高压电缆接地—同轴接地电缆的使用
同轴电缆接地方法

同轴电缆接地方法
同轴电缆接地的方法主要有以下几种:
1. 接地防雷法:在每一个放大器或者其他容易遭受雷击的器件单独装设接地线,使雷电产生的能量释放到大地,对器件起保护作用。
2. 限压防雷法:限制电压在一定范围内,以保护电路和设备。
3. 隔离防雷法:通过隔离雷电的电磁场,保护电路和设备免受雷电电磁干扰。
请注意,接地电阻要尽量小,且接地线必须和电源接地线分开,否则起不到防雷作用。
如果系统较大,需要防雷保护的器件较多且分散,在每个器件上都安装良好的接地线,可能会增加工程量。
以上信息仅供参考,如需获取更多信息,建议咨询专业工程师。
同轴电缆对接方法

同轴电缆对接方法【原创版3篇】目录(篇1)一、同轴电缆概述二、同轴电缆的连接方法1.压接式连接2.焊接式连接三、同轴电缆连接的注意事项四、同轴电缆连接器的选择与兼容性五、同轴电缆的安装与维护正文(篇1)一、同轴电缆概述同轴电缆是一种广泛应用于电视、宽带网络、无线通信等领域的电子元器件。
它主要由两根同心圆的金属导体组成,内外导体之间用绝缘材料隔开。
同轴电缆具有良好的抗干扰性能、低信号衰减和较高的传输速率等特点。
二、同轴电缆的连接方法1.压接式连接压接式连接是同轴电缆连接的一种常见方法,它主要通过压接钳将同轴电缆的芯线与连接器接口压接在一起。
这种方法操作简单,连接稳定,广泛应用于各类电子设备的同轴电缆连接。
2.焊接式连接焊接式连接是通过焊接设备将同轴电缆的芯线与连接器接口焊接在一起。
这种方法连接更加牢固,适用于对连接稳定性要求较高的场合,如射频同轴电缆组件的连接。
三、同轴电缆连接的注意事项在进行同轴电缆连接时,应注意以下几点:1.选择合适的同轴电缆和连接器,确保它们具有相同的规格和性能参数。
2.确保连接器与同轴电缆的接口处具有良好的接地性能,以减小信号干扰。
3.操作过程中应避免电缆芯线受到损坏,以免影响连接质量。
4.在连接完成后,检查连接处是否牢固可靠,如有松动现象应及时处理。
四、同轴电缆连接器的选择与兼容性选择同轴电缆连接器时,应注意以下几点:1.兼容性:选择与同轴电缆性能参数相匹配的连接器,以确保连接器的设计特点与同轴电缆的性能要求相兼容。
2.接口形式:根据实际应用场景选择合适的接口形式,如螺纹接口、直插接口等。
3.质量:选择质量可靠、具有良好信誉的连接器品牌,以保证连接器的稳定性和耐用性。
五、同轴电缆的安装与维护1.安装:在安装同轴电缆时,应将电缆沿着设备间的线路槽敷设,避免与其他电缆过于接近,以免产生信号干扰。
同时,应确保电缆具有良好的接地性能。
2.维护:定期检查同轴电缆连接处的稳定性,如有松动现象应及时处理。
110kV高压单芯电缆线路金属护套接地方式

110kV高压单芯电缆线路金属护套接地方式110kV高压电缆线路护套必须接地运行,并且考虑限制其护套感应电压,文章讲解其不同的接地方式和原理,以便运行人员更好地巡查、维护和消缺,以免造成高压电缆过电压导致电缆外护层击穿,从而形成环流和腐蚀,最终影响电缆线路物载流量、运行寿命及人身安全。
标签:电缆护套不接地危害;护套接地方式;中点接地方式;交叉互联接地方式近年来,随着城市改造建设的加快,110kV高压电缆线路大量投入运行,并且大量110kV高压电缆线路敷设在人群密集区,其运行的安全性倍感重要。
