、盈亏问题的应用场景商业决策:盈亏问题在商业决策中具有广泛的应用。
例如,企业需要决定是否购买新的设备或扩大生产规模,这需要考虑成本和收益的平衡。
投资决策:投资者需要考虑投资的成本和收益,以决定是否投资某个项目或公司。
盈亏问题可以帮助投资者做出明智的决策。
财务管理:财务管理是企业或组织的重要工作之一,而盈亏问题则是财务管理的重要内容之一。
通过解决盈亏问题,可以有效地管理企业或组织的财务状况。
五、盈亏问题的注意事项数据准确性:在解决盈亏问题时,需要确保数据的准确性。
如果数据不准确,可能会导致错误的决策。
考虑所有因素:在解决盈亏问题时,需要考虑所有相关的因素,包括成本、收益、税收、市场环境等。
长期视角:在解决盈亏问题时,需要具有长期视角,不仅要考虑当前的盈亏情况,还要考虑未来的发展趋势和市场变化等因素。
小学六年级数学上册盈亏问题知识点总结

小学六年级数学上册盈亏问题知识点总结
盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)divide;两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)divide;两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足
数)divide;两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
更多六年级数学上册盈亏问题知识点和其他相关复习资料,尽在!请大家及时关注!。
四年级数学:盈亏问题完整版

四年级数学:盈亏问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】盈亏问题一、考点、热点回顾在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量二、典型例题例1、一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组多少人一共有多少棵树例2、学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人铅笔有多少支例3、学校给一批新入学的学生分配宿舍。
如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。
求学生宿舍有多少间住宿学生有多少人三、课堂练习1、幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友一共有多少个积木2、3、某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间学生多少人4、5、将月季花插入一些花瓶中,如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求花瓶的只数和月季花的朵数。
6、美术小组的同学分发图画纸。
如果每人发5张,则少32张;如果每人发3张,则少2张。
美术小组有多少名同学一共有多少张图画纸7、8、一些少先队员到山上去种一批树。
如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。
问有多少名少先队员有多少棵树9、10、杨老师将一叠练习本分给同学。
七年级盈亏问题知识点

七年级盈亏问题知识点在日常生活中,盈亏问题出现的频率非常高,它不仅与我们的家庭经济息息相关,也与我们的商业经营密切相关。
在数学课上,我们需要学习盈亏问题的计算,掌握盈亏问题的知识点,才能更好地应对实际问题。
一、概念盈亏问题是指在经营中产生的收入和支出之差。
如果收入大于支出,那么经营者就会获得盈利;如果支出大于收入,那么经营者就会出现亏损。
因此,盈亏问题是一个涉及到收入和支出的问题。
二、计算方式1. 盈利计算盈利计算的公式是:收入 - 支出 = 盈利。
例如,小明在卖饮料的过程中,花费了100元,卖出了150元的饮料。
那么他的盈利就是150 - 100 = 50元。
2. 亏损计算亏损的计算方式与盈利相反,它的公式是:支出 - 收入 = 亏损。
例如,小红在卖饮料的过程中,花费了150元,但只卖出了100元的饮料。
那么她的亏损就是150 - 100 = 50元。
三、运用实例1. 单价计算在商业经营中,我们需要根据成本和利润来确定售价。
售价计算的公式是:售价 = 成本 + 利润。
