中考第二轮复习:中考数学压轴题全面突破之一动态几何
中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
中考数学二轮专题复习动态几何综合题

中考数学二轮专题复习动态几何综合题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】中考数学二轮专题复习:动态几何综合题【简要分析】函数是中学数学的一个重要概念.加强对函数概念、图象和性质,以及函数思想方法的考查是近年中考试题的一个显着特点.大量涌现的动态几何问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类题目的三乱扣帽子解法是抓住变化中的“不变”.以“不变”应“万变”.同时,要善于利用相似三角形的性质定理、勾股定理、圆幂定理、面积关系,借助议程为个桥梁,从而得到函数关系式,问题且有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件.【典型考题例析】B、C三点的坐标分别为A(18,0)、B(18,6)、C(8,6),四边形OABC是梯形.点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC的解析式.(2)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半时,直线PQ 能否把梯形的面积也分成相等的两部分?如有可能,请求出t 的值;如不可能,请说明理由.分析与解答 (1)设OC 的解析式为y kx =,将C (8,6)代入,得34k =, ∴34y x =.(2)当Q 在OC 上运动时,设3(,)4Q m m ,依题意有2223()(2)4m m t +=,∴85m t =.故86(,)(05)55Q t t t ≤≤.当Q 在CB 上运动时,Q 点所走过的路程为2t . ∵CO=10,∴210CQ t =-. ∴Q 点的横坐标为210812t t -+=-. ∴(22,6)(510)Q t t -<≤. (3)易得梯形的周长为44.①如图2-4-38,当Q 点在OC 上时,P 运动的路程为t ,则Q 运动的路程为(22)t -.过Q 作QM ⊥OA 于M ,则3(22)5QM t =-⨯.∴13(22)25OPQ S t t ∆=-⨯,1(1810)6842S =+⨯=四边形.假设存在t 值,使得P 、Q 两点同时平分梯形的周长和面积,则有131(22)84252t t =⨯=⨯,即2221400t t -+=. ∵22241400∆=-⨯<,∴这样的t 不存在.②如图2-4-39,当Q 点在BC 上时,Q 走过的路程为(22)t -, 故CQ 的长为:221012t t --=-.图2-4-38图2-4-39∴1()2OCQP S CQ OP =+梯形.11(12)6368422AB t t =⨯-+⨯=≠⨯, ∴这样的t 也不存在.综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积. 例2: 如图2-5-40,在Rt △PMN 中,∠P=900,PM=PN ,MN=8㎝,矩形ABCD 的长和宽分别为8㎝和2㎝,C 点和M 点重合,BC 和MN 在一条直线上.令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1㎝的速度移动(图2-4-41),直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ㎝2.求y 与x 之间的函数关系式.分析与解答 在Rt △PMN 中,∵PM=PN ,∠P=900,∴∠PMN=∠PNM=450. 延长AD 分别交PM 、PN 于点G 、H .过G 作GF ⊥MN 于F ,过H 作HT ⊥MN 于T (图2-4-42). ∵DC=2㎝.∴MF=GF=2㎝, ∵MT=6㎝.因此矩形ABCD 以每秒1㎝的速度由开始向右移动到停止,和Rt △PMN 重叠部分的形状可分为下列三种情况:(1)当C 点由M 点运动到F 点的过程中(0≤x ≤2).如图2-4-42所示,设CD 与PM 交于点E ,则重叠部分图形是Rt △MCE ,且MC=EC=x .∴211(02)22y MC EC x x ==≤≤.(2)当C 点由F 点运动到T 点的过程中(26)x <≤, 如图2-4-43所示,重叠部分图形是直角梯形MCDG . ∵,2MC x MF ==,∴FC=DG=x -2,且DC=2.N图2-4-42∴1()22(06)2y MC GD DC x x =+=-<≤(3)当C 点由T 点运动到N 点的过程中(68)x <≤, 如图2-4-44所示,设CD 与PN 交于点Q , 则重叠部分图形是五边形MCQHG . ∵MC x =,∴CN=CQ=8-x ,且DC=2.∴2111()(8)12(68)222y MN GH DC CN CQ x x =+-=--+<≤.说明:此题是一个图形运动问题,解答方法是将各个时刻的图形分别画出,将图形 则“动”这“静”,再设法分别求解.这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破. 【提高训练】 1.如图2-4-45,在ABCD 中,∠DAB=600,AB=5,BC=3,鼎足之势P 从起点D出发,沿DC 、CB 向终点B 匀速运动.设点P 所走过的路程为x ,点P 所以过的线段与绝无仅有AD 、AP 所围成图形的面积为y ,y 随x 的函数关系的变化而变化.在图2-4-46中,能正确反映y 与x 的函数关系的是( )2.