2018-2019九年级数学上学期期末试卷及答案
2018—2019学年第一学期九年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试九年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.关于x的方程ax2-3x+2=0是一元二次方程,则A.a>0 B.a≠0 C.a=1 D.a≥02.用配方法解方程3x2-6x+1=0,则方程可变形为A.(x-3)2=13B.3(x-1)2=13C.(x-1)2=23D.(3x-1)2=13.在平面直角坐标系中,将抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是A.(-2,6)B.(2,-6)C.(-2,8)D.(2,-8)4.下列事件中,是必然事件的是A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.掷一枚质地均匀的硬币,一定正面向上D.如果a2=b2,那么a=b5.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以A.20 B.25 C.30 D.356.下列两个图形一定相似的是A.两个矩形B.两个等腰三角形 C .两个正方形 D .两个菱形 7.下列每张方格纸上都有一个三角形,只用圆规就能作出这个三角形的外接圆的是A .①②B .①③C .②④D .③④ 8.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是 A.∠ADC =12∠AEC B.∠ADC =∠ABC C .AE >BE D .AD =BC9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =65°,则∠EFD 的度数是 A .15° B .20° C .25° D .30° 10.如图,在平面直角坐标系中,已知点A (-3,6)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是 A .(-3,-1)B .(-1,2)C .(-9,1)或(9,-1)D .(-3,-1)或(3,1)11.在函数21a y x--=(a 为常数)的图象上有三点(-3,y 1),(1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是 A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 3<y 1<y 2D .y 1<y 2<y 312.2则下面对于该函数性质的判断①该二次函数有最大值; ②不等式y >-1的解集是x <0或x >2;(第8题图) (第9题图) (第10题图)③方程ax 2+bx +c =0的两个实数根分别位于12-<x <0之间和2<x <52之间; ④当x >0时,函数值y 随x 的增大而增大.其中正确的是 A .②③ B .②④ C .①③D .③④第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点M (a,N (2,b )关于原点对称,则ab = . 14.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是 . 15.关于x 的方程x 2-2x +3=0的根的情况是 . 16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数.如果设它的个位数字是x ,则列得方程为 . 17.两个相似三角形的面积比为4∶25,则它们的相似比为 .18.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口时都是绿灯,但实际这样的概率是 .19.若75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 cm . 20.如图,在Rt △ABC 中,∠A =60°,AB =2,以点B 为圆心,BC 为半径的弧交AB 于点D ,以点A 为圆心,AC 为半径的弧交AB 于点E ,则图中阴影部分的面积为 . 21.如图,某水渠的横截面呈抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m .22.如图,在反比例函数10y x=(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,n S ,则123n S S S S ++++ = (用含n 的代数式表示)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.如图,有一段15m 长的旧围墙AB ,现打算利用 该围墙的一部分(或全部)为一边,再用32m 长 的篱笆围成一块长方形场地CDEF .(1)怎样围成一个面积为126m 2的长方形场地?(第22题图)(第21题图) (第20题图)(第23题图)(2)长方形场地面积能达到130m 2吗?如果能,请给出方案,如果不能,请说明理由. 24.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y ,以先后记下的两个数字(x ,y )作为点P 的坐标. (1)求点P 的横坐标与纵坐标的和为4的概率;(2)求点P25.如图,□ABCD 中,E 为BC 边上一点,连接DE ,F 为线段DE 上一点,∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD=AF=DE 的长.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?27.如图,点E 在x 轴正半轴上,以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,直线AB 与⊙E 相切于点D ,已知点A 的坐标为(3,0),点B 的坐标为(0,4). (1)求线段AD 的长;(2)连接BE 、CD ,求证:BE ‖CD .28.如图,过点A (-1,0)、B (3,0)的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E . (1)求抛物线解析式; (2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCBPOC SS=,求此时DP 的长.(第25题图)(第26题图)(第28题图) (第27题图)2018—2019学年第一学期九年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.13; 14 15.无实数根 ; 16.210(3)x x x =-+;17.2∶5; 18. 18; 19.6; 20;21. 22.1010n -.三、解答题:(共74分)23. 解:(1)设CD =x m ,则DE =(32﹣2x )m ,依题意得:x (32﹣2x )=126,…………………………………………………2分 整理得 x 2﹣16x +63=0,解得 x 1=9,x 2=7, …………………………………………………4分 当x 1=9时,(32﹣2x )=14当x 2=7时 (32﹣2x )=18>15 (不合题意舍去)∴能围成一个长14m ,宽9m 的长方形场地. ………………………5分 (2)设CD =y m ,则DE =(32﹣2y )m ,依题意得 y (32﹣2y )=130 …………………………………………………7分 整理得 y 2﹣16y +65=0△=(﹣16)2﹣4×1×65=﹣4<0故方程没有实数根, …………………………………………………9分 ∴长方形场地面积不能达到130m 2.