抛物线练习题

合集下载

高考数学专题《抛物线》习题含答案解析

高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。

专题9.5 抛物线(A)(练习)【必考点专练】2023届高考数学二轮复习专题

专题9.5 抛物线(A)(练习)【必考点专练】2023届高考数学二轮复习专题

专专9.5抛物线专A专一、单选题1. 顶点在坐标原点,焦点是双曲线22145x y -=的左焦点的抛物线标准方程是( ) A. 212x y =B. 212y x =-C. 24y x =-D. 212y x =2. 设抛物线24y x =上一点P 到y 轴的距离是2,则点P 到该抛物线焦点的距离是( ) A. 1B. 2C. 3D. 43. 设抛物线的顶点为O ,焦点为F ,准线为.l P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( )A. 经过点OB. 经过点PC. 平行于直线OPD. 垂直于直线OP4. 已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =( )A. 2B. 3C. 6D. 95. 设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( )A.B.C. (1,0)D. (2,0)6. 已知抛物线C :22(0)y px p =>的焦点为F ,点00()2pM x x >是抛物线C上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( )A. 2y x =B. 22y x =C. 24y x =D. 28y x =7. 已知抛物线24y x =的焦点为F ,过点 F 的直线l 交抛物线于A , B 两点,延长 FB交准线于点C ,若||2||BC BF =,则||||BF AF 的值是( ) A.B.C.D.238. 已知点F 是抛物线24y x =焦点,M ,N 是该抛物线上两点,||||6MF NF +=,则MN 中点到准线距离为( )A.52B. 2C. 3D. 49. 已知抛物线C :24y x =的焦点为F ,过F 作倾斜角为锐角的直线l 交抛物线C 于A 、B 两点,弦AB 的中点M 到抛物线C 的准线的距离为5,则直线l 的方程为 ( )A. 30y --=B. 330x --=C. 10x y --=D. 10x --=10. 已知抛物线C :22(0)y px p =>的焦点为F ,点00()2pM x x >是抛物线C 上一点,以M 为圆心的圆与线段MF 相交于点A ,且被直线2px =截得的弦长为||MA ,若||3||MA AF =,则实数p 为( )A. 3B.C. 2D. 111. 如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(3,6),圆2C :22+6+8=0x y x -,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |3|QM |+的最小值为( )A. B. C. D. 12. 已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线的一条渐近线,且倾斜角为θ,则cos 2(sin 1)(sin 1)θθθ-+等于( )A. 1+B. 1C.D. 3二、多选题13. 在平面直角坐标系xOy 中,过抛物线22x y =的焦点的直线l 与该抛物线的两个交点为11(,)A x y ,22(,)B x y ,则( )A. 1214y y =B. 以AB 为直径的圆与直线12y =-相切C. ||||OA OB +的最小值D. 经过点B 与x 轴垂直的直线与直线OA 交点一定在定直线上14. 过抛物线24y x =的焦点F 作直线交抛物线于,A B 两点,M 为线段AB 的中点,则下列结论正确的是( )A. 以线段AB 为直径的圆与直线12x =-相交B. 以线段BM 为直径的圆与y 轴相切C. 当2AF FB =时,9||2AB = D. ||AB 的最小值为4三、填空题15. 已知抛物线C :24y x =,焦点为F ,点 M 为抛物线C 上的点,且||6FM =,则M 的横坐标是__________,作MN x ⊥轴于点N ,则FMNS=__________.16. 已知抛物线22(0)y px p =>,若第一象限的,A B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为__________.17. 在平面直角坐标系xOy 中,设抛物线212y p x =与222x p y =在第一象限的交点为A ,若OA 的斜率为2,则21p p =__________. 18. 已知F 是抛物线216y x =-的焦点,O 为坐标原点,点P 是抛物线准线上的一动点,点A 在抛物线上,且||8AF =,则||||PA PO +的最小值为__________.四、解答题19. 如图,过抛物线24y x=的焦点F任作直线l,与抛物线交于A,B两点,AB与x 轴不垂直,且点A位于x轴上方,AB的垂直平分线与x轴交于D点.(1)若2,AF FB=求AB所在的直线方程;(2)求证:||||ABDF为定值.20. 在直角坐标系xOy中,动圆P与圆Q:22(2)1x y-+=外切,且圆P与直线1x=-相切,记动圆圆心P的轨迹为曲线.C(1)求曲线C的轨迹方程;(2)设过定点(2,0)S-的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点(M与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:因为2459c =+=,3c ∴=,∴抛物线的焦点(3,0)F -,32p-=-,6p ∴=,212.y x ∴=- 故选.B2.【答案】C解:由于抛物线24y x =上一点P 到y 轴的距离是2,故点P 的横坐标为2.