如图2-4-47,四边形AOBC 为直角梯形,OB=%AC ,OC 所在直线方程为2y x =,平行于OC 的直线l 为:2y x t =+,l 是由A 点平移到B 点时,l 与直角梯形AOBC 两边所转成的三角形的面积记为S .(1)求点C 的坐标.(2)求t 的取值范围.(3)求出S 与t 之间的函数关系式.3.如图2-4-48,在△ABC 中,∠B=900,点P 从点A 开始沿AB 边向点B 以1㎝/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2㎝/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8㎝2(2)如果P 、Q 分别从A 、B 同时出发,点P 到达点B 后又继续沿BC 边向点C 移动,点Q 到达点C 后又继续沿CA边向点A 移动,在这一整个移动过程中,是否存在点P 、Q ,使△PBQ 的面积等于9㎝2若存在,试确定P 、Q 的位置;若不存在,请说明理由.4.如图2-4-49,在梯形ABCD 中,AB=BC=10㎝,CD=6㎝,∠C=∠D=900. (1)如图2-4-50,动点P 、Q 同时以每秒1㎝的速度从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止.设P 、Q 同时从点B 出发t 秒时,△PBQ 的面积为1y (㎝2),求1y (㎝2)关于t (秒)的函数关系式.(2)如图2-4-51,动点P 以每秒1㎝的速度从点B 出发沿BA 运动,点E 在线段CD 上随之运动,且PC=PE .设点P 从点B 出发t 秒时,四边形PADE 的面积为2y (㎝2).求2y (㎝2)关于t (秒)的函数关系式,并写出自变量t 的取值范围.【答案】 1.A2.(1)C (1,2) (2)-10≤t ≤2(3)S 与t 的函数关系式为215(100)20S t t t =++-≤≤或211(02)4S t t t =-+≤≤3.(1)2秒或4秒(2)存在点P 、Q ,使得△PBQ 的面积等于9㎝2,有两种情况: ①点P 在AB 边上距离A 为3㎝,点Q 在BC 边上距离点B 为6㎝; ②点P 在BC 边上,距B 点3㎝时,此时Q 点就是A 点 4.(1)当点P 在BA 上运动时,21310y t =; 当点P 在AD 上运动时,130y =; 当点P 在DC 上运动时,190y t =-+(2)221299025BPC PEC ABCD y S S S t t ∆∆=--=-+梯形,自变量t 的取值范围是0≤t ≤5. .。
专题08 动态几何类压轴题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题08 动态几何类压轴题一、单选题1.如图,在ABC 中,90ACB ∠=︒,4AC =,3BC =.线段PE 的两个端点都在AB 上,且1PE =,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,空白部分面积DPEC S 四边形的大小变化的情况是( )A .一直减小B .一直增大C .先增大后减小D .先减小后增大【答案】C【分析】 设PD=x ,AB 边上的高为h ,求出h ,并运用相似三角形的性质求出AD ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,5AB ∴===,设PD x =,则1205x ≤≤,AB 边上的高为h ,125AC BC h AB ==, //PD BC , ADP ACB ∆∆∽∴, ∴PD AD BC AC=, 43AD x ∴=,53PA x = 221415122242333(4)2()23235353210△△APD CBE S S x x x x x x ∴+=+-=-+=-+, ()22233323()()32103210276△△△四边形ABC APD CBE DPEC S x S x S S ∴+-----+=-==, ∵203-<,∴32x≤<时,DPECS四边形随x的增大而增大,31225x<≤时,DPECS四边形随x的增大而减小,故选:C.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.2.如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=6,点D为直线AB上一动点,将线段CD绕点C 逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.5.5B.6C.7.5D.8【答案】C【分析】以BC为边作等边△BCF,连接DF,可证△BCE≌△FCD,可得BE=DF,则DF⊥AB时,DF的长最小,即BE的长最小,即可求解.【详解】如图,以BC为边作等边△BCF,连接DF,∵∠ACB=90°,∠BAC=30°,AB=6,∴∠ABC=60°,BC=3,∵将线段CD绕点C逆时针旋转60°得到线段CE,∴CD=CE,∠DCE=60°,∵△BCF是等边三角形,∴CF=BC=BF=3,∠BCF=∠DCE =60°,∴∠BCE=∠DCF,且BC=CF,DC=CE,∴△BCE≌△FCD(SAS),∴ BE= DF,∴DF ⊥AB 时,DF 的长最小,即BE 的长最小,如图,此时作FD AB '⊥,∵FBD '∠=180°-60°-60°=60°,D F AB '⊥,∴ 1 1.52BD BF '==, ∴7.5AD AB BD '=+=',故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,直角三角形的性质,添加恰当的辅助线构造全等三角形是解题关键.二、解答题3.