…………………………………………10分 24. 解:(1…………………5分则点M 坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有(1,3)、(2,2)、(3,1)这3种, ……………………………………7分故P (和为4)=31=93. ……………………………………8分(2)∵点M∴x 2+y 2<10,这样的点M 有4种形式(1,1)、(1,2)、(2,1)、(2,2), ……………………………………10分∴点M P =49.……………………………………12分25. (1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DC ,AD ‖BC , ……………………………………2分∴∠C +∠B =180°,∠ADF =∠DEC .……………………………………4分 ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C , ………………………………………………………6分 ∴△ADF ∽△DEC .………………………………………………………7分 (2)∵四边形ABCD 是平行四边形,AB =8,∴CD =AB =8, ………………………………………………………8分 ∵△ADF ∽△DEC , ∴AD DEAF DC =, ………………………………………………………10分又CD =8,AD =AF =∴=12AD CD DE AF ⋅==. ………………………………………12分 26.解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B (3,2), ………………………………………………………2分 ∵F 为AB 的中点,∴F (3,1), ………………………………………………………3分∵点F 在反比例函数ky x=的图象上, ∴k =3, ………………………………………………………5分∴该函数的解析式为3y x=; ………………………………………6分(2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),………7分∴111(3)2232EFA kS AF BE k ∆==⨯- ………………………………9分=2133)124k --+( ………………………………11分 当k =3时,△EF A 的面积最大,最大面积是34. ………………13分27.(1)解:∵A 的坐标为(3,0),点B 的坐标为(0,4),∴OA =3,OB =4,…………………………………………………………2分∴AB ,………………………………………………………3分 ∵以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,且BO ⊥OC , ∴OB 与⊙E 相切于点O ,………………………………………………4分 又直线AB 与⊙E 相切于点D ,∴DB =OB = 4, ………………………………………………………6分 ∴AD =5-4=1. ………………………………………………………7分(2)证明:连接ED 、OD . ∵AB 与⊙E 相切于点D , OB 切⊙E 于点O ,∴OB =BD ,∠OBE =∠DBE ,………9分 ∴BE ⊥OD , ………………………10分 ∵OC 为直径,∴∠ODC =90°,……………………11分 ∴CD ⊥OD ,………………………12分 ∴BE ‖CD . …………………………13分28. 解:(1)将A (﹣1,0),B (3,0)代入2y x bx c =-++得10930b c b c --+=⎧⎨-++=⎩, ………………………………2分解得 b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3. ………………………………4分 (2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4). ………………………………6分 (3)设BC 与抛物线的对称轴交于点F ,如图所示:则点F 的横坐标为1, ∵y =﹣x 2+2x +3当x =0时,y =3,∴OC =3, ……………………………………………7分∴△POC 的面积=12×3×1=32,……8分又△PCB 的面积=△PCF 的面积+△PBF 的面积=12PF (1+2)=32PF , ∴32PF =3×32, 解得 PF =3, ………………………………9分设直线BC 的解析式为y =kx +a ,则 330a k a =⎧⎨+=⎩, ………………………………10分 解得 a =3,k =-1,∴直线BC 的解析式为y =-x +3, ……………………………11分 当x =1时,y =2, ∴F 的坐标为(1,2),∴EF =2, ……………………………………12分 当点P 在F 的上方时,PE =PF +EF =5,∴DP =5-4=1; ……………………………………13分 当点P 在F 的下方时,PE =PF -EF =3-2=1, ∴DP =4+1=5;(第28题答案图)综上所述,DP的长为1或5.…………………………………14分。
2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。
2018-2019第一学期九年级数学期末考试试卷(有答案)

2018~2019学年度第一学期九年级数学期末教学质量检测试卷查考答案及评分标准1.C ; 2.B ; 3.B ; 4.C ; 5.D ; 6.C ; 7.D ; 8.B ; 9.C ;10.A.11.m=1; 12.3π;13.25°;14.65; 15.2+; 16.-1或2或1; 17.50°;18.②④.19.(1)x 1=-2+,x 2=-2-. (2)x 1=2,x 2=-1.20.解:(1)小明小军共有20种等可能的结果;(5分)(2) 在20种结果中,两支笔颜色相同的结果有8种,∴小明获胜的概率为P =208=52,小军获胜的概率为P =2012=53.(10分)21.解:(1)如图1,C 1(1,﹣2);(3分)(2)如图2,C 2(﹣1,1);(6分)(3)如图3,B 3(﹣3,﹣4).(10分)22. (1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,∴∠B =∠C ,∴AB =AC.(5分)(2)如图所示,连接BD ,∵AB 为直径,∴BD ⊥AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(2)2-a 2.∴42-(4-a)2=(2)2-a 2,整理得a =23,即CD =23.(10分)23.证明:(1)如图所示,连接AC ,AC ′,∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC ′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AC =AC ′,∴BC =BC ′.