再由抛物线24y x =的准线为1x =-,以及抛物线的定义可得点P 到该抛物线焦点的距离等于点P 到准线的距离,故点P 到该抛物线焦点的距离是2(1)3--=, 故选:.C3.【答案】B解:根据抛物线的定义可得||||PF PQ =,故线段FQ 的垂直平分线必过点.P 故选.B4.【答案】C解:设点A 的坐标为(,)x y , 由点A 到y 轴的距离为9,可得9,x = 由点A 到抛物线C 的焦点的距离为12,可得122px += 解得 6.p = 故选.C5.【答案】B解:将2x =代入抛物线22y px =,可得y =±OD OE ⊥,可得1OD OE k k ⋅=-,即1=-,解得1p =,所以抛物线方程为:22y x =,它的焦点坐标1(,0).2故选:.B6.【答案】C解:画出图形如图所示,作MD EG ⊥,垂足为D ,由题意得点0(,22)M x ,0()2px >在抛物线上,则082px =,① 由抛物线的性质,可知0||2p DM x =-, 因为1sin 3MFG ∠=, 所以011||||()332pDM MF x ==+,所以001()232p px x -=+,解得0x p =,② 由①②解得02(x p ==-舍去)或0 2.x p ==故抛物线C 的方程为24.y x =故选:.C解:由题意可知,2p =,则(1,0)F ,准线为直线1x =-, 过A ,B 分别作AM ,BN 垂直准线于M ,N , 则有||||BF BN =,||||AF AM =, 因为||2||BC BF =,所以||2||BC BN =, 所以||2||3BC CF =, 所以||23BN p =, 所以4||||3BN BF ==,8||3BC =, 所以||4CF =, 因为||||||p CF AM CA =,所以2||44||||||4||4||CF AM CF AF AF AM ===+++,解得||4AM =, 所以||4AF =,所以4||13||43BF AF ==, 故选:.B解:F 是抛物线24y x =的焦点,(1,0)F ∴,准线方程1x =-,设11(,)M x y ,22(,)N x y , 12||||116MF NF x x ∴+=+++=,解得124x x +=,∴线段MN 的中点横坐标为2,∴线段MN 的中点到该抛物线准线的距离为21 3.+=故选.C9.【答案】A解:抛物线C :24y x =的焦点为(1,0)F ,设直线l 的方程为(1)y k x =-,0k >,点11(,)A x y ,点22(,)B x y ,线段AB 的中点00(,)M x y , 由2(1)4y k x y x=-⎧⎨=⎩,得2222(24)0k x k x k -++=, 所以0∆>,212224k x x k ++=,又因为弦AB 的中点M 到抛物线的准线的距离为5,所以12152x x ++=, 则然22224283k k k +=⇒=,又0k >,所以3k =30.y --= 故选:.A10.【答案】A解:将点M 的点坐标代入抛物线方程得0152px =, 解得0152x p=,即15(,15)2M p ,设圆M 的半径为R ,则过点M 作直线2px =的垂线,垂足为B ,所以||3RMB ==, 又因为||3||MA AF =, 所以4||3RMF =, 所以224()()1533R R -=, 解得3R =, 又因为115322p R p =-,解得3p =或5(p =-舍去). 故选.A11.【答案】C解:设抛物线的方程:22(0)y px p =>,焦点为F ,则3623p =⨯,则212p =,∴抛物线的标准方程:212y x =,焦点坐标(3,0)F ,准线方程为3x =-, 圆2C :22680x y x +-+=的圆心为(3,0),半径为1,由直线PQ 过圆的圆心即抛物线的焦点,可设直线l 的方程为:3my x =-,设P 、Q 坐标分别为,由联立,得 212360y my --=,21441440m ∆=+>恒成立,由韦达定理得:1212y y m +=,1236y y ⋅=-,,22121291212y y x x ⋅==⨯, 121111||||33PF QF x x ∴+=+++ ,则||3||||13(||1)PN QM PF QF +=+++||3||4PF QF =++当且仅当时等号成立,故选.C12.【答案】A解:将x c =代入双曲线22221x y a b -=中,解得2b y a=±,则,所以24222,4b c b a c a==, 即,所以,令tan baθ=, 即42tan 4tan 4θθ-=,解得2tan 222θ=+,故2222cos 2cos sin tan 112 2.(sin 1)(sin 1)cos θθθθθθθ-==-=+-+- 故选.A13.【答案】ABD解:由抛物线的方程可得焦点1(0,)2F ,显然过焦点F 的直线的斜率存在,设直线l 的方程为:12y kx =+, 联立2122y kx x y⎧=+⎪⎨⎪=⎩,整理可得:2210x kx --=,可得0∆>,122x x k +=,121x x =-,所以21212()121y y k x x k +=++=+,221212144x x y y ==; 所以A 正确;以AB 为直径的圆的圆心坐标为:1212(,)22x x y y ++,即21(,)2k k +, 根据抛物线的定义,可知半径12211||22122y y AB k +++==+, 所以圆心到直线12y =-的距离为:2211122k k ++=+等于半径,所以圆与直线相切,所以B 正确; 当直线AB 与x轴平行时,||||OA OB ==,||||OA OB += 所以||||OA OB +的最小值不是C 不正确;直线OA 的方程为:1112y x y x x x ==,与2x x =的交点坐标为:122(,)2x x x , 因为12122x x =-,所以经过点B 与x 轴垂直的直线与直线OA 交点在定直线12y =-上,故D 正确;故选:.ABD14.