如图,在等腰直角三角形△ABC ,∠ABC=90°,AB=6,P 是射线AB 上一个动点,连接CP ,以CP 为斜边构造等腰直角△CDP (C 、D 、P 按逆时针方向),M 为CP 的中点,连接AD ,MB .(1)当点P 在线段AB 上运动时,求证:△CDA ∽CMB ;(2)设AP x =,△ADP 的面积为y .①当012x <<时,求y 关于x 的函数表达式;②记D 关于直线AC 的对称点为D ,若D 在△APC 的内部,求y 的取值范围.【答案】(1)见解析;(2)①2134y x x =-+;②189y << 【分析】 (1)根据等腰直角三角形的性质得BCM ACD ∠=∠,CB CM CA CD =,即可证明结论; (2)①分类讨论,当06x <≤时,或当612x <<时,过点D 作DE AB ⊥于点E ,根据(1)的相似三角形,得到AD=AP ,并且用x 表示出长度,即可求出函数表达式;②当点D 在APC △内部时,06x <<,过点P 作PN AC ⊥于点N ,利用面积法表示出PN 的长,得到x 的范围,即可求出y 的范围.【详解】解:(1)∵ABC 和CDP 是等腰直角三角形,∴45ACB DCP ∠=∠=︒,∴ACB ACP DCP ACP ∠-∠=∠-∠,即BCM ACD ∠=∠,∵ABC 和CDP 是等腰直角三角形,∴CB CA ==,CP CD = ∵M 是CP 的中点, ∴12CM CP =,∴21CM CD ==, ∴CB CM CA CD =, ∴CDA CMB ;(2)①∵M 是CP 中点, ∴12BM MC PC ==,若06x <≤,如图,过点D 作DE AB ⊥于点E ,∵AP x =,∴6PB x =-,∴PC = ∵DC DA MC MB=,∴2DC DA DP PC ==== ∵DE AB ⊥,∴12AE EP x ==,∴162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭; 若612x <<,如图,过点D 作DE AB ⊥于点E ,6BP x =-,PC =DC DA DP ====12AE EP x ==,162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭, 综上:2134y x x =-+; ②当点D 在APC △内部时,06x <<,点P 越往右,点D 离AC 越近,当点D 在PC 上时,过点P 作PN AC ⊥于点N ,∴DCA ACP PCB ∠=∠=∠,∴CP 为ACB ∠的角平分线,∴PN PB =,∵1131822ABC APC BPC S S S AC PN BC PB PN =+=⋅+⋅=+=,∴6PN PB ==,∴12AP AB PB =-=-,当126x -<<时,点D 在APC △内部,则根据2134y x x =-+,求出189y <<. 【点睛】本题考查相似三角形的综合题,解题的关键是掌握相似三角形的性质和判定,二次函数的几何运用,利用分类讨论的思想进行求解.4.如图,在平面直角坐标系中,直线3y x =-+与抛物线2y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 在y 轴上,点P 是抛物线上任意一点,过点P 作PQ ⊥y 轴,交直线AB 于点Q ,连接BP ,设点P 的横坐标为m ,△PQB 的边PQ 与PQ 边上的高之差为d .(1)求此抛物线解析式.(2)求点Q 的横坐标(用含m 的代数式表示);(3)∠BQP 为锐角.①求d 关于m 的函数关系式;②当△AOB 的顶点到PQ 的最短距离等于d 时,直接写出m 的值.【答案】(1)2y x 2x 3=-++;(2)22m m -;(3)①d m =-;②m =【分析】 (1)由直线解析式求解出A 、B 的坐标,再代入抛物线解析式求解即可;(2)由于PQ 垂直于y 轴,则P 、Q 的纵坐标相等,因此求出P 的纵坐标,再代入直线解析式求解Q 的横坐标即可;(3)①根据题中对d 的定义,分别求出PQ ,以及PQ 边上的高,再作差即可;②根据△AOB 的顶点到PQ 的最短距离等于d 时建立关于m 的一元二次方程求解,并注意运用条件判断合适的值即可.【详解】(1)由直线3y x =-+可知,A(3,0),B(0,3),将A(3,0),B(0,3)代入2y x bx c =-++得: 9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)由题可知,P 、Q 的纵坐标相等,∵P 的横坐标为m ,且P 是抛物线上任意一点,∴P 的纵坐标为223y m m =-++,∴Q 的纵坐标为223y m m =-++,又∵Q 在直线上,∴将223y m m =-++代入3y x =-+得: 2233m m x -++=-+,解得:22x m m =-,∴Q 的横坐标为22m m -;(3)①由题意,()B P d PQ y y =--,由(2)可知: 2232Q P m P m m m m Q x x =-==---,()222332B P y m m m y m -+=+--=- ∴()B P d PQ y y m =--=-,∴d m =-;②由题可知:△AOB 为等腰直角三角形,其顶点为O ,则O 到PQ 的距离为223m m -++,当△AOB 的顶点到PQ 的最短距离等于d 时, 223m m m -++=-,解得:32m =, ∵∠BQP 为锐角,∴32m -=. 【点睛】本题考查二次函数与一次函数的综合运用,理解二次函数的性质,仔细分析题中表达的数量关系是解题关键.5.已知一次函数4y x =+的图象与二次函数()2y ax x =-的图象相交于()1,A b -和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC x ⊥轴,与二次函数()2y ax x =-的图象交于点C .