(6分)(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC ′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AD =AD ′,∵BC =BC ′,∴BC ′=AD ′,在△AD ′E 与△C ′BE 中, AD ′=BC ′,∠AED ′=∠BEC ′,∴△AD ′E ≌△C ′BE ,∴BE =D ′E ,设AE =x ,则D ′E =2-x ,在Rt △AD ′E 中,∠D ′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =45,∴AE =45. (12分)24.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得:500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍)答:2014至2016年该市投入科研经费的年平均增长率为20%.(6分)(2)根据题意,得720a -720×100%≤15%,解得a ≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a ≤828.(12分)25.(1)证明:如图所示,连接OC ,∵直线y =33x +2与y 轴相交于点E ,∴点E 的坐标为(0,2),即OE =2.又∵点B的坐标为(0,4),∴OB =4,∴BE =OE =2,又∵OA 是⊙P 的直径,∴∠ACO =90°,即OC ⊥AB ,∴OE =CE.(6分)(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE 和△PCE 中, OE =CE ,PE =PE ,∴△POE ≌△PCE ,∴∠POE =∠PCE.又∵x 轴⊥y 轴,∴∠POE =∠PCE =90°,∴PC ⊥CE ,即PC ⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +2,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE ===4,∴CD =DE +EC =DE +OE=4+2=6.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(6)2=(6+r)2,解得r =6,即⊙P 半径的值为6.(12分)26..解:(1)∵点A (4,0)在抛物线y 1=-x 2+413x +c 上, ∴-42+413×4+c =0,解得c =3,∴抛物线解析式为y 1=-x 2+413x +3, 第26题解图∵点B 是抛物线y 1与y 轴的交点,∴点B 的坐标为(0,3).(4分)(2)根据图可知,当x >4或x <0时,y 1<y 2;(8分)(3)取AB 的中点为C ,∵点A (4,0),点B (0,3),∴点C (2,23),过点C 作CE ⊥AB ,交x 轴于E ,交y 轴于F .在Rt △ABO 中,AO =4,BO =3,∴AB =5,∵C 是AB 的中点,∴AC =25,∵∠ACE =∠AOB =90°,∠EAC =∠BAO , ∴△AEC ∽△ABO ,∴AB AE =AO AC ,即5AE =2,解得AE =825,∴OE =OA -AE =4-825=87,此时点P 与点E 重合,坐标为(87,0).∵∠FBC =∠ABO ,∠FCB =∠AOB , ∴△ABO ∽△FBC ,∴AB BF =BO BC ,即53+OF =2,解得OF =67,∴此时点P 的坐标为(0,-67).(14分)。
2018-2019学年人教版九年级(上)期末数学试卷含解析

2018-2019学年人教版九年级(上)期末数学试卷含解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从侧面看圆柱的视图为矩形,据此求解即可.【解答】解:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选:C.2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个【考点】M1:圆的认识.【专题】67:推理能力.【分析】(1)直径的两个端点在圆上,符合弦的概念.(2)弦是连接圆上两点间的线段,只有过圆心的弦才是直径.(3)半圆是弧,但弧不一定是半圆.比半圆大的弧是优弧,比半圆小的弧是劣弧.(4)(5)等弧是能完全重合的两条弧,长度相等的两条弧不一定能重合.【解答】解:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其它的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆.所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合.所以(5)错误.故选:B.3.暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢【考点】X7:游戏公平性.【分析】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.【解答】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.5.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30m B.20m C.30m D.15m【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.【解答】解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=×30=15,∴AD=DH=15m.答:从A地到D地的距离是15m.故选:D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.7.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】KW:等腰直角三角形;MO:扇形面积的计算.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD+S扇形COD=2×2+=2+π,故选:A.8.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线B.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)C.二次函数y=(x+2)2+2的顶点坐标是(﹣2,2)D.点A(3,0)不在抛物线y=x2﹣2x﹣3上【考点】H3:二次函数的性质.【分析】利用二次函数的性质对四个选项逐一判断即可得到答案.【解答】解:A、抛物线y=﹣2x2+3x+1的对称轴是直线x=﹣=,正确,选项不符合要求;B、函数y=2x2+4x﹣3=(x+1)2﹣5的最低点是(﹣1,﹣5),正确,选项不符合要求;C、二次函数y=(x+2)2+2的顶点坐标是(﹣2,2),正确,选项不符合要求;D、当x=3时y=x2﹣2x﹣3≠0,错误,选项符合要求.故选:D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC =∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是()A.5个B.7个C.8个D.9个【考点】U3:由三视图判断几何体.【专题】1:常规题型;55F:投影与视图.【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.11.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【考点】SA:相似三角形的应用.