【答案】ACD解:24y x =的焦点(1,0)F ,准线方程为1x =-,设A ,B ,M 在准线上的射影为A ',B ',M ',由||||AF AA =',||||BF BB =',111||(||||)(||||)||222MM AA BB AF FB AB '='+'=+=,可得线段AB 为直径的圆与准线1x =-相切, 所以与直线12x =-相交, 故选项A 正确;当直线AB 的斜率不存在时,显然以线段BM 为直径的圆与y 轴相切;当直线AB 的斜率存在且不为0,可设直线AB 的方程为y kx k =-,联立24y x =,可得2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y , 可得12242x x k +=+,121x x =,设13x =+,23x =-,可得M 的横坐标为221k +, MB 的中点的横坐标为2212(1)2x k++,222||1|BM x k=--,当1k =时,MB 的中点的横坐标为52,1||22MB =, 显然以线段BM 为直径的圆与y 轴相交,故选项B 错;2AF FB =时,122y y =-,1212244()222y y k x x k k k y k k +=+-=+-==-, 故24y k=-, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22224(121)42k y k =--+=-=-, 将24y k =-代入得2162k=, 则28k =,则1249||22282AB x x =++=++=, 故选项C 正确; 显然当直线AB 垂直于x 轴,可得||AB 取得最小值4,故选项D 正确.故选:.ACD15.【答案】5解:抛物线C :24y x =,则焦点(1,0)F ,准线方程l 为1x =-,过点M 作ME l ⊥,垂足为E ,设00(,)M x y ,则||||6MF ME ==,所以016x +=,则05x =,所以点M 的横坐标为5;因为点M 在抛物线上,故204520y =⨯=, 所以0||25y =,即||25MN =,所以11||||(51)254 5.22FMN S FN MN =⨯⨯=⨯-⨯= 故答案为:5;4 5.16.【答案】2解:如图所示,设抛物线的准线为l ,作AC l ⊥于点C ,BD l ⊥于点D ,AE BD ⊥于点E ,由抛物线的定义,可得2AC AF ==,4BD BF ==, 22422,945BE AE AB BE ∴=-==-=-=,∴直线AB 的斜率5tan .2AB AE k ABE BE =∠== 故答案为:5.217.【答案】18解:由题意,设点A 的坐标(,)m n ,OA 的斜率为2,2n m ∴=,又A 是抛物线212y p x =与222x p y =在第一象限的交点,212n p m ∴=与222m p n =,将2n m =代入得2142m p m =与224m p m =,12p m ∴=,24m p =, 故2118p p =, 故答案为1.818.【答案】 解:点P 是抛物线216y x =-的准线上的一动点,P ∴点的横坐标为4,,由抛物线的定义得,A ∴到准线的距离为8,即A 点的横坐标为4-,又点A 在抛物线上,∴从而点A 的坐标为或,∴坐标原点关于准线的对称点的坐标为, 则当A ,P ,B 共线时, 取得最小值,最小值为:, 故答案为413. 19.【答案】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+,11(,)A x y ,22(,)B x y ,A 点在x 轴上方,10y ∴>,20y <,由,可得2440y ty --=,0>,124y y t ∴+=,124y y =-,11222(1,)2(1,)AF FB x y x y =⇒--=-,122y y ∴-=,由,代入124y y =-,因为10y >,所以0t >,解得122t =,AB ∴所在直线方程为22220.x y --=(2)证明:设AB 中点为(,)N N N x y ,1222N y y y t +∴==,221N x t =+,2(21,2)N t t ∴+, 所以AB 中垂线2:2(21)l y t t x t '-=---,2(23,0)D t ∴+,22|||231|22DF t t ∴=+-=+,||(AB=244t ==+,则22||442(||22AB t DF t +==+定值).20. 【答案】解:(1)设动圆圆心为(,)P x y ,动圆圆心P 到点(2,0)Q 的距离与到直线1x =-距离差为定圆半径1,即动点P 到顶点(2,0)的距离等于到定直线2x =-的距离,根据圆抛物线的定义,动点P 的轨迹是以定点(2,0)为焦点,直线2x =-为准线的抛物线,圆心P 的轨迹为曲线C 的方程为:28y x =;(2))假设在曲线C 上存在点M 满足题设条件,不妨设00(,)M x y ,11(,)A x y ,22(,)B x y ; 1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+; 120210*********(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,① 显然动直线l 的斜率非零,故可设其方程为2x ty =-,()t R ∈,联立28y x =,整理得28160y ty -+=,128y y t ∴+=,1216y y =,且12y y ≠,代入①式得020********MA MB t y k k y ty ++=++, 显然00y ≠,于是2000[8()64]()(16)160MA MB MB MA y k k t k k y y +-+++-=,②,欲使②式对任意t R ∈成立,必有,020016816MA MB y k k y y ∴+==+,即2016y =,04y =±, 将此代入抛物线C 的方程可求得满足条件的M 点坐标为(2,4),(2,4)-,综上所述,存在点(M 与A ,B 两点相异),其坐标为为(2,4),(2,4)-,直线MA 、MB 的斜率之和为定值.。