《电力安全规程》规定:电气设备非带电的金属外壳都要接地,因此电缆的金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,按照GB50217-1994《电力工程电缆设计规程》的要求,35kV及以下电压等级的电缆基本上为三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在金属屏蔽层两端基本上没有感应电压,所以采用两端接地不会有感应电流流过金属屏蔽层,两端就基本上没有感应电压,所以两端接地后不会有感应电流流过金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%~95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
110kV电缆工程施工

110kV电缆敷设施工方案1.工程概况在某220kV变电站至某110kV变电站输电线路全部采用电缆方式,本期建设两回电缆线路,电缆路径3.852km,采用ZR-YJLW02-64/110-1×800mm2电缆共24268米,电缆采用2个交叉互联段连接方式,共制作GIS电缆终端头6个、电缆绝缘中间头24个、电缆直通中间头12个,交叉互联箱8个、接地箱6个、240mm2接地电缆400米、240mm2同轴电缆400米,敷设36芯光缆4.1km。
2.施工机械110KV高压电缆敷设必备机具主要包括:电缆输送机、电缆支架、牵引机、滑车、输送机控制电源箱、动力及控制电缆等。
2.1电缆输送机电缆输送机的配置一般考虑如下几点:(1)电缆输送机是电缆敷设的核心设备,主要参数包括输送速度、额定输送能力、外形尺寸,电缆外径适用范围等。
输送速度要求6m/min。
(2)根据设计所提供的电缆分盘情况,每单根长度640m左右,而每个电缆井(80m左右)均应放置电缆输送机,在转弯井处尽可能多布置1台,综合考虑每根电缆施工共需要10台(包括2台备用)电缆输送机,就可以满足施工需求。
若通道的转弯较少,可减少输送机的数量。
(3)输送机型号主要有80-150、70-180等,据调查一般110kV高压电缆外径在80~110mm之间,因此,输送机可调范围80~110mm可满足一般施工需求。
70-180机型为管道型输送机,外形尺寸较小,下井方便,户外也可使用,一般井口直径0.75~0.8m,户外型输送机无法进人,可选此机型。
2.2总控箱和分控箱总控箱设置在两端时,由于220V供电线路引起电压压降,造成末端输送机电压过低,输送功率达不到额定出力,出现输送机不同步现象,对电缆容易造成伤害。
故应把总控箱放置在中间位置的电缆井内,每台输送机配置1个分控箱。
2.3动力电缆和控制电缆所有分控箱与总控箱之间都有动力电缆和控制电缆相连接,特别注意动力电缆如果截面不足,电压降落较大,影响输送机同步。
高压架空线路接地要求

5 高压架空线路和电缆线路的接地1 高压架空线路的接地1.1 6kV及以上无地线线路钢筋混凝土杆宜接地,金属杆塔应接地,接地电阻不宜超过30Ω。
1.2 除多雷区外,沥青路面上的架空线路的钢筋混凝土杆塔和金属杆塔,以及有运行经验的地区,可不另设人工接地装置。
1.3 有地线的线路杆塔的工频接地电阻,不宜超过表1的规定。
表11.4 66kV及以上钢筋混凝土杆铁横担和钢筋混凝土横担线路的地线支架、导线横担与绝缘子固定部分或瓷横担固定部分之间,宜有可靠的电气连接,并应与接地引下线相连。
主杆非预应力钢筋上下已用绑扎或焊接连成电气通路时,可兼作接地引下线。
利用钢筋兼作接地引下线的钢筋混凝土电杆时,其钢筋与接地螺母、铁横担间应有可靠的电气连接。