【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.12.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】D5:坐标与图形性质;MC:切线的性质.【专题】16:压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.二、填空题(本大题共6个小题,每小题4分,满分24分)13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】HA:抛物线与x轴的交点.【专题】31:数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】KH:等腰三角形的性质;M5:圆周角定理.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.15.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【专题】11:计算题;558:平移、旋转与对称.【分析】根据旋转的性质得到△CAB的面积=△CFG的面积,得到阴影部分的面积=扇形CAF的面积,根据扇形面积公式计算即可.【解答】解:由题意得,△CAB的面积=△CFG的面积,由图形可知,阴影部分的面积=△CFG的面积+扇形CAF的面积﹣△CBA的面积,∴阴影部分的面积=扇形CAF的面积==π,故答案为:.16.在⊙O中,圆心角∠AOB=100°,则弦AB所对的圆周角=50°或130°.【考点】M5:圆周角定理.【分析】此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.【解答】解:根据圆周角定理,得弦AB所对的圆周角=100°÷2=50°或180°﹣50°=130°.17.如图,在平面直角坐标系中,矩形OABC顶点A、C分别在x轴、y轴的正半轴上,顶点B在反比例函数y=(x>0)的图象上,点P是矩形OABC内的一点,连接PO、P A、PB、PC,若图中阴影部分的面积10,则k为20.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】作PE⊥OC于E,EP的延长线交AB于F,由题意得到S阴=•OC•PE+•AB•PF=•CO•EF ==S矩形ABCO=10,进一步得到S矩形ABCO=20,根据反比例函数系数k的几何意义即可求得k =20.【解答】解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=•OC•PE+•AB•PF=•CO•EF==S矩形ABCO=10,∴S矩形ABCO=20,∴k=20.故答案为20.18.如图,直角三角形ABC中,∠ACB=90°,AC=6,BC=4,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD长的最小值是2.【考点】KQ:勾股定理;M5:圆周角定理;M8:点与圆的位置关系.【专题】11:计算题.【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB =5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=3,BC=4,∴OB==5,∴BD的值最小为5﹣3=2.故答案为2.三、解答题(第19题4分,第20、21题各7分,第22题8分,第23、24题各9分,第25题11分)19.计算:tan45°﹣sin260°﹣+2cos30°.【考点】T5:特殊角的三角函数值.【专题】511:实数;62:符号意识.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:原式=1﹣()2﹣(﹣1)+2×=1﹣﹣+1+=.20.如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.(1)请在答题卷指定的位置补画该工件的俯视图;(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.【考点】U4:作图﹣三视图.【分析】(1)俯视图为左右相邻的3个长方形,并且两边的长方形的宽度相同,小于中间的长方形的宽度;(2)主视图的面积为两边长为11,7的长方形的面积减去两边长为5,4的长方形的面积.【解答】解:(1)俯视图(看形状、大小基本正确)(2)需涂油漆(主视图)面积:11×7﹣5×4=57(cm2)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】X7:游戏公平性.【专题】16:压轴题.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.22.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的利润之和最大,最大利润是多少?【考点】FH:一次函数的应用;HE:二次函数的应用.【分析】(1)把(5,3)代入正比例函数即可求得k的值也就求得了y1的关系式;把原点及(1,2),(5,6)代入即可求得y2的关系式;(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.23.图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】T8:解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA 的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.24.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【考点】MD:切线的判定.【专题】16:压轴题.【分析】(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.【解答】解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.25.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入求得a的值即可;(2)过点M作MD⊥AC,垂足为D,先求得点M的坐标,然后利用勾股定理求得DM和CD的长,再依据勾股定理求得AC的长,进而求得AD的长,最后,依据锐角三角函数的定义求解即可;(3)设点Q(x,﹣x2+2x+3),然后∠BAQ=∠CAM且tan∠BAQ=,列方程求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入得:﹣3a=3,解得:a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)作MD⊥AC于D,∵CM∥AB,由抛物线y=﹣x2+2x+3可知M点的坐标为(2,3),∵C(0,3),A(3,0)∴AO=OC=3,∵∠MDC=90°∴∠OAC=∠ACO=45°,∴∠ACM=45°,∴CD=DM,∵CM=2,∴DM=CM=,∴CD=,∵AC2=OA2+OC2∴AC=3.∴AD=AC﹣CD=2,∴tan∠CAM===;③设点Q(x,﹣x2+2x+3).∵∠BAQ=∠CAM且tan∠CAM=,∴=±,整理得:x+1=±,解得:x=﹣或x=﹣.当x=﹣时,y=,∴Q(﹣,).当x=﹣时,y=﹣.∴Q(﹣,﹣).综上所述,点Q的坐标为(﹣,)或(﹣,﹣).。