根据抛物线方程,给出10个别的题目。

根据抛物线方程,给出10个别的题目。

根据抛物线方程,给出10个别的题目。

根据抛物线方程,给出10个别的题目
根据抛物线方程,我们可以基于不同的参数和情境创造多个题目。

以下是10个不同的题目的示例。

1. 抛物线线段的长度
根据给定的抛物线方程,计算抛物线线段的长度。

2. 抛物线的焦点和直线的交点
已知抛物线方程和直线方程,求抛物线焦点和直线的交点坐标。

3. 最高点的坐标
已知抛物线方程,求抛物线的最高点坐标。

4. 抛物线的对称轴
已知抛物线方程,求抛物线的对称轴方程。

5. 通过三个点确定抛物线
已知三个点的坐标,求通过这三个点的抛物线方程。

6. 抛物线的焦距和准线
已知抛物线方程,求抛物线的焦距和准线方程。

7. 包络方程
已知一组抛物线方程,求包络方程。

8. 两个抛物线的公共焦点
已知两个抛物线方程,求解这两个抛物线的公共焦点坐标。

9. 抛物线上的切线方程
已知抛物线方程,求抛物线上某点的切线方程。

10. 角度问题
已知抛物线方程及两个切线的方程,求两个切线的夹角。

这些题目仅是根据抛物线方程衍生出的一部分,通过这些题目的练习,可以加深对抛物线方程的理解和应用能力。

初三抛物线练习题及答案

初三抛物线练习题及答案

初三抛物线练习题及答案抛物线是数学中的基本图形之一,也是初中数学中重要的内容之一。

掌握抛物线的性质和解题方法,不仅能提高数学水平,还有助于培养逻辑思维和分析问题的能力。

下面是一些初三抛物线练习题及答案,希望能对同学们的学习有所帮助。

1. 已知抛物线的顶点为(-1, 4),经过点(2, 1),求抛物线的解析式。

解析:设抛物线的解析式为y = ax^2 + bx + c。

由已知顶点坐标(-1, 4),可得:4 = a(-1)^2 + b(-1) + c化简得:a - b + c = 4 (式1)由已知经过点(2, 1),可得:1 = a(2)^2 + b(2) + c化简得:4a + 2b + c = 1 (式2)解方程组(式1)和(式2),得到a、b、c的值,即可得到抛物线的解析式。