1.5 高压架空线路杆塔的接地装置,可采用下列型式:1 在土壤电阻率ρ≤100Ω•m的潮湿地区,可利用铁塔和钢筋混凝土杆自然接地。
发电厂和变电站的进线段,应另设雷电保护接地装置。
在居民区,当自然接地电阻符合要求时,可不设人工接地装置。
2 在土壤电阻率100Ω•m<ρ≤300Ω•m的地区,除应利用铁塔和钢筋混凝土杆的自然接地外,并应增设人工接地装置,接地极埋设深度不宜小于0.6m。
3 在土壤电阻率300Ω•m<ρ≤2000Ω•m的地区,可采用水平敷设的接地装置,接地极埋设深度不宜小于0.5m。
4 在土壤电阻率ρ>2000Ω•m的地区,接地电阻很难降到30Ω以下时,可采用6根~8根总长度不超过500m的放射形接地极或采用连续伸长接地极。
放射形接地极可采用长短结合的方式。
接地极埋设深度不宜小于0.3m。
接地电阻可不受限制。
5 居民区和水田中的接地装置,宜围绕杆塔基础敷设成闭合环形。
6 放射形接地极每根的最大长度应符合表2的规定:表27 在高土壤电阻率地区应采用放射形接地装置,且在杆塔基础的放射形接地极每根长度的1.5倍范围内有土壤电阻率较低的地带时,可部分采用引外接地或其他措施。
高压电缆接线规范

高压电缆接线规范篇一:电气设备系统布线规范电气设备系统布线规范1.目的和分类1.1 合适的布线(包括线缆选择与布敷、屏蔽连接与工艺)可以有效地减少外部环境对信号的干扰以及各种线缆之间的相互干扰,提高设备运行的可靠性。
同时,也便于查找故障原因和维护工作,提高产品的可用性。
1.2线缆大致分成以下几种类型:A类:敏感信号线缆 B类:低压信号线缆 D类:辅助电路配电电缆 E类:主电路配电电缆1.3 A类指各种串行通信(如以太网、RS485等)电缆、数据传输总线、ATC天线和通信电缆,无线电、以及各类毫伏级(如热电偶、应变信号等)信号线。
1.4 B类指5V、±15V、±24V、0~10mA、4~20mA等低压信号线(如各种传感器信号、同步电压等)以及广播音频、对讲音频电缆。
1.5 D类指220/400V、连接各种辅助电机、辅助逆变器的电缆。
1.6 E类指额定电压3kV(最大3600V)以下,500V以上的电力电缆。
1.7 这4类信号中,就易被干扰而言,按A→E的顺序排列,A 类线最易被干扰;就发射的电磁骚扰而言,按E→A的顺序排列,E类发射的骚扰最强。
2.线缆选择的基本原则2.1 应选择阻燃、无卤(或低卤)、无毒的绝缘线缆,线缆应具备良好的拉伸强度、耐磨损性和柔软性,以适应振动冲击的环境。
2.2 根据信号的电压等级、额定电流、预期短路电流、频率、环境条件、电磁兼容性要求及预期寿命来选择电缆的型号和规格。
线缆应符合TB/T 1484的要求。
2.3 配电电缆截面积按发热条件选择,负载电流必须小于允许载流量(安全载流量)。
2.4 电缆以线芯长期允许工作温度分成:A组(不超过100℃)和B组(不超过125℃)。
2.5 交流系统中,电缆的额定电压至少应等于系统的标称电压;直流系统中,该系统的标称电压应不大于该电缆额定电压的1.5倍。
2.6 [T]同轴电缆的抗干扰性能较好,传输距离长,可用作视频、射频信号的电缆。
高频同轴电缆在开关场和控制室两端分别接地

高频同轴电缆在开关场和控制室两端分别接地若高频同轴电缆只在一端接地,在隔离开关操作空母线等情况下,必然在另一端产生暂态高电压。
即可能在收发信机端子上产生高电压,可能中断收发信机的正常工作,甚至损坏收发信机部件。