(1)求a 、b 的值;(2)如图1,M 为APC ∠内一点,且1PM =,E ,F 分别为边PA 和PC 上两个动点,求MEF 周长的最小值;(3)若PAC △是直角三角形,求点C 的坐标.【答案】(1)3b =,1a =;(2(3)()2,0C 或()3,3.【分析】∠1∠∠A∠∠∠∠∠∠b∠∠∠∠∠A∠∠∠∠∠∠∠a∠∠∠(2)∠∠∠M∠∠∠∠AB∠PC ∠∠∠∠,M M '''∠∠∠∠ ,,M M PM PM ''''''∠∠∠MEF∠∠∠∠∠∠∠∠ M M '''∠∠∠∠∠∠∠290M PM APC ∠=∠'=''︒∠∠∠ M M ==''='∠3∠∠∠PAC=90°∠∠ACP=90°∠∠∠∠∠∠∠【详解】解:∠1∠∠A 在直线y=x+4∠∠∠b=-1+4=3∠∠A∠∠∠∠∠-1∠3∠∠∠A∠∠∠∠∠y=ax(x -2)∠∠∠3=-a(-1-2)∠∠3=3a∠∠a=1∠∠3b =∠ 1a =∠∠2∠∠∠∠∠∠∠M ∠∠∠∠AB ∠PC ∠∠∠∠'M ∠''M ∠∠∠∠'''M M ∠'PM ∠''PM ∠∠MEF ∠∠∠∠∠∠∠'''M M ∠∠∠∠∠∠∠∠∠∠∠PM PM PM M PA APM MPC CPM ==∠=∠∠=∠'''''',,∠∠290M PM APC ∠=∠'=''︒,∠'''M M ===∠∠3∠∠(),4P m m +∠∠()2,2C m m m -∠ ∠∠∠PAC=90°∠∠222AP AC PC +=∠()()()()2222222112334m m m m m m ++++--=--∠ ∠∠1m =-∠∠∠∠∠2m =∠∠()2,0C ∠∠∠ACP=90°∠∠222AC PC AP +=∠()()()()2222221233421m m m m m m ++--+--=+∠ ∠∠1m =-∠∠∠∠∠3m =∠4m =∠∠∠∠∠∠()3,3C ∠∠∠()2,0C ∠()3,3∠【点睛】 本题考查二次函数与一次函数的综合运用,熟练掌握二次函数的图象与性质、一次函数的图象与性质、轴对称的性质、勾股定理的应用是解题关键.6.如图所示,直线AB 交x 轴于点(),0A a ,交y 轴于点()0,B b ,且a 、b ()240a -=. (1)如图1,若C 的坐标为()1,0-,且AH BC ⊥于点H ,AH 交OB 于点P ,试求点Р的坐标; (2)如图2,连接OH ,求证45OHP ∠=︒;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN DM ⊥交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -△△的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P 的坐标为()0,1-;(2)见解析;(3)S △BDM -S △ADN 的值不发生改变,等于4【分析】(1)先依据非负数的性质求得a 、b 的值,从而可得到OA=OB ,然后再∠COB=∠POA=90°,∠OAP=∠OBC ,最后,依据ASA 可证明∠OAP ≌△OBC ,得出OP=OC ,从而得出点P 的坐标;(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点,利用AAS 证明∠COM ≌△PON ,得出OM=ON ,再根据角平分线得到判定即可得出HO 平分∠CHA ,从而求出∠OHP ;(3)连接OD ,易证∠ODM ≌△ADN ,从而有S △ODM =S △ADN ,由此可得S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB . 【详解】解:(1()240a -=∴a+b=0,a -4=0,∴a=4,b=-4,则OA=OB=4.∵AH ⊥BC ,则∠AHC=90°,∠COB=90°,∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC .在∠OAP 和∠OBC 中, 90COB POA OA OB OAP OBC ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△OAP ≌△OBC (AAS );∴OP=OC∵C 的坐标为()1,0-,∴OC=1∴OP=1∴P 的坐标为()0,1-(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点.在四边形OMHN 中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP .在∠COM 和∠PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△COM ≌△PON (AAS ),∴OM=ON .∵OM ⊥CB ,ON ⊥HA ,∴HO 平分∠CHA ,1452︒∴∠=∠=OHP CHA (2)S △BDM -S △ADN 的值不发生改变,等于4.理由如下:如图:连接OD .∵∠AOB=90°,OA=OB ,D 为AB 的中点,∴OD ⊥AB ,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD .∵MD ⊥ND 即∠MDN=90°,∴∠MDO=∠NDA=90°-∠MDA .在∠ODM 和∠ADN 中,,MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN , ∴12S ∆∆∆∆∆∆-=-==BDM ADN BDM ODM BOD AOB S S S S S ∴111144422S 22∆∆-=⨯⋅=⨯⨯⨯=BDM ADN S AO BO 【点睛】本题考查了全等三角形的判定与性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(2)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.7.