2018-2019学年九年级上期末数学试卷(含答案解析)

2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列图形是中心对称图形的是()A.B.C.D.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>08.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>213.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S =4:25,则DE:EC=()△ABFA.2:5B.2:3C.3:5D.3:214.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×215.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形是中心对称图形,正确,B、该图形不是中心对称图形,错误;C、该图形不是中心对称图形,错误;D、该图形是轴对称图形,错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.【分析】利用反比例函数图象是双曲线进而判断得出即可.【解答】解:反比例函数y=﹣图象的是C.故选:C.【点评】此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>0【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,故选:C.【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号小于4的概率为:.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选:C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=,∴tan∠BOD==,∴内切圆半径OD=×=a.故选:D.【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>2【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.【解答】解:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2>y1.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B的坐标是解题的关键.13.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S △ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×2【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选:C.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线可知当﹣1<x<2时,y<0,故错误;C、当x=1时,y<0,即a+b+c<0,故正确;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.故选:B.【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为(10080,4).【分析】根据图形和旋转规律可得出B n点坐标的变换规律,结合三角形的周长,即可得出结论.【解答】解:在直角三角形OAB中,OA=,OB=4,由勾股定理可得:AB=,△OAB的周长为:OA+OB+AB=+4+=10,研究三角形旋转可知,当n为偶数时B n在最高点,当n为奇数时B n在x轴上,横坐标规律为:,∵2016为偶数,∴B2016(×10,4).故答案为:(10080,4).【点评】本题考查的坐标与图形的变换,解题的关键是在变换中找到规律,结合图形得出结论.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.【分析】(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2)列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.【解答】解:(1)画出树状图来说明评委给出A选手的所有可能结果:;(2)∵由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,对于A选手,晋级的可能有4种情况,∴对于A选手,晋级的概率是:.【点评】本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.【分析】(1)连接OE,如图,利用圆周角定理得到∠CED=90°,即∠CEO+∠OED=90°,加上∠C=∠CEO,∠PED=∠C.则∠PED+∠OED=90°,即∠OEP=90°,然后根据切线的性质定理可判定PE是⊙O的切线;(2)利用圆周角定理得到∠AEB=90°,再利用AE∥CD得到∠EFD=90°,接着利用等角的余角相等可判断∠FED=∠C,所以∠PED=∠FED.【解答】证明:(1)连接OE,如图,∵CD为直径,∴∠CED=90°,即∠CEO+∠OED=90°,∵OC=OE,∴∠C=∠CEO,∴∠C+∠OED=90°,∵∠PED=∠C.∴∠PED+∠OED=90°,即∠OEP=90°,∴OE⊥PE,∴PE是⊙O的切线;(2)∵AB为直径,∴∠AEB=90°,而AE∥CD,∴∠EFD=90°,∴∠FED+∠EDF=90°,而∠C+∠EDC=90°,∴∠FED=∠C,∴∠PED=∠FED,∴ED平分∠BEP.【点评】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线.当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了圆周角定理.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【分析】(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.【解答】解:(1)∵A(3,5)、E(﹣2,0),∴设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=x+2,∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=(0<k<15)的图象经过点D,∴k=﹣3×(﹣1)=3;(2)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,3=12.∴S阴影=4×【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是能够确定点D的坐标,难度不大.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.【分析】(1)利用对称性可得B(3,0),则利用交点式得抛物线解析式为y=a(x+1)(x ﹣3)=ax2﹣2ax﹣3a,所以﹣3a=3,解得a=1,于是得到抛物线解析式为y=x2﹣2x﹣3;(2)分类讨论:当AC=AM时,易得点M1(0,3),如图;②当CM=CA时,先计算出AC=,再以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,易得M2(0,﹣3),M3(0,﹣﹣3).【解答】解:(1)∵点A(﹣1,0)和点B关于直线x=1对称,∴B(3,0),∴抛物线解析式为y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,∴﹣3a=3,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3;(2)当AC=AM时,点M1与点C关于x轴对称,则M1(0,3),如图;②当CM=CA时,AC==,以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,则OM2=﹣1,OM3=OC+CM3=3+,则M2(0,﹣3),M3(0,﹣﹣3).综上所述,满足条件的点M的坐标为(0,3),(0,﹣3),(0,﹣﹣3).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是利用等腰三角形的性质画出点M的坐标.。