高频同轴电缆两端接地的具体接法是:在开关场,高频电缆屏蔽层在结合滤波器二次端子上,用大于10mm2绝缘导线连通并引下,焊接在分支铜导线上,实现接地;在控制室内,高频电缆屏蔽层用1.5~2.5mm2的多股铜线直接接于保护屏接地铜排,实现接地。
要注意的是,个别人误以为收发信机机壳能可靠接地,只把高频电缆屏蔽层接到收发信机接地端子,而没有直接接到保护屏接地铜排上,这可能只是一点接地。
为了进一步降低开关场和控制室两接地点间的地电位差和电流流过高频电缆屏蔽层引起的电压降,我们要求在紧靠电缆处敷设截面不小于100mm2两端接地的接地铜排,该铜排在控制室电缆层处与地网相接,并延伸至与保护屏等电位面相连;在开关场距结合滤波器接地点3~5m处与地网连通,并延伸至结合滤波器的高频电缆引出端口。
如果微机保护装置集中在主控制室,为了实现可靠通信,必须将连网的中央计算机和各套微机保护以及其他微机的控制装置都置于同一等电位平台上,这个等电位面应该与控制室地网只有一点的联系,这样的等电位面的电位可以随着地网的电位变化而浮动,同时也避免控制室地网的地电位差窜入等电位面,从而保持了连网微机设备的地之间无电位差。
各微机设备都应有专用的具有一定截面的接地线接到等电位面上,设备上的各组件内外部的接地及零点位都应由专用连线连到专用接地线上,专用接地线接到保护盘的专用接地端子,接地端子以适当截面的铜线接到专用接地网上,这样就形成了一个等电位面的网,有利于屏蔽干扰。
构造等电位面有两种可能的方法,一是将微机保护盘底部已有的接地铜排通过焊接连通,同时在尽头用专用100mm2铜排连通,形成一个铜网络,这个网络与由电缆沟引来的粗铜导线连通。
借粗铜导线对控制室的接地点形成要求的对地网的唯一一点接地。
论110kV电缆线路中的交叉互联接地系统设计

论110kV电缆线路中的交叉互联接地系统设计摘要:基于110kV电缆线路中的交叉互联接地系统在电网线路的生产和运行中应用的广泛性,本文重点论述了此接地系统的设计原理和实际应用现状,并分析了常见的问题,提出了一些可行的措施,以期能够为相关的实践提供些许理论参考。
关键词:电缆线路交叉互联接地系统原理应用问题措施电缆线路中的交叉互联接地系统的设计原理是将电缆金属护套的一端直接接地,普遍用的是中间绝缘接头和交叉互联箱与三相电缆的金属护套调换位置以后进行重新连接,而另一端则通过保护接地,这样在完全换位的状况下,金属护套中就没有任何环流的通过,两端对地之间也就不会产生相应的感应电压,而是在每段的电缆线中间有一定的感应电压,并能保证换位处的感应电压幅度最高。
这种交叉互联方式的电缆线接地系统有其优势,也会存在着一定的缺陷和问题。
找到适当的方式就能化不利为有利。
一、110kV电缆线路中交叉互联接地系统的原理与应用就普遍情况来看,110kV 以上的高压电缆线路中使用的电缆很多都是单芯电缆,当有电流通过这种单芯电缆线时,便会产生磁力线交链的金属护套层,电缆线的两端面就会出现感应电压。
通过电缆线的电流越大,电缆线的长度越长,感应电压的幅度就越大,三者是呈正比的关系。
但是当电缆线路过长的时候,通过电缆护套上的感应电压相加起来的电压则会在一定程度上危胁到人们的生命安全。
所以当电缆线路发生短路的故障问题时候,或者电缆线路受到雷电的强烈冲击,或者操作不当导致电压过大,就容易形成强度很大的感应电压,有时候它能击破电缆线路的保护绝缘,所以单芯电缆线路的使用中一定要采取合适的接地方法,并按照科学的步骤进行操作,以达到保护人民的生命财产安全和电缆接地系统设备安全的双重目的。
电缆护套的接地方式有一端接地方式、两端接地方式以及交叉互联接地方式,选取那一种要看这种方式所带来的利弊是否平衡,是否能够承载高压电缆线路的正常负荷。