2. 抛物线y = 2x^2 + 3x + 1的对称轴是什么?解析:对称轴是指抛物线上各点关于该轴对称。

对于一般形式的抛物线y = ax^2 + bx + c,其对称轴的公式为x = -b/2a。

对于给定的抛物线y = 2x^2 + 3x + 1,将其转化为一般形式,即a = 2,b = 3,c = 1。

代入公式x = -b/2a,可得对称轴的方程:x = -3/(2*2)化简得:x = -3/4所以,抛物线y = 2x^2 + 3x + 1的对称轴方程为x = -3/4。

3. 已知抛物线经过点(1, 5)和(-2, 1),求抛物线的解析式。

解析:设抛物线的解析式为y = ax^2 + bx + c。

由已知点(1, 5),可得:5 = a(1)^2 + b(1) + c化简得:a + b + c = 5 (式3)由已知点(-2, 1),可得:1 = a(-2)^2 + b(-2) + c化简得:4a - 2b + c = 1 (式4)解方程组(式3)和(式4),即可得到a、b、c的值,从而得到抛物线的解析式。

4. 已知抛物线过点(3, 4),顶点坐标为(-1, -2),求抛物线的解析式。

抛物线专题练习(含解析)

抛物线专题练习(含解析)

抛物线专题练习1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.163.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .85.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .56.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )7.A .1 B .2 C .3 D .47.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.538.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .489.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l的斜率为( )A .3B .1C .2D.1210.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .14.(2020·安徽省池州二中模拟)直线y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=163,则k=.15.(2020·江苏省淮北中学模拟)已知抛物线y2=2px(p>0)过点A(2,y0),且点A到其准线的距离为4.(1)求抛物线的方程;(2)直线l:y=x+m与抛物线交于两个不同的点P,Q,若OP⊥OQ,求实数m的值.16.(2020·浙江省丽水中学模拟)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为⊥AGB的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥F A,垂足为N,求点N的坐标.1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y【答案】D【解析】将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,⊥a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪3+14a =6,⊥a =-136. ⊥抛物线方程为x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16【答案】D【解析】由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.]3.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y 【答案】C【解析】设所求抛物线方程为y 2=kx 或x 2=my ,又点(-4,4)在抛物线上,则有-4k =16或4m =16,解得k =-4或m =4,所求抛物线方程为y 2=-4x 或x 2=4y .故选C.]4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .8【答案】C【解析】设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2=12,所以点C 的横坐标是x 1+x 22=6.]5.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5【答案】A【解析】由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.]6.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4 【答案】C【解析】依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3 7.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.53【答案】A【解析】因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心),故|BF |=|CF |=p 2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px ,整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x Ax D =2pp 8=16.故选A 8.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .48【答案】B【解析】由准线方程为x =-2,可知p =4,则抛物线C 的方程为y 2=8x .由抛物线的定义可知,|MN |=|MF |+|NF |=x 1+x 2+4=8,则x 1+x 2=4,即y 218+y 228=4,故y 21+y 22=32.故选B.] 9.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2 D.12【答案】B【解析】由于R (2,1)为AB 中点,设A (x A ,y A ),B (x B ,y B ).根据抛物线的定义|F A |+|FB |=x A +x B +p =2×2+p =5,解得p =1,抛物线方程为y 2=2x .y 2A =2x A ,y 2B =2x B,两式相减并化简得y B-y A x B -x A =2y A +y B =22×1=1,即直线l 的斜率为1.故选B.]10.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 【答案】D【解析】由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0.Δ=(4k 2-8)2-16k 4>0,解得-1<k <1.设A (x 1,y 1),B (x 2,y 2).x 1+x 2=8k 2-4.⊥ x 1x 2=4.⊥ 根据抛物线的定义及|F A |=2|FB |,得x 1+2=2(x 2+2),即x 1=2x 2+2,⊥且x 1>0,x 2>0,由⊥⊥解得x 1=4,x 2=1,代入⊥得k 2=89,k >0,⊥k =223.故选D.11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .【答案】-22【解析】⊥双曲线x 23-y 2=1的右焦点为(2,0),⊥抛物线方程为y 2=8x .⊥|AF |=3,⊥x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.⊥点A 在第一象限,⊥A (1,22),⊥直线AF 的斜率为221-2=-2 2.]12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .【答案】9【解析】根据题意,抛物线x 2=4y 的准线方程为y =-1,点A 到准线的距离为10,故点A 到x 轴的距离是9.]13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .【答案】63【解析】如图,设⊥AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,⊥点A 在抛物线y 2=3x 上,⊥14a 2=3×32a ,⊥a =6 3.] 14.(2020·安徽省池州二中模拟)直线y =k (x -1)与抛物线y 2=4x 交于A ,B 两点,若|AB |=163,则k = .【答案】±3【解析】设A (x 1,y 1),B (x 2,y 2),因为直线AB 经过抛物线y 2=4x 的焦点,所以|AB |=x 1+x 2+2=163,所以x 1+x 2=103.联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得到k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2k 2+4k 2=103,所以k =± 3.]15.(2020·江苏省淮北中学模拟)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 【解析】(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ⊥2+p2=4,⊥p =4,⊥抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m . ⊥OP ⊥OQ ,⊥x 1x 2+y 1y 2=m 2+8m =0, ⊥m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=(-24)2-4×64>0,符合题意. 综上,实数m 的值为-8.16.(2020·浙江省丽水中学模拟)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为⊥AGB 的平分线. 【解析】(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.⊥抛物线E 的方程为y 2=4x .(2)证明:⊥点A (2,m )在抛物线E 上,⊥m 2=4×2,解得m =±22,由抛物线的对称性,不妨设A (2,22),由A (2,22),F (1,0), ⊥直线AF 的方程为y =22(x -1),由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,⊥B ⎝⎛⎭⎫12,-2. 又G (-1,0),⊥k GA =223,k GB =-223,⊥k GA +k GB =0, ⊥⊥AGF =⊥BGF .⊥GF 为⊥AGB 的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.【解析】(1)抛物线y 2=2px (p >0)的准线为x =-p 2,于是4+p 2=5,⊥p =2. ⊥抛物线方程为y 2=4x .(2)⊥点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又⊥F (1,0),⊥k F A =43, ⊥MN ⊥F A ,⊥k MN =-34. ⊥F A 的方程为y =43(x -1), ⊥ MN 的方程为y -2=-34x , ⊥联立⊥⊥,解得x =85,y =45, ⊥点N 的坐标为⎝⎛⎭⎫85,45.。