2018-2019学年上学期期末考试 九年级数学试题(含答案)

2018-2019学年上学期期末考试九年级数学试题(含答案)2018-201年第一学期期末考试九年级数学注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名,再用2B铅笔把对应的卡号的标号涂黑。
2.选择题和判断题的每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,不能答在试卷上。
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔和签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡,题目指定区域内的相应位置上改动,原来的答案也不能超出指定的区域,不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生可以使用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。
)1.下列图形是中心对称而不是轴对称的图形是( )。
2.下列事件是必然事件的是()。
A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是()。
A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.若函数的图像y=x经过点(2,3),则该函数的图像一定不经过()。
A.(1,6)B.(-1,6)C.(2,-3)D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )。
A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是()。
A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()。
2018-2019学年九年级上期末数学试卷(含答案解析)

2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?2018-2019学年九年级上期末数学试卷(含答案解析)参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x+3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x+3)2+1的对称轴直线是该图象的顶点坐标的横坐标,∴抛物线的对称轴是直线x=﹣3;故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.4.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
2018-2019学年九年级第一学期数学期末考试卷与答案详解

2018-2019学年度第一学期期末教学质量监测九年级数学试卷一、选择题(每小题3分,共30分)1.如图的几何体是由六个同样大小的正方体搭成的,2.其左视图是( )A .B .C .D .2.关于x 的一元二次方程0102=-+bx x 的一个根为2,则b 的值为( )A.1B.2C.3D.73.点(4,﹣3)是反比例函数x k y =的图象上的一点,则k=( ) A .-12 B .12 C . D .14.下列关于x 的一元二次方程有实数根的是( )A . x 2+2=0B .2x 2+x+1=0C .x 2﹣x+3=0D . x 2﹣2x ﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是( )A .B .C .D .6.顺次连结下列四边形的四边中点所得图形一定是菱形的是( )A . 平行四边形B .菱形C .矩形D . 梯形 7.反比例函数xk y =与一次函数k kx y +=,其中0≠k ,则他们的图象可能是( ) A . B . C . D .8.下列命题中,假命题的是( )A .分别有一个角是 110的两个等腰三角形相似B .如果两个三角形相似,则他们的面积比等于相似比C .若5x=8y ,则58=y x D .有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,( )A .小刚的影子比小红的长B .小刚的影子比小红的影子短C .小刚跟小红的影子一样长D .不能够确定谁的影子长10.如图,在□ABCD 中,BE 平分∠ABC ,CF 平分∠BCD ,E 、F 在AD 上,BE 与CF 相交于点G ,若AB=7,BC=10,则△EFG 与△BCG 的面积之比为( )A .4:25B .49:100C .7:10D .2:5二.填空题:(每小题4分,共24分)11.如果x:y=2:3,那么yy x + .12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原来每斤20元下调到每斤13元,设平均每个月下调的百分率为x ,则根据题意可列方程为 .13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼 条. 14.函数422)1(--+=m m x m y 是y 关于x 的反比例函数,则m= .15.在矩形ABCD 中,AB =6,BC=8,△ABD 绕B 点顺时针旋转 90到△BEF ,连接DF ,则DF= .16. 如图,菱形ABCD 中,AB=4,∠A BC=60°,点E 、F 、G分别为线段BC ,CD ,BD 上的任意一点,则EG+FG 的最小值为 .三、解答题(一)(每小题6分,共18分)17.解方程:x 2+8x ﹣9=018.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.19.在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.四、解答题(二)(每小题7分,共21分)20.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE∥BD,过点D 作DE∥AC,CE 与DE 相交于点E .(1)求证:四边形CODE 是矩形.(2)若AB=5,AC=6,求四边形CODE 的周长.22.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..