例如,如果一件衣服的成本是100元,想要获得20%的利润,那么售价就是100 + (100 × 20%) = 120元。
2. 利润率计算利润率是指利润占销售额的百分比。
它的公式是:利润率 = 利润 ÷销售额 × 100%。
例如,一家店铺总共卖出1000元的商品,获得200元的利润。
那么它的利润率就是200 ÷ 1000 × 100% = 20%。
四、注意事项在实际计算过程中,我们还需要注意以下几点:1. 对金额的正确处理,小数点要放在正确的位置;2. 利润率的计算要除以销售额而非成本;3. 盈亏问题的计算需要严格按照公式来算,否则会影响结果的正确性。
五、总结盈亏问题是生活中不可避免的问题,我们在实际中需要掌握计算的方法,熟练运用计算公式,才能更好地应对实际问题。
在学习过程中,我们需要注意练习,多做题多思考,才能加深对知识点的理解,提升解决实际问题的能力。
盈亏问题的几种情况

盈亏问题的几种情况一、盈盈公式:(盈-盈)÷分差=人数二、亏亏公式:(亏-亏)÷分差=人数三、盈亏公式:(盈+亏)÷分差=人数1、参加少年宫科技组活动的学生,如果分为8个小组,则多34人;如果分为1 0个小组,则多、10人。
每个小组有多少人?这批学生共有多少人?2、把纸分给一些儿童,如果每人分3张,则缺2张;如果每人分5张,则缺12张。
求人数和张数。
3、把一批课本平均分给若干个同学,如果分给18个同学则差18本;如果分给22个同学,则少62本。
每人分得多少本?共有课本多少本?4、某人打算在若干天内读完一本书,每天读40页,就剩下150页;每天读50页,则剩下20页。
问:这个人打算在多少天内读完这本书?这本书有多少页?5、把一批扫帚平均分给若干个清洁小组,如果分给9个小组,少24把扫帚;如果分给11个小组,少40把扫帚,每组分到扫帚多少把?共有扫帚多少把?6、学校图书室新买一批图书,其中参考书是故事书的2倍.六(1)班的几位同学来借书,每人借故事书3本则多余5本,每人借参考书7本则正好借完.问参考书和故事书各有多少本?7、张小冬离家到县城去上学,他以每分钟50米的速度走了2分钟后,发觉可能要迟到8分钟,于是他加快速度,每分钟多走10米,结果到学校时离上课还有5分钟.张小冬家离学校有多远?8、用一根绳子绕树三圈余3分米,如果绕树四圈还差4分米,树的周长多少分米?绳子长多少分米?9、用绳子测游泳池水深,绳子两折时,多余出60厘米,绳子三折时,还差40厘米,则游泳池水深多少厘米?绳子长多少厘米?10、李师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,就可以提前5天完成。
这批零件共有多少个?{第六届华杯赛试题}11、同学们去搬砖,如果每人搬10块,则余35块没有人搬;如果每人搬12块,则有1人少搬5块。
问共有几人?共有多少块砖?12、幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数最后不足30个。
《盈亏问题》 知识清单

《盈亏问题》知识清单一、什么是盈亏问题盈亏问题是一类在日常生活和数学学习中经常遇到的问题。
简单来说,就是在分配物品或者进行活动时,根据不同的分配方式会出现有的情况有剩余(盈),有的情况有不足(亏),通过已知条件来求出物品总数和参与分配的人数等关键信息。
比如,把一定数量的苹果分给小朋友,如果每人分3 个,多10 个;如果每人分 5 个,少 8 个。
问有多少个小朋友,多少个苹果?这就是一个典型的盈亏问题。
二、盈亏问题的常见类型1、一盈一亏这是最常见的一种类型,即一次分配有剩余,一次分配有不足。
例如:学校给学生发作业本,如果每人发 5 本,还多 12 本;如果每人发 8 本,就少 3 本。
求学生人数和作业本总数。
2、两盈两次分配都有剩余。
比如:幼儿园给小朋友分糖果,每人分 7 颗,多 18 颗;每人分 9 颗,多 6 颗。
问小朋友有多少人,糖果有多少颗?3、两亏两次分配都不足。
举个例子:工厂给工人发工具,每人发 4 套,少 10 套;每人发 3 套,少 5 套。
求工人人数和工具总数。
4、一盈尽一次分配有剩余,一次刚好分完。
例如:老师把一些铅笔分给学生,如果每人分 6 支,还多 8 支;如果每人分 8 支,刚好分完。
问有多少个学生,多少支铅笔?5、一亏尽一次分配不足,一次刚好分完。
比如:将一批图书分给学生,如果每人分 10 本,少 20 本;如果每人分 8 本,刚好分完。
求学生人数和图书总数。