抛物线专项练习-2020-2021学年高中数学新教材人教A版选择性必修1

抛物线专项练习-2020-2021学年高中数学新教材人教A版选择性必修1

抛物线一、单选题1.(2020·陕西省西安市远东一中高二期末(理))准线方程为1y =的抛物线的标准方程是( ) A .22x y = B .22y x =C .24x y =- D .24y x =-【答案】C 【解析】根据题意,抛物线的准线方程为1y =,即其焦点在y 轴负半轴上,且12p=,得2p =, 故其标准方程为24x y =-.故选:C2.(2019·乐清市知临中学高二期末)抛物线22y x =的焦点坐标为( ) A .1(0,)2B .1(0,)8C .1(,0)2D .(1,0)【答案】B 【解析】整理抛物线方程得212x y =, ∴焦点在y 轴,14P =,∴焦点坐标为10,8⎛⎫⎪⎝⎭,故选B.3.(2020·北京高三月考)抛物线24x y =的准线与y 轴的交点的坐标为( )A .1(0,)2- B .(0,1)- C .(0,2)- D .(0,4)-【答案】B-,故选B.准线方程为:,与y轴的交点为(0,1)4.(2020·北京市八一中学高三月考)已知抛物线24=上一点A的纵坐标为4,则点A到抛物线焦点的x y距离为()A.2 B.3 C.4 D.5【答案】D【解析】y=-,因为点A的纵坐标抛物线24x y=焦点在y轴上,开口向上,所以焦点坐标为(0,1),准线方程为1+=,因为抛物线上的点到焦点的距离等于到准线的距离,所为4,所以点A到抛物线准线的距离为415以点A与抛物线焦点的距离为5.5.(2020·定远县育才学校高二月考(文))已知抛物线的准线经过点,则抛物线焦点坐标为()A.B.C.D.【答案】B【解析】由抛物线得准线,因为准线经过点,所以,所以抛物线焦点坐标为,故答案选6.(2020·江苏省泰州中学高二开学考试)已知抛物线2C y px p=>的焦点为F,准线为l,且l过点:2(0)()N,则MN MF+的最小值为1,22,3,M-在抛物线C上,若点()A.2 B.3C.4 D.5【答案】B由题可得,:2l x =-.由抛物线的定义可知,2M MF x =+,所以MN MF +=2123M MN x ++≥+=.故选B .7.(2020·湖北省高三月考(理))已知抛物线C :22(0)x py p =>的准线l 与圆M :22(1)(2)16x y -+-=相切,则p =( ) A .6 B .8 C .3 D .4【答案】D 【解析】因为抛物线2:2C x py =的准线为2py =-, 又准线l 与圆()()22:1216M x y -+-=相切, 所以242p+= ,则4p =. 故选D8.(2020·天津高三一模)已知抛物线24y x =与()220x py p =>的焦点间的距离为2,则p 的值为( )A .B .4C .6D .12【答案】A 【解析】抛物线24y x =的焦点坐标为()1,0,抛物线()220x py p =>的焦点坐标为0,2p ⎛⎫ ⎪⎝⎭,2=,0p >,解得p =故选:A.9.(2020·陕西省西安市远东一中高二期末(理))已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16【答案】C 【解析】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C .10.(2020·山东省青岛第一中学高三月考)已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( ) A .16 B .10 C .12 D .8【答案】C 【解析】因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .二、多选题11.(2019·辽宁省高二期末)已知抛物线()220y px p =>上一点M 到其准线及对称轴的距离分别为10和6,则p 的值可取( )A .1B .2C .9D .18【答案】BD 【解析】设00(,)M x y ,所以有2002y px =,由点M 到其准线及对称轴的距离分别为10和6,所以有0102px +=,06y =,所以有20020021020360226y px p x p p p y ⎧=⎪⎪+=⇒-+=⇒=⎨⎪=⎪⎩或18p =.故选:BD12.(2020·山东省高三开学考试)已知抛物线22(0)x py p =>的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点(,2)E t 到焦点F 的距离等于3.则下列说法正确的是( ) A .抛物线的方程是22x y = B .抛物线的准线是1y =- C .sin QMN ∠的最小值是12D .线段AB 的最小值是6【答案】BC抛物线()2:20C x py p =>的焦点为02p F ⎛⎫ ⎪⎝⎭,,得抛物线的准线方程为2py =-,点()2E t ,到焦点F 的距离等于3,可得232p+=,解得2p =, 则抛物线C 的方程为24x y =,准线为1y =-,故A 错误,B 正确; 由题知直线l 的斜率存在,()0F ,1,设()11,A x y ,()22,B x y ,直线l 的方程为1y kx =+,由21 4y kx x y=+⎧⎨=⎩,消去y 得2440x kx --=, 所以124x x k +=,124x x =-,所以()21212242y y k x x k +=++=+,所以AB 的中点Q 的坐标为()2221k k +,, 221242244AB y y p k k =++=++=+,故线段AB 的最小值是4,即D 错误;所以圆Q 的半径为222r k =+, 在等腰QMN 中,22221111sin 11222222Qy k QMN r k k +∠===-≥-=++, 当且仅当0k =时取等号,所以sin QMN ∠的最小值为12,即C 正确,故选:BC.13.(2019·山东省高二期中)已知抛物线C :()220y px p =>的焦点为F ,且经过点F ,直线l 与抛物线C 交于点A ,B 两点(点A 在第一象限)、与抛物线的准线交于点D ,若4AF =,则以下结论正确的是( ) A .2p = B .F 为AD 中点C .2BD BF =D .2BF =【答案】ABC如图所示:作AC ⊥准线于C ,AM x ⊥轴于M ,BE ⊥准线于E . 直线的斜率为3,故tan 3AFM ∠=,3AFM π∠=,4AF =,故2MF =,3AM =.2,232p A ⎛⎫+ ⎪⎝⎭,代入抛物线得到2p =; 2NF FM ==,故AMF DNF ∆≅∆,故F 为AD 中点;6BDE π∠=,故22DB BE BF ==;2BD BF =,4BD BF DF AF +===,故43BF =; 故选:ABC .三、填空题14.(2020·黑龙江省铁人中学高二月考(文))设抛物线22y x =-上一点P 到x 轴的距离是4,则点P 到该抛物线焦点的距离是______. 【答案】338【解析】抛物线方程的标准形式为:22y x =-,准线方程为18y =,由抛物线的定义得:点P 到该抛物线焦点的距离等于点P 到准线18y =的距离d ,因为点P 到x 轴的距离是4,所以133488d =+=,故填:338.15.(2019·黑龙江省哈尔滨市第六中学校高二月考(理))抛物线2y ax =的准线方程是2y =,则a =________. 【答案】18- 【解析】抛物线2y ax =的标准方程为21x y a=, 则a <0且2=-14a, 得a =-18. 16.(2020·北京高三其他)如果抛物线22y px =上一点()4,A m 到准线的距离是6,那么m =______. 