房山区 2018——2019 学年度第一学期终结性检测试卷九年级数学学科2019.1一、选择题(本题共 16 分,每小题 2 分)下面各题均有四个选项,其中只有一个是符合题意的.1. 二次函数 y = ( x -1)2 - 3 的顶点坐标是A .(1,-3)B .(-1,-3)C .(1,3)D .(-1,3)△2.如图,在 ABC 中,M ,N 分别为 AC ,BC 的中点.则△ CMN △与 CABA的面积之比是A .1:2B . 1:3C .1:4D .1:9C3.如图,在⊙O 中,A ,B ,D 为⊙O 上的点,∠AOB =52°,则∠ADB 的度数D是A .104°B .52°C .38°D .26°MN BOA BA4. 如图,在 △ABC 中,DE ∥BC ,若 AD 1= ,AE =1,则 EC 等于AB 3D EA .1B . 2C .3D .4BC5. 如图,点 P 在反比例函数 y = 2 x的图象上,P A ⊥x 轴于点 A ,yP 则△P AO 的面积为OA xA .1B .2C .4D .66. 如图,在△ABC 中, ∠ACD = ∠B ,若 AD =2,BD =3,则 AC 长为AA .5 B .6 C . 10 D . 6DB C7. 抛物线 y = x 2 - 2 x + m 与 x 轴有两个交点,则 m 的取值范围为A . m > 1B . m =1C . m < 1D . m < 48.已知二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+n(k≠0)的图象如图所示,下面有四个推断:y3①二次函数y1有最大值②二次函数y1的图象关于直线x=-1对称③当x=-2时,二次函数y1的值大于0④过动点P(m,0)且垂直于x轴的直线与y1,y2的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是m<-3或m>-1.–3–2–121–1–2O123xA.①③B.①④C.②③D.②④二、填空题(本题共16分,每小题2分)9.已知点A(1,a)在反比例函数y=-12的图象上,则a的值为.x10.请写出一个开口向上,并且与y轴交点在y轴负半轴的抛物线的表达式:_______.11.如图,在⊙O中,AB为弦,半径OC⊥AB于E,如果AB=8,CE=2,O 那么⊙O的半径为.A E BC 12.把二次函数y=x2-4x+5化为y=a(x-h)2+k的形式,那么h+k=_____.D13.如图,∠DAB=∠CAE,请你再添加一个条件____________,使得△ABC∽△ADE.A14.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在A同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离B E CDG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.CF EDB G 16.如图1,将一个量角器与一张等边三角形(△ABC)纸片放置成轴对称图形,C D⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,此时,测得顶点C到量角器最高点的距离CE =2cm,将量角器沿DC方向平移1cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图2,则AB的长为cm.(C CEEABABD D 图1图2三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第 27,28 题,每小题 7 分)17.计算: 2sin 45o + tan 60o + 2cos30 o - 12 .18. 下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线 l 及直线 l 外一点 P .求作:直线 PQ ,使得 PQ ⊥l.做法:如图,①在直线 l 的异侧取一点 K ,以点 P 为圆心,PK 长为半径画弧,交直线 l 于点 A ,B ;②分别以点 A ,B 为圆心,大于12AB 的同样长为半径画弧,两弧交于点 Q (与 P 点不重合);③作直线 PQ ,则直线 PQ 就是所求作的直线.根据小西设计的尺规作图过程,P(1)使用直尺和圆规,补全图形;(保留作图痕迹)AB l(2)完成下面的证明.证明:∵P A =,QA = ,∴PQ ⊥l() 填推理的依据).KA19.如图,由边长为 1 的 25 个小正方形组成的正方形网格上有一个△ABC ,且 A ,B ,C 三点均在小正方形的顶点上,BC试在这个网格上画一个与△ABC 相似的 △A 1B 1C 1,要求:A 1,B 1,C 1 三点都在小正方形的 顶点上,并直接写出 △A 1B 1C 1 的面积.20. 如图,在四边形 ABCD 中,CD ∥AB ,AD =BC. 已知 A (﹣2,0),B (6,0),D (0,3),函数 y = k x( x > 0) 的图象 G 经过点 C .y6 k(1)求点 C 的坐标和函数 y = ( x > 0) 的表达式;x5 4 D 3C(2)将四边形 ABCD 向上平移 2 个单位得到四边形 A 'B 'C 'D ' , 问点 B ' 是否落在图象 G 上?2 1A–3 –2 –1 o1 2 3 4 5B6 7xy = f(x)–1–221. 小磊要制作一个三角形的模型,已知在这个三角形中,长度为 x (单位:cm)的边与这条边上的高之和为 40 cm ,这个三角形的面积为 S (单位:cm 2).(1)请直接写出 S 与 x 之间的函数关系式(不要求写出自变量 x 的取值范围); (2)当 x 是多少时,这个三角形面积 S 最大?最大面积是多少?[来22. 如图,在△ABC 中,∠ACB = 90︒ ,D 为 AC 上一点,DE ⊥AB 于点 E ,AC =12,BC =5.(1)求 cos ∠ADE 的值;C(2)当 DE = DC 时,求 AD 的长.DAEBO23. 如图,反比例函数 y = kx 1 的图象与一次函数 y = - x 的图象24 y分别交于 M ,N 两点,已知点 M (-2,m ).(1)求反比例函数的表达式;(2)点 P 为 y 轴上的一点,当∠MPN 为直角时,直接写出点 P 3 2 M1–4 –3 –2 –1 o–1–21 2 3 4NCx的坐标.–3 –4E BA24. 如图, AB , AC 是⊙ O 的两条切线, B , C 为切点,连接DCO 并延长交 AB 于点 D ,交⊙ O 于点 E ,连接 BE ,连接 AO .(1)求证: AO ∥ BE ;(2)若 DE = 2 ,tan ∠ BEO = 2 ,求 DO 的长.25. 如图,在 △Rt ABC 中,∠ACB =90°,D 是 AB 的中点,连接 CD ,过点 B 作 CD 的垂线,交 CD 延长线于点 E. 已知 AC =30,cosA = 3 5.(1)求线段 CD 的长; (2)求 sin ∠DBE 的值.AEDC B(-4,-2),将点A向右平移6个单位长度,得到点B.26.在平面直角坐标系xOy中,点A(1)直接写出点B的坐标;(2)若抛物线y=-x2+bx+c经过点A,B,求抛物线的表达式;(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段AB有且只有一个公共点时,求抛物线顶点横坐标t的取值范围.y54321–5–4–3–2–1O12345x–1–2–3–4–527.如图,△Rt ABC中,∠ACB=90°,AD平分∠BAC,作AD的垂直平分线EF交AD于点E,交BC的延长线于点F,交AB于点G,交AC于点H.