三、盈亏问题的解题思路1、找出两次分配的差异首先要明确两次分配中每人分得的数量差异以及结果(盈或亏)的差异。
2、计算单位差异量通过两次分配的差异,计算出每人分配数量的差。
3、求出总差异量根据盈与亏的数量,求出总的数量差异。
4、计算分配对象的数量用总差异量除以单位差异量,就可以得到分配对象(如人数)的数量。
5、求得物品总量根据已知条件和求出的分配对象数量,就可以计算出物品的总量。
四、盈亏问题的计算公式1、一盈一亏的情况(盈+亏)÷两次每人分配数的差=参与分配的人数物品总数=每人分配数 ×参与分配的人数+盈(或亏)2、两盈的情况(大盈小盈)÷两次每人分配数的差=参与分配的人数物品总数=每人分配数 ×参与分配的人数+盈3、两亏的情况(大亏小亏)÷两次每人分配数的差=参与分配的人数物品总数=每人分配数 ×参与分配的人数亏4、一盈尽的情况盈 ÷两次每人分配数的差=参与分配的人数物品总数=每人分配数 ×参与分配的人数+盈5、一亏尽的情况亏 ÷两次每人分配数的差=参与分配的人数物品总数=每人分配数 ×参与分配的人数亏五、盈亏问题的实例分析例 1:学校组织学生植树,如果每人植 4 棵,还多 16 棵;如果每人植 6 棵,还少 8 棵。
六年级盈亏问题知识点

六年级盈亏问题知识点在六年级的学习中,盈亏问题是数学中的一个重要知识点。
通过学习盈亏问题,我们可以培养学生的数学思维能力和解决实际问题的能力。
下面就给大家介绍一下六年级盈亏问题的相关知识点。
1. 盈亏的定义盈亏是指在买卖商品或进行某项活动时,获得的钱超过或不足所投入的钱的情况。
当获得的钱超过所投入的钱时,称为盈利;当获得的钱不足所投入的钱时,称为亏损。
盈亏是经济活动中一个非常重要的概念。
2. 盈亏的计算方法盈亏的计算方法可以通过算式进行表示。
当盈利时,我们用“+”表示;当亏损时,我们用“-”表示。
具体的计算方法如下:- 盈利的计算方法:盈利金额 = 卖出价格 - 买入价格- 亏损的计算方法:亏损金额 = 买入价格 - 卖出价格需要注意的是,买入价格和卖出价格都是指商品的实际交易价。
在解决盈亏问题时,我们需要根据具体情况来确定买入和卖出的价格,并进行相应的计算。
3. 盈亏问题中的常见应用盈亏问题在日常生活中有很多实际应用,我们可以通过解决一些具体问题来加深对盈亏概念的理解。
以下是盈亏问题的几个常见应用:- 买卖问题:A同学以低价购买了一些水果,之后以高价卖出,求他的盈利金额。
- 折扣问题:某商店举行打折活动,原价100元的商品打8折出售,求购买者的盈利金额。
- 运输问题:一辆货车从A地到B地运输商品,油费是300元,但货车提供了150元的折扣,求运输的盈亏金额。
- 收入支出问题:小明每月的收入为400元,但每月的支出为420元,求小明每月的亏损金额。
通过解决这些应用问题,可以帮助学生将盈亏问题与实际生活相联系,进一步理解盈亏的概念和计算方法。
4. 盈亏问题的解题策略解决盈亏问题需要一定的策略和方法。
以下是一些解题的常见策略:- 分析问题:仔细阅读问题,理清楚问题的要求,并确定需要计算的量是盈利还是亏损。
- 确定计算方法:根据问题的描述,确定所需的计算方法,即盈亏的计算公式。
- 明确给定条件:将问题中给出的条件加以整理,并将其转化为数学表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盈亏问题一共有以下六种情况:
一:盈+正好(或正好+盈,都一样,以下同)
1、计划做一批零件,如果每组完成4个,则超额完成8个;如果每组完成3个,则正好完成任务,求有几个组?计划做多少个零件?思路:第一次每组完成4个,超额了(8个),第二次每组完成3个(每组少做了1个),这时候正好完成任务,说明第二次比第一次总共少做了8个,这样问题就转化成:每组少做了1个,总共少做了8个,求有几个组?
很容易算出:8÷1=8个组,
注意:计划完成的零件数量=8×4-8=24个零件。
为什么要减去8?要注意理解题意,想一想
验算:8×3=24个零件,正好是计划完成的数量(24个),正确。
二:大盈+小盈(或小盈+大盈)
2、计划做一批零件,如果每组完成4个,则超额完成8个;如果每组完成6个,则超额完成18个,求有几个组?计划做多少个零件?思路:第一次每组完成4个,超额了(8个),第二次每组完成6个(每组多做了2个),这时候又超额完成了,但超额完成的数量比第一次多,多了18-8=10个,说明第二次比第一次总共多做了10个,这样问题就转化成:每组多做了2个,总共多做了10个,求有几个组?