通常,较长的110kV电缆线路的金属护套的不能使用两端接地方式,例如当电缆线路的长度超过1500米时就不能进行两端接地,因为这样会导致金属护套中通过一定量的环流,从而降低了电缆线路的总载流量,而电缆线路中的交叉互联接地方式或者一端接地方式电缆通过的载流量均大于这种两端接地方式的电缆载流量,这样就不会造成资源的浪费,能源也不至于损失过多,由此看来较长的电缆线路一般可以采用护套一端接地方式,或者采用护套中点接地方式,还可以采用交叉互联接地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压电缆接地—同轴接地电缆的使用
1定义
同轴电缆也叫做同轴接地电缆。
该同轴接地电缆包括内导体、绝缘层、外导体、外保护套;绝缘层采用交联聚乙烯材质,耐受温度高;外导体采包括内外相邻的第一层导体和第二层导体;外保护套采用阻燃交联聚乙烯材料,阻燃防爆,具有良好的化学稳定性、憎水性和密封性。
使用时,同轴接地电缆的一端可以与高压电力电缆金属护层连接,另一端与接地保护装置连接,可将高压电力电的缆金属护层端的过电压导入接地保护装置从而有效地保护高压电力电缆的正常运行。
一般来讲10kV的单芯电缆也是可以的,采用屏蔽的同轴电缆优点更明显。
同轴电缆内外导体连接方式合理,方便,使用可靠.。
结构上讲,这些是属于双铜芯电缆,外铜芯铜丝是屏蔽作用,内铜丝导电流。
所有,这些10kV的同轴电缆的价格一般是普通10kV铜芯单芯电力电缆的双倍价格。
2型号
一般来讲同轴接地电缆电压等级为10kV;主要型号有VOV、YJOV和YOY三种型号,截面积从1×50~1×300mm2都有。
正规的写法例如:YJOV-8.7/10-240/240。
(1)表示:YJ:交联聚乙稀绝缘;V:聚氯乙稀绝缘;Y:聚乙稀绝缘;
(2)表示: O同轴电缆;
(3)表示:PVC护套;V是聚氯乙稀护套,Y是氯乙稀护套
3使用范围
高压电缆,按照单回路、双回路甚至更多回路设计,如果单根的电缆长度越长,感应电势越大,没有保护装置的情况下最好不要超过50V,即50伏的电压。
如果有保护装置,例如回流线、同轴电缆等,不应超过300V,如果超过,对超高压电缆外护套,其他动植物的安全,人的安全都是有一定影响的,对电缆的影响也是有的。
同轴电缆的作用可见一斑。
同轴接地电缆一般用于避雷器引线和防雷接地线,交联电缆线路护层绝缘保护装置的接地箱相连接线,因为雷电或浪涌电压对地泄放时间极短,就要求电缆需要具有低阻抗,同轴接地电缆对于瞬态具有低阻抗特性。
VOV(YOV、YJOV)一般用于高压电缆交叉互联的,用来减小金属护套的感应电势的。
用于110kV~220kV交联电缆线路护层绝
缘保护装置的保护箱与换位箱相连接。
输配线路中接地连接使用,交叉互联箱中连接使用。
同轴电缆内外导体连接方式合理方便,使用可靠。
4使用条件
1、导体的最高允许工作温度:90℃。
2、弯曲半径不小于电缆外径的20倍。
3、同轴接地电力电缆敷设时环境温度应不低于0℃。
4、工频额定电压8.7/10kV输配线路(110kV~220kV)接地。
5、短路时(最长时间不超过5s)电缆导体最高温度不超过250℃.
6、电缆金属护套或屏蔽层电压限制器与电缆金属护套的连接线应符合下列要求:
a、连接线应最短,3m之内可采用单芯塑料绝缘线,3m以上宜采用同轴电缆;
b、连接线的绝缘水平不得小于电缆外护套的绝缘水平;
c、连接线截面应满足系统单相接地故障电流通过时的热稳定要求。