如图,已知等边ABC 的边长为16,点P 是AB 边上的一个动点(与点A 、B 不重合).直线l 是经过点P 的一条直线,把ABC 沿直线l 折叠,点B 的对应点是点B '.(1)如图1,当8PB =时,若点B '恰好在AC 边上,则AB '的长度为_________;(2)如图2,当10PB =时,若直线//l AC ,则BB '的长度为_______;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,ACB '△的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当12PB =时,在直线l 变化过程中,求ACB '△面积的最大值.【答案】(1)8或0;(2)(3)面积不变,(4)最大为96+【分析】(1)证明△APB′是等边三角形即可解决问题.(2)如图2中,设直线l 交BC 于点E .连接BB′交PE 于O .证明△PEB 是等边三角形,求出OB 即可解决问题.(3)如图3中,结论:面积不变.证明BB′∥AC 即可.(4)如图4中,当B′P ⊥AC 时,△ACB′的面积最大,设直线PB′交AC 于E ,求出B′E 即可解决问题.【详解】解:(1)如图1中,∵ABC 是等边三角形,∴60A ∠=︒,16AB BC CA ===,∵8PB =,∵8PB PB PA ===',∵60A ∠=︒,∴APB '是等边三角形,∴8AB AP '==.当直线l 经过C 时,点B '与A 重合,此时0AB '=,故答案为8或0.(2)如图2中,设直线l 交BC 于点E .连接BB '交PE 于O .∵//PE AC ,∴60BPE A ∠=∠=︒,60BEP C ∠=∠=︒,∴PEB △是等边三角形,∵10PB =,且由于折叠,∴B ,B '关于PE 对称,∴BB PE '⊥,2BB OB '=,∴OP=12PB=5,∴OB =,∴BB '=故答案为(3)如图3中,结论:面积不变.连接BB ′,过点A 作AF ⊥BC ,垂足为F ,∵B ,B '关于直线l 对称,∴BB '⊥直线l ,∵直线l AC ⊥,∴//AC BB ',∴ACB ACB S S '=△△,∵BC=AB=AC=16,∴BF=8,∴=,∴1162ACB ACB S S '==⨯⨯= (4)如图4中,∵点B 和B′关于经过点P 的直线对称,∴B′到点P 的距离与点B 到点P 的距离相等,当B P AC '⊥时,ACB '△的面积最大,设直线PB '交AC 于E ,在Rt APE 中,∵4PA =,60PAE ∠=︒,∴AE=2,∴PE ==∵BP=B′P=12,∴12EB EP B P '=++'=∴(11612962ACB S '=⨯⨯+=+△ 【点睛】本题属于几何变换综合题,考查了等边三角形的性质和判定,轴对称变换,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.8.已知抛物线2122y x x =-与x 轴交于点O 、A 两点,顶点为B .(1)直接写出:A 点坐标________ ,B 点坐标_______ ,△ABO 的形状是_______;(2)如图,直线y x m =+(m<0)交抛物线于E 、F(E 在F 右边),交对称轴于M ,交y 轴于N .若EM -FN=MN ,求m 的值;(3)在(2)的条件下,y 轴上有一动点P ,当∠EPF 最大时,请直接写出此时P 点坐标___________【答案】(1)(4,0),(2,-2),等腰直角三角形;(2)52m =-;(3)(052-) 【分析】(1)令2122y x x =-中y=0,求出A 的坐标,由22112(2)242y x x x =--+=,求出顶点B 坐标,利用勾股定理的逆定理判定△ABO 是等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D ,先求出∠OND=45°,利用锐角三角函数可得FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒,联立解析式求出点E 、F 的横坐标,最后根据已知等式即可列出方程,求出m ; (3)作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,利用圆周角定理和三角形外角的性质先证此时∠EPF 最大,然后确定点P 的坐标,设点P 的坐标为(0,p ),用含p 的式子表示出DP 和DF ,列出方程即可求出结论.【详解】解:(1)令2122y x x =-中y=0,得21202x x -=, 解得x=0或x=4,∴A (4,0); ∵22112(2)222y x x x =-=--, ∴顶点B 坐标为(2,-2);连接AB 、OB ,∴22416OA ==,()()22224820AB =-+-=-,()()22220820OB =-+-=-,∴222OA AB OB =+,AB=OB ,∴△ABO 是等腰直角三角形,故答案为:(4,0),(2,-2),等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D将x=0代入y x m =+中,解得y=m ;将y=0代入y x m =+中,解得x=-m∴点N 的坐标为(0,m ),点D 的坐标为(-m ,0)∴ON=OD∴△OND 为等腰直角三角形∴∠OND=45°∴FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒, ∴EM=EN -)EG CM - ∵抛物线2122y x x =-的对称轴为直线x=2 ∴CM=2 联立2122y x x y x m⎧=-⎪⎨⎪=+⎩消去y ,解得:x 1=3x 2=3+∴点F的横坐标为3-E的横坐标为3+∴HF=3-EG=3+∴3,MN=)321+=∵EM -FN=MN ,1+3-=解得:52m =-, 经检验,52m =-是原方程的解; (3)如下图所示,作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,先证此时∠EPF 最大,在y 轴上任取一点P ',连接EP FP ''、,FP '与圆D 交于点C∴∠EPF=∠ECF∵∠ECF是△EP C'的外角∠∴∠ECF>EP C'∴∠EPF>EP F'∠即此时∠EPF最大,然后确定点P的坐标,设点P的坐标为(0,p),如下图所示,连接DP、DF,作EF的中垂线ST,交EF于S,交y轴于T,过点S作SK⊥y轴于K由(2)知52m =- ∴点E 的坐标为(5,52),点F 的坐标为(1,32-) ∴点S 的坐标为(3,12), ∴OK=12,SK=3 由(2)知:∠SNO=45°,∵∠TSN=90°∴∠STK=45°∴△TSK 、△TDP 为等腰直角三角形∴TK=SK=3,TP=DP∴TP=TK +OK -OP=72p - ∴DP=72p -, ∴点D 的坐标为(72p -,p )∴∵DP=DF∴72p -解得:52-或p=52∵∴ES=12EF=SK ∴以EF 为直径的圆与y 轴相离∴点P 必在以EF 为直径的圆的外边∴△EPF 为锐角三角形∴点D 在△EPF 内部,也必在S 的左上方∴点D 的纵坐标大于0,即p >0∴52∴点P 的坐标为(052). 【点睛】此题考查的是二次函数、一次函数和圆的综合大题,掌握二次函数图象及性质、求一次函数解析式、等腰直角三角形的判定及性质、圆周角定理、锐角三角函数是解题关键.9.如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB SDB AC ∴=⋅= 12ADB S AB DH =⋅DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒∴ACD EHD . ∴AC EH CD DH = 即44EH x x EH=--. ∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==∴)44x EB x -==+,AB =∴)44x AE x -=+ ∵EF AD ⊥,90C ∠=︒∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+. 整理得,()2402y x x =-+<≤;(3)在Rt △MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+ 按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或--4 (舍去), 如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x -4如图如果∠FDC=∠DAB,由44y x x x-=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB,44x x y x -=+与y=2x -4 整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8-. 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.10.如图,直线443y x =-+和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是()2,0-.(1)试说明ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,MON △的面积为S . ①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在4S =的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当MON △为直角三角形时,求t 的值.【答案】(1)证明见解析;(2)①22455S t t =-+(02t <<),22455S t t =-(25t <≤);②存在,(t s =;③5s 或25.8s 【分析】 (1)先求解,B C 的坐标,再求解,BC AB 的长度,从而可证明结论;(2)①过点N 作⊥ND x 轴于D ,则4sin 5ND BN OBC t =⋅∠=,分两种情况讨论,当02t <<时,当25t <≤时,分别画出符合题意的图形,再利用三角形的面积公式得到函数解析式即可;②分两种情况讨论,把4S =分别代入②中的两个函数解析式,再解方程即可得到答案;③分三种情况讨论;90∠=︒NMO 或90NOM ∠=︒或90MNO ∠=︒,再利用图形的性质与锐角三角函数可得答案.【详解】解:(1)将0y =代入443y x =-+,得3x =,∴点B 的坐标为3,0;将0x =代入443y x =-+,得4y =, ∴点C 的坐标为()0,4.在Rt OBC 中,∵4OC =,3OB =,∴5BC ==.又()2,0A -,∴5AB =,∴AB BC =,∴ABC 是等腰三角形.(2)∵5AB BC ==,故点M 、N 同时开始运动,同时停止运动.