很容易算出:10÷2=5个组,
注意:计划完成的零件数量=5×4-8=12个零件。
为什么要减去8?要注意理解题意
验算:5×6=30个零件,比计划的12个零件多了18个,正确。
三:盈+亏(或亏+盈)
3、计划做一批零件,如果每组完成4个,则超额完成8个;如果每组完成3个,则差5个未完成,求有几个组?计划做多少个零件?
思路:第一次每组完成4个,超额了(8个),第二次每组完成3个(每组少做了1个),这时候差5个未完成,先计算:第二次比第一次少做了几个?
“超额完成8个”的意思是:比计划任务的数量多了8个,没完成时:“还差5个未完成”的意思是:比计划任务的数量少了5个,根据题意:第一次比计划多做了8个,第二次比计划少做了5个,说明第二次比第一次总共少做了8+5=13个,(想一想,是这样吗?)
这样问题就转化成:每组少做了1个,总共少做了13个,求有几个组?
很容易算出:13÷1=13个组,
注意:计划完成的零件数量=13×4-8=44个零件。
为什么要减去8?要注意理解题意
验算:13×3=39个零件,比计划的44个零件少了5个,正确。
四:亏+正好(或正好+亏)
4、计划做一批零件,如果每组完成4个,则还差8个未完成;如果每组完成6个,则正好完成任务,求有几个组?计划做多少个零件?思路:第一次每组完成4个,还差8个未完成,第二次每组完成6个(每组多做了2个),这时候正好完成任务,先求:第二次比第一次多做了几个?(想一想,是不是8个)
这样问题就转化成:每组多做了2个,总共多做了8个,求有几个组?很容易算出:8÷2=4个组,
注意:计划完成的零件数量=4×4+8=24个零件。
为什么
要加8?要注意理解题意,想一想
验算:4×6=24个零件,正好完成了计划的的任务(24个零件),正确。
五:小亏+大亏(或大亏+小亏)
5、计划做一批零件,如果每组完成4个,则还差5个未完成;如果每组完成3个,则还差9个未完成,求有几个组?计划做多少个零件?思路:第一次每组完成4个,还差5个未完成,第二次每组完成3个(每组少做了1个),这时候还差9个未完成,先求出:第二次比第一次少做了几个?想想看,是不是少了:9-5=4个
这样问题就转化成:每组少做了1个,总共少做了4个,求有几个组?很容易算出:4÷1=4个组,
注意:计划完成的零件数量=4×4+5=21个零件。
为什么要加上5?
要注意理解题意
验算:4×3=12个零件,比计划的21个零件少了9个,正确。
六:亏+盈,盈+亏:
6、计划做一批零件,如果每组完成4个,则还差5个未完成;如果每组完成6个,则超额完成9个,求有几个组?计划做多少个零件?思路:第一次每组完成4个,还差5个未完成,第二次每组完成6个(每组多做了2个),这时候超额完成了(多了9个),先求:第二次比第一次总共多做了几个?想想看,是不是多做了9+5=14个
这样问题就转化成:每组多做了2个,总共多做了14个,求有几个组?
很容易算出:14÷2=7个组,
注意:计划完成的零件数量=7×4+5=33个零件。
为什么要加上5?要注意理解题意
验算:7×6=42个零件,比计划的33个零件多了9个,正确。
盈亏问题总结:
1、理解题意,“超额完成8个”的意思是:比计划任务的数量多了8个,没完成时:“还差5个未完成”的意思是:比计划任务的数量少了5个
2、盈亏问题解题第一步:先求出二次的工作量差值,比如:第一次每组完成4个,第二次每组完成6个,工作量的差值就是
6-4=2,如果是分苹果也可类推
解题第二步:是求出总量差值,比如:第二次比第一次总共多做了几个?或:第二次比第一次少做了几个?
解题第三步:问题转化成已学过的:每组多做了2个,总共多做了14个,求有几个组?。