(1)依题意补全图形;(2)求证:∠BAD=∠BFG;(3)试猜想AB,FB和FD之间的数量关系并进行证明.AB D C28.如图,在平面直角坐标系xOy中,已知点A(1,2),B(3,2),连接AB.若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.(1)在点C(0,2),D(2,32),E(4,1)中,线段AB的“临近点”是__________;(2)若点M(m,n)在直线y=-33x+2上,且是线段AB的“临近点”,求m的取值范围;(3)若直线y=-3x+b上存在线段AB的“临近点”,求b的取值范围.3y543–5–4–3–2–121o–1–2–3–4–5A B12345x=2⨯2房山区2018--2019学年度第一学期终结性检测试卷答案九年级数学学科2019.1一.选择题(本题共16分,每小题2分)题号答案1A2C3D4B5A6C7C8D二.填空题(本题共16分,每小题2分)9.-1210.略11.512.313.略14.4315.11.516.23三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.2sin45︒+tan60︒+2cos30︒-123+3+2⨯-23……………………4分22P =2.……………………………………5分A B l 18.(1)如图所示………………………………………1分(2)P A=PB,QA=QB…………………………………3分KQ依据:①到线段两个端点距离相等的点在这条线段的垂直平分线上;②两点确定一条直线.………………………………………5分2a 1 2.∴ x + x = 12 ..………………………………4 分19. 画图略…………………………………………………3 分 面积略……………………………………………………5 分20. (1)C (4,3), ……………………………………………1 分反比例函数的解析式 y=12x; ………………………3 分(2)点 B ′恰好落在双曲线上.…………………………5 分21.(1) S = - 1 2 x 2+ 20 x …………………………2 分1(2)∵ a = - <0,∴S 有最大值, …………………………3 分2b 20 1当 x = - =- = 20 时,S 有最大值为 S = - ⨯ 20 2 + 20 ⨯ 20 = 2002 ⨯ (- )2∴当 x 为 20cm 时,三角形面积最大,最大面积是 200cm 2 …………………………5 分22. 解:如图,(1)∵DE ⊥AB ,∴∠DEA =90°.∴∠A+∠ADE =90°.∵∠ACB = 90︒ ,ACDE B∴∠A+∠B =90°.∴∠ADE =∠B .………………………………1 分在 △Rt ABC 中,∵AC =12,BC =5,∴AB =13.BC 5 ∴ cos B == .AB13∴ cos ∠ADE = cos B =513. ………………………………2 分DE 5(2)由(1)得 cos ∠ADE = = ,AD 13 5设 AD 为 x ,则 DE = DC = x . ………………………………3 分 13∵ AC = AD + CD = 12 ,5 13解得 x = 26 .323. (1)∵点 M (-2,m )在一次函数 y = - x 的图象上,1∴ AD =26 3. ……………………………5 分12∴ m = - ⨯ (-2 ) = 1 .2∴M (-2,1).……………………………2 分∵反比例函数 y = k x的图象经过点 M (-2,1),∴k =-2×1=-2.2 ∴反比例函数的表达式为 y =-. ……………………………4 分x(2)点 P 的坐标为(0, 5 )或(0, - 5 )……………………………6 分24. (1) 证明:连结 BC ,∵ AB , AC 是⊙ O 的两条切线, B , C 为切点,∴ AB =AC , OA 平分∠ BAC………………………………1 分∴OA ⊥BC.∵CE 是⊙ O 的直径,∴∠CBE =90°,∴ OA ∥BE.………………………………2 分(2)∵OA ∥BE,∴∠BEO =∠AOC.∵tan ∠BEO = 2 , ∴tan ∠AOC = 2.………………………………3 分在 △Rt AOC 中,设 OC =r,则 AC = 2 r, OA = 3 r ………………………4 分∴在 △Rt CEB 中,EB = 2 3r.3DCOE BA∴DEDO=3∴CD=1∴cos∠DCB=cos∠DBC=4∴sin∠DBE=DE∵BE∥OA,△∴DBE∽△D AODO=EB OA,………………………………………………………………5分232r3r,∴DO=3.………………………………6分25.⑴∵∠ACB=90°,AC=30,cosA=35,A∴BC=40,AB=50.……………………2分E∵D是AB的中点,D2AB=25.…………………………3分(2)∵CD=DB,∴∠DCB=∠DBC.………………………4分5.∵BC=40,∴CE=32,……………………5分∴DE=CE-CD=7,C BDB=7 25.……………………6分⎩c = 6 ⎨26. (1) B (2, -2)……………………2 分(2)抛物线 y = - x 2 + bx + c 过点 A, B ,∴ ⎧-16 - 4b + c = -2 ⎩-4 + 2b + c = -2⎧b = -2 , 解得 ⎨∴抛物线表达式为 y = - x 2 - 2 x + 6………………………4 分(3) 抛物线 y = - x 2 + bx + c 顶点在直线 y = x + 2 上∴抛物线顶点坐标为 (t, t + 2)∴抛物线表达式可化为 y = - (x - t )2 + t + 2 .把 A (-4, -2)代入表达式可得 -2 = - (-4 - t )2 + t + 2解得 t = -3,t = -4 .12∴ -4 ≤ t < -3 .把 B (2, -2)代入表达式可得 - (2 - t )2 + t + 2 = -2 .解得 t = 0, t = 534∴ 0 < t ≤ 5 .综上可知 t 的取值范围时 -4 ≤ t < -3 或 0 < t ≤ 5 .…………………6 分y43 2 1–4 –3 –2 –1 o–1A–2–3–41 2 3 4Bx(3)当直线y=-3∴2-3≤b≤2+……………………………………………7分27.(1)补全图形如图;……………………………2分(2)证明:∵AD平分∠BAC,∴∠BAD=∠CAD∵FE⊥AD,∠ACF=90°,∠AHE=∠CHF∴∠CFH=∠CAD∴∠BAD=∠CFH,即∠BAD=∠BFG……………4分(3)猜想:AB2+FD2=FB2GEAH证明:连接AF,∵EF为AD的垂直平分线,∴AF=FD,∠DAF=∠ADF,……………………5分∴∠DAC+∠CAF=∠B+∠BAD,∵AD是角平分线,∴∠BAD=∠CAD∴∠CAF=∠B,∴∠BAF=∠BAC+∠CAF=∠BAC+∠B=90°………………………6分∴AB2+AF2=FB2∴AB2+FD2=FB2………………………………7分B DC F28.(1)C、D………………………………………2分y(2)如图,设y=-33x+2与y轴交于M,与A2B2交于N,54A1B1易知M(0,2),∴m≥0,易知N的纵坐标为1,代入y=-33x+2,可求横坐标为3,3M21AA2NBB23–2–1o12345x∴m≤3∴0≤m≤3.…………………………………………4分3x+b与半圆A相切时,b=2-…………5分33–1–2–3当直线y=-353x+b与半圆B相切时,b=2+.…………6分335333。