过点N 作⊥ND x 轴于D , 则4sin 5ND BN OBC t =⋅∠=, ①当02t <<时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-+. 当25t <≤时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-. ②存在4S =的情形.当02t <<时∴ 224455t t -+=, 22100,t t ∴-+=()22411044036∴=--⨯⨯=-=-<0,所以方程无解;当25t <≤时, ∴ 224455t t -=.解得11t =21t =(不合题意,舍去).15t =+<,故当4S =时,(t =秒.③当MN x ⊥轴时,MON △为直角三角形.3cos 5MB BN MBN t =⋅∠=, 又5MB t =-. ∴355t t =-, ∴258t =. 当点M 、N 分别运动到点B 、C 时,MON △为直角三角形,5t =.当90MNO ∠=︒时,不合题意,舍去,故MON △为直角三角形时,258t =秒或5t =秒. 【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,一元二次方程的解法,锐角三角函数的定义,等腰三角形的性质,直角三角形的性质,三角形的面积,分类讨论的思想,掌握分类讨论思想解决问题是解题的关键.11.如图,点O 在线段AB 上,OA =1,OB =3,以点O 为圆心、OA 为半径作∠O ,点M 在上运动.连接MB ,以MB 为腰作等腰Rt∠MBC ,使∠MBC =90°,M ,B ,C 三点按逆时针顺序排列.(1)当点M 在AB 上时,sin∠ACB =________________;(2)当BM 与∠O 相切时,求AM 的长;(3)连接AC ,求AC 长的取值范围.【答案】(1或2;(2)3;(3)46AC ≤≤. 【分析】(1)分当M 在AB 上和点M 和A 重合两种情况解答即可;(2)先证明△BMD ∽△BAM,然后根据相似三角形的性质列式解答即可;(3)如图:以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,有△BOM ≌△BPC (SAS ),PC=OM=1,则点C 在以点P 为圆心、1为半径的圆上,转化为“圆外一点到圆上的最值问题”,作射线AP ,交OP 于C 1、C 2两点,然后求得AC 1和AC 2的长即可解答.【详解】(1)①如图:当M 在AB 上时∵OA=OM=1∴AB=AO+OB=4,BM=OB -OM=2∵MB 为腰作等腰Rt∠MBC∴BC=BM=2=∠sin∠ACB =AB AC ==; ②如图:当M 和点A 重合时,AB=BC=4∴==∠sin∠ACB =AB AC ==综上,sin∠ACB 或2; (2)如图:∵BM 与∠O 相切∴∠BMO=90°==∠AB 是直径∠∠AMD=90°∠∠BMD+∠DMO=90°,∠AMO+∠DMO=90°,∴∠BMD=∠AMO∠OA=OM∠∠OAM=∠AMO∠∠OAM=∠BMD∠∠MBA=∠MBD∠△BMD ∽△BAM∴DM MB AM AB ===设AM=x ,则DM=2x2= ,解得x=3或x=-3(舍);(3)以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,∴△BOM ≌△BPC (SAS )∴PC=OM=1则点C 在以P 为圆心的M 上、1为半径的圆上,即求转化为“圆外一点到圆上的最值问题”,∴5=作射线AP ,交OP 于C 1、C 2两点,则A C 1=AP -P C 1=4, A C 2=AP+P C 2=6,∴46AC ≤≤.【点睛】本题属于几何综合题,考查了圆的性质、全等三角形的判定与性质、相似三角形的判定与性质以及锐角的三角函数,灵活应用所学知识成为解答本题的关键.12.如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与点C 和点A 重合),连接PB ,过点P作PF ⊥PB 交射线DA 于点F ,连接BF .已知AD =CD=3,设CP 的长为x .(1)线段BP 的最小值为________,当1x =时,AF =____________.(2)当动点P 运动到AC 的中点时,AP 与BF 的交点为G ,FP 的中点为H ,求线段GH 的长度. (3)若点P 在射线CA 上运动,点P 在运动的过程中,①试探究∠FBP 是否会发生变化?若不改变,请求出∠FBP 的大小;若改变,请说明理由.②若△AFP 是等腰三角形,直接写出x 的值.【答案】(1)2;(2;(3)①不发生变化,30; ②3或 【分析】(1)当BP 最小时,即BP AC ⊥,根据相似三角形的性质,可求得BP 的值,当x=1时,可得到BPN PMF ,由此可得出tan FBP ∠的值,继而得到AF 的值;(2)先证明BP 垂直平分AP ,得到PF =GH 是Rt FGP △的中线,即可得到GH 的长; (3)①过点P 作PN BC ⊥交AD 于点M ,可证明FMP PNB ,设,2x PC x PN ==,可求得NC 、MP 、BN 的长,tan =3FP MP FBP BP BN ∠==,即可求得∠FBP 的大小; ②分三种情况讨论即:当FA=FP ,AP=AF ,PA=PB 时,分别根据等腰三角形的性质解题.