【答案】42± 【解析】抛物线22y px =的准线方程为2px =-, 由题意得462p+=,解得4p =. ∵点()4,A m 在抛物线22y px =上, ∴2244m =⨯⨯,∴42m =± 故答案为:42±.17.(2019·浙江省诸暨中学高三一模)抛物线24y x =的焦点F 坐标为_____,过F 的直线交抛物线24y x =于A 、B 两点,若2AF FB =,则A 点坐标为_____. 【答案】()1,0 (2,22± 【解析】抛物线24y x =的焦点F 的坐标为()1,0;设点()11,A x y ,()22,B x y ,设直线AB 的方程为1x my =+,()111,AF x y =--,()221,FB x y =-,由2AF FB =得122y y -=,122y y ∴=-,联立214x my y x=+⎧⎨=⎩,消去x 得2440y my --=,124y y ∴=-, 所以121242y y y y =-⎧⎨=-⎩,解得1y =±,21124y x ∴==,因此,点A的坐标为(2,±. 故答案为:()1,0;(2,±. 四、解答题18.(2020·四川省阆中中学高二月考(文))已知抛物线212y x =,双曲线221y x m-=,它们有一个共同的焦点.求:(1)m 的值及双曲线的离心率;(2)抛物线的准线方程及双曲线的渐近线方程.【答案】(1)8m =,3e =;(2)准线方程为3x =-,渐近线方程为y =± 【解析】(1)抛物线212y x =的焦点为(3,0),由双曲线221(0)y x m m-=>,可得19m +=,解得8m =,双曲线的1a =,3c =,则3ce a==; (2)抛物线212y x =的准线方程为3x =-,双曲线2218y x -=的渐近线方程为y =±.19.(2019·凤阳县第二中学高二期中(文))抛物线顶点在原点,焦点在x 轴上,且过点(4,4),焦点为F .(1)求抛物线的焦点坐标和标准方程;(2)P 是抛物线上一动点,M 是PF 的中点,求M 的轨迹方程.【答案】(1)抛物线标准方程为:y 2=4x ,焦点坐标为F (1,0);(2)M 的轨迹方程为 y 2=2x ﹣1. 【解析】(1)抛物线顶点在原点,焦点在x 轴上,且过点(4,4),设抛物线解析式为y 2=2px ,把(4,4)代入,得,16=2×4p ,∴p=2 ∴抛物线标准方程为:y 2=4x ,焦点坐标为F (1,0)(2)设M (x ,y ),P (x 0,y 0),F (1,0),M 是PF 的中点,则x 0+1=2x ,0+y 0="2y" ∴x 0=2x ﹣1,y 0=2y∵P 是抛物线上一动点,∴y 02=4x 0∴(2y )2=4(2x ﹣1),化简得,y 2=2x ﹣1. ∴M 的轨迹方程为 y 2=2x ﹣1.20.(2020·安徽省高二期末(文))已知抛物线()2:20C y px p =>上的点()5,M m 到焦点F 的距离为6.(1)求,p m 的值;(2)过点()2,1P 作直线l 交抛物线C 于,A B 两点,且点P 是线段AB 的中点,求直线l 方程. 【答案】(1)2p =,m =±(2)230x y --=. 【解析】(1)由抛物线焦半径公式知:562pMF =+=,解得:2p =, 2:4C y x ∴=,25420m ∴=⨯=,解得:m =±(2)设()11,A x y ,()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式作差得:()()()1212124y y y y x x +-=-,1212124l y y k x x y y -∴==-+, ()2,1P 为AB 的中点,122y y ∴+=,2l k ∴=,∴直线l 的方程为:()122y x -=-,即230x y --=.21.(2020·河南省实验中学高三二模(文))过点P(-4,0)的动直线l 与抛物线2:2(0)C x py p =>相交于D 、E 两点,已知当l 的斜率为12时,4PE PD =. (1)求抛物线C 的方程;(2)设DE 的中垂线在y 轴上的截距为b ,求b 的取值范围.【答案】()124x y =;()22b > 【解析】()1由题意可知,直线l 的方程为()142y x =+,与抛物线方程2:2(0)C x py p =>方程联立可得, ()22880y p y -++=,设()()1122,,,D x y E x y ,由韦达定理可得,12128,42p y y y y ++==, 因为4PE PD =,()()22114,,4,PE x y PD x y =+=+,所以214y y =,解得121,4,2y y p ===,所以抛物线C 的方程为24x y =; ()2设():4l y k x =+,DE 的中点为()00,x y ,由()244x y y k x ⎧=⎪⎨=+⎪⎩,消去y 可得24160x kx k --=, 所以判别式216640k k ∆=+>,解得4k <-或0k >,由韦达定理可得,()20002,4242D E x x x k y k x k k +===+=+,所以DE 的中垂线方程为()21242y k k x k k--=--, 令0x =则b =()2224221y k k k =++=+, 因为4k <-或0k >,所以2b >即为所求.22.(2020·广东省高二期末)已知直线4x =与抛物线2:2C y px =(0p >)相交于A ,B 两点,且OAB是等腰直角三角形.(1)求抛物线C 的方程;(2)若直线l 过定点(2,1)-,斜率为k ,当k 为何值时,直线l 与抛物线C 只有一个公共点?【答案】(1)24y x =(2)0k =或1k =-或12k = 【解析】(1)直线4x =与抛物线2:2C y px =(0p >)相交于A ,B 两点,可设A ,(4,B -,又OAB 是等腰直角三角形,可得OA OB ⊥,1=-,解得2p =, 即有抛物线的方程为24y x =;(2)直线l 过定点(2,1)-,斜率为k ,可设直线l 的方程为1(2)y k x -=+,当直线l 平行于抛物线的对称轴x 轴,可得直线与抛物线只有一个公共点,即0k =; 当直线l 与抛物线相切时,可得直线与抛物线只有一个公共点,由2124y kx k y x=++⎧⎨=⎩可得222[2(12)4](12)0k x k k x k ++-++=,0k ≠, 由2[2(12)4]k k ∆=+--()2224(12)16120k k k k +=--=,解得1k =-或12k =, 综上可得0k =或1k =-或12k =,直线l 与抛物线C 只有一个公共点. 23.(2019·安徽省阜阳第一中学高二期中(文))已知抛物线C :()220y px p =>的焦点为F ,准线为l ,若点P 在C 上,过点P 作PE 垂直于l ,交l 于E ,PEF 是边长为8的正三角形.(1)求C 的方程;(2)过点()1,0M 的直线m 与C 交于A ,B 两点,若3MA MB =,求直线m 的方程.【答案】(1)28y x =(2)66y x =-或66y x =-+ 【解析】(1) 由PEF ∆是边长为8的等边三角形,(2) 得||||||8PE PF EF ===,又由抛物线的定义可得PE l ⊥.设准线l 与x 轴交于D ,则//PE DF ,从而60PEF EFD ∠=∠=︒,在Rt EDF ∆中,1||||cos 842DF EF EFD =∠=⨯=,即4p =. 所以抛物线C 的方程为28y x =;(2)设直线m :1x ty =+,代入28y x =得2880y ty --=,设11(,)A x y ,22()B x y ,则128y y t +=,128y y =-, 因为3MA MB =, 所以123y y =,设123y y =-,则112y t =,24y t =-,()1248t t ⨯-=- 解得6t =±, 所以直线方程为616x y =±+, 即66y x =-或66y x =-+。

(完整版)抛物线练习题(含答案)

(完整版)抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。

初三上册数学抛物线练习题

初三上册数学抛物线练习题

初三上册数学抛物线练习题抛物线是数学中的重要概念之一,研究抛物线可以帮助我们更好地理解数学中的曲线和函数。

在初三上册数学课程中,抛物线的相关知识有一定的难度,需要同学们进行充分的练习。

下面将为大家提供一些抛物线的练习题,希望能够对大家的学习有所帮助。

题目一:抛物线的基本形式1. 将抛物线的标准形式 y = ax^2 + bx + c 转化成顶点形式 y = a(x -h)^2 + k。

2. 已知抛物线的顶点为 V(3, -2),求抛物线的标准形式方程。

3. 抛物线的顶点为 V(4, -3),经过点 P(2, 5),求抛物线的方程。

题目二:抛物线的性质及应用1. 抛物线的对称轴是 x = h,如何通过方程的形式确定抛物线的对称轴?2. 已知抛物线的焦点为 F(1, 2),直径所在直线方程为 2x + y - 7 = 0,求抛物线的方程。

3. 一架火箭垂直发射,其运动轨迹形如抛物线。

已知火箭从地面起飞经过点 A(0, 0),最高点为 B(2, 3),点 P 在抛物线上且 x 坐标为 4,求点 P 的纵坐标。

题目三:抛物线的图像与变化1. 已知抛物线的焦点为 F(2, -1),直径所在直线为 x + y - 4 = 0,求抛物线的方程。

2. 如果抛物线的开口向上,顶点在 x 轴上,且焦点为 (0, 4),求抛物线的方程。

3. 抛物线 y = k(x - a)(x - b) 所表示的图像开口向上还是向下?这里 a、b 和 k 均为常数。

题目四:抛物线的解析式1. 已知抛物线的顶点为 V(h, k),过点 P(x1, y1),求抛物线的解析式。

2. 已知抛物线经过两点 A(1, 2) 和 B(3, 4),求抛物线的解析式。

3. 抛物线的顶点为 V(0, 0),过点 P(-3, 4),求抛物线的解析式。

以上就是一些初三上册数学抛物线练习题,希望能够帮助同学们更好地理解和掌握抛物线的相关知识。

通过反复练习和解答这些题目,相信大家能够在数学学习中取得更好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线练习题
抛物线练习题
一、选择题
1. (2014·重庆高考文科·T8)设1
2
,F F 分别为双曲线
22
221(0,0)x y a b a b
-=>>的左、右焦点,双曲线上存在一点P 使得()
2
21
2
3,
PF
PF b ab -=- 则该双曲线的离心率为 ()
215
417
【解题提示】直接根据双曲线的定义得到关于,a b 的等式,进而求出离心率的值.
【解析】选 D.由双曲线的定义知,()
2
21
2
4,
PF PF a -=又
()2
2
1
2
3,PF PF b ab -=-
所以2
243a
b ab
=-
等号两边同除2
a ,化简得2
340b b a a ⎛⎫
-•-= ⎪⎝⎭
,解得4,b a =或1b
a
=-(舍去) 故离心率
2
22222
117.c c a b b e a a a a +⎛⎫
====+= ⎪⎝⎭
2. (2014·天津高考文科·T6同2014·天津高考理科·T5))已知双曲线
)0,0(12
2
22>>=-b a b y a x 的一条渐近线平行于直线
,
102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.
120
52
2=-y x B.
15
202
2=-y x C.
1100
32532
2=-y x D.
125
310032
2=-y x
【解析】选 A.因为双曲线的一个焦点在直线l 上,所以
0210,
c =+即5,c =又因为渐近线平行于直线,102:+=x y l 故有
2,b a
=结合2
2
2
,
c
a b =+得2
2
5,20,
a
b ==所以双曲线的标准方程为
120
52
2=-y x
3. (2014·湖北高考理科·T9)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123
F PF π
∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )
A.
433 B.23
3
C.3
D.2 【解题提示】 椭圆、双曲线的定义与性质,余弦定理及用基本不等式求最值 【解析】选A. 设椭圆的长半轴长为a ,双曲线的实半轴长为1a (1a a >),半焦距为c ,由椭圆、双曲线的定义得a PF PF 2||||21=+,121||||2PF PF a -=,所以11||a a PF +=,
12||a a PF -=,
因为
123F PF π
∠=
,由余弦定理得
22211114()()2()()cos
3c a a a a a a a a π
=++--+-,
所以2
1
2
2
34a a c +=,即2
122122221)(2124c a c a c a c a c a +≥+=-,
所以21
214
8)11(e e e -≤+,
利用基本不等式可求得椭圆和双曲线的离心率的倒数之和的最大值为
43
.
4.(2014·广东高考理科)若实数k 满足0<k<9,则曲线
225
x -
29y k
-=1与曲线
225x k
--29
y =1的 ( )
A.焦距相等
B.实半轴长相等
C.虚半轴长相等
D.离心率相等
【解题提示】先判断两曲线是哪种圆锥曲线,进而求a ,b ,c ,e 加以判断. 【解析】选A.因为0<k<9, 所以曲线225
x -29y k
-=1与曲线
225x k
--29
y =1都表示焦点在x 轴上
的双曲线,且25≠25-k ,9-k ≠9,但a 2
+b 2
=34-k ,故两双曲线的焦距相等.
10. (2014·山东高考理科·T10)
已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22
221x y a b
-=,1C 与2C 的离心
率之积为
3
,则2C 的渐近线方程为( ) A 、20x y ±= B 、20x y ±= C 、20x y ±= D 、20x y ±=
【解题指南】 本题考查了考查了椭圆、双曲线的几何性质,利用椭圆,双曲线中a,b,c 之间的关系即可求解.
【解析】选 A.椭圆的离心率为2222221
a b a a c e -==,双曲线的离心率为2
22222
2a
b a a
c e +==,所以()
4
34
442
21=+=a b a e e ,所以444b a =. 所以
22±=a b .双曲线的渐近线方程为x y 2
2
±=,即02=±y x ,故选A.
5.(2014·江西高考文科·T9)过双曲线C :-=1的右顶点作x 轴的垂线与C 的一条渐近线相交于点A.若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为 ( ) A.-=1 B.-=1 C.-=1 D.-=1
【解题指南】设右焦点为F ,|OF|=|AF|=4.
【解析】选A.设右焦点为F ,由题意得|OF|=|AF|=4,即a 2+b 2=16, 又A (a ,b ),F (4,0)可得(a-4)2+b 2=16, 故a=2,b 2=12,所以方程为-=1.
填空题
1. (2014·四川高考文科·T11)双曲线2
214
x y -=的离心
率等于____________.
【解题提示】本题主要考查双曲线的离心率,属于基本题.
【解析】415
22
c e a
+===.
5
2. (2014·浙江高考文科·T17)与(2014·浙江高考理科·T16)相同
(2014·浙江高考文科·T17)设直线30(0)x y m m -+=≠与双曲线
22
22
1(0,0)x y a b a b -=>>的两条渐近线分别交于点A 、B ,若
点(,0)P m 满足||||PA PB =,则该双曲线的离心率是
______________.
【解题指南】求出,A B 的坐标,写出AB 中点Q 的坐标,因为PB PA =,所以PQ 与已知直线垂直,寻找a 与c 的关系.
【解析】由双曲线的方程可知,它的渐近线方程为
b y x a
=
与b y x
a
=-,分别与)0(03≠=+-m m y x 联立方程组,解得
,33am bm A a b a b --⎛⎫
⎪--⎝
⎭,
,33am bm B a b a b -⎛⎫ ⎪++⎝
⎭,设AB 的
中点为Q ,则
3333,22am am bm bm a b a b a b a b Q ---⎛⎫++ ⎪
-+-+ ⎪

⎝⎭
,因为PB PA =,所
以PQ 与已知直线垂直,所以3
PQ
k =-,解得2
222288()
a
b c a ==-,

225
4
c a =,
5
2
c a = 答案:
5
2
3. (2014·浙江高考理科·T16)设直线)
0(03≠=+-m m y x 与双曲线
12
2
22=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若
点)0,(m P 满足PB PA =,则该双曲线的离心率是__________
【解题指南】求出,A B 的坐标,写出AB 中点Q 的坐标,因为PB PA =,所以PQ 与已知直线垂直,寻找a 与c 的关系.
【解析】由双曲线的方程可知,它的渐近线方程为
b y x a
=
与b y x
a
=-,分别与)0(03≠=+-m m y x 联立方程组,解得
,33am bm A a b a b --⎛⎫ ⎪--⎝⎭

,33am bm B a b a b -⎛⎫ ⎪++⎝⎭
,设AB 的
中点为Q ,则3333,22am am bm bm a b a b a b a b Q ---⎛⎫++ ⎪
-+-+ ⎪

⎝⎭
,因为PB PA =,所
以PQ 与已知直线垂直,所以3
PQ k =-,解得2222288()
a b c a ==-,

2254
c a =,
5
2
c a = 5。

相关文档
最新文档