【详解】(1)当BP 最小时,A 与F 重合,即BP AC ⊥, 33AD CD ==6,30AC DAC ACB ∴=∠=∠=︒,在Rt ABC 与Rt APB △中,BAC PAB ∠=∠ABCAPB ∴ AB BP AC BC∴=36∴=2BP ∴= 作PM BC ⊥于N ,交AD 于M ,当x=1时,1522PN MP CN BN ====,, 90BNP PMF BPF ∠=∠=∠=︒,90,90FPM PFM FPM BPN ∴∠+∠=︒∠+∠=︒,PFM BPN ∴∠=∠,BPNPFM ∴,3MP FM BP BN NP FP ∴===,MF ∴=2663AF AM MF BN MF ∴=-=-=-==,故答案为:2,3; (2)P 为AC 的中点,3AP PC AB ∴===60ABP APB BAP ∴∠=∠=∠=︒在t R ABF 和t R PBF 中,AB=BP ,BF=BFt R ABF ∴≅t R PBF90AG PG AGB PGB ∴=∠=∠=︒,BF ∴垂直平分AP ,在t R BFP 中,303PBF BP ∠=︒=,PF ∴=取PF 的中点H ,连接GH , H 为PF 中点,GH ∴为Rt PGF △的中线,12GH PF ∴==; (3)①不发生变化,30FBP ∠=︒,理由如下,作PM BC ⊥于点N ,交AD 于M ,,PBN FPM BPN PFM ∠=∠∠=∠,FMP PNB ∴,设,,,3,22x x CP x PN NC x MP BN x =∴===-=,3FP MP BP BN ∴== 30FBP ∴∠=︒;②当FA FP =时,BA BP =,ABP ∴为等边三角形,3AP AB ∴==,3x CP ∴==;当PA PF =时,12090APF ∠=︒>︒不符合题意;当AP=AD 时,75AFP APF ∠=∠=︒,75CBP CPB ∴∠=∠=︒,CP CB ∴==,即x =;综上所述,当3x =或AFP 是等腰三角形. 【点睛】本题考查矩形的性质、相似三角形的判定与性质、解直角三角形的应用、等腰三角形的判定与性质等知识,是重要考点,灵活运用分类讨论思想是解题关键.13.如图所示,在平面直角坐标系中,抛物线()230y ax bx a =++≠与x 轴交于点()1,0A -、()3,0B ,与y 轴交于点C ,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,求当PD OD的值最大时点P 的坐标; (3)点F 与点C 关于抛物线的对称轴成轴对称,当点P 的纵坐标为2时,过点P 作直线//PQ x 轴,点M 为直线PQ 上的一个动点,过点M 作MN x ⊥轴于点N ,在线段ON 上任取一点K ,当有且只有一个点K 满足135FKM ∠=︒时,请直接写出此时线段ON 的长.【答案】(1)2y x 2x 3=-++;(2)315,24⎛⎫⎪⎝⎭;(3)7+3+【分析】(1)直接利用待定系数法求解即可; (2)过P 作PG ∥y 轴,交BC 于点G ,则可构造出相似三角形,将PD OD 转换为PG OC求解即可; (3)分两种情况讨论,连接FM ,以FM 为斜边,作等腰直角△FHM ,当以H 为圆心FH 为半径作圆H ,与x 轴相切于K ,此时有且只有一个点K 满足∠FKM=135°,设点H (x ,y ),由“AAS”可证△FHE ≌△HMQ ,可得HE=QM=y -3,HQ=EF=x -2,由勾股定理可求y 的值,可求点M 坐标,即可求解.【详解】(1)将()1,0A -、()3,0B 代入抛物线解析式得:030933a b a b =-+⎧⎨=++⎩,解得:12a b =-⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)如图所示,作PG ∥y 轴,交BC 于点G ,则△DPG ∽△DOC , ∴PD PG OD OC=, 由题可知:()0,3C ,设直线BC 的解析式为:y kx b =+,将()3,0B ,()0,3C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为:3BC y x =-+,3OC =,设P 的坐标为()223m,m m -++,则G 的坐标为()3m,m -+, ∴23PG m m =-+, ∴223932433m PD PG m m OD OC ⎛⎫--+ ⎪-+⎝⎭===, ∴当32m =时,PD OD 有最大值,将32m =代入抛物线解析式得:154y =, ∴点P 的坐标为31524⎛⎫⎪⎝⎭,;(3)①当M 在F 右侧时,如图所示,连接FM ,以FM 为斜边构造等腰直角△FHM ,当以H 为圆心,FH 为半径作圆H ,与x 轴相切于K 时,此时有且只有一个K 点满足∠FKM=135°,此时,连接HK ,交PM 于点Q ,延长CF 交于HK 于E ,则HK ⊥x 轴,设H (x ,y ),由题可知,抛物线的对称轴为直线x=1,∵点F 与点C 关于抛物线的对称轴对称,∴点F 的坐标为(2,3),CF ∥x 轴,∴CF ∥PM ,∴HK ⊥CF ,HK ⊥PM ,∴∠FEH=∠HQM=90°,∵∠FHE+∠MHE=90°,∠FHE+∠HFE=90°,∴∠HFE=∠MHQ ,又∵HF=HM ,∴△HFE ≌△MHQ (AAS ),∴HE=QM=y -3,HQ=FE=x -2,而HQ=HK -QK=y -2,∴y -2=x -2,即:x=y ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,解得:5y =,5y =-(舍去)∴532QM =-=,523FE =-=,∴点M 的坐标为()72,,∴7ON =+;②当M 在F 左侧时,如图所示,同①的过程,可证得△HFE ≌△MHQ ,此时设H 的坐标为(x ,y ),显然有,HE=QM=y -3,HQ=FE=2-x ,而HQ=HK -QK=y -2,∴y -2=2-x ,即:4-y=x ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,同理解得:5y =,∴532QM =-=,523FE =-=,∴点M 的坐标为()32,-,∴3ON =+综上,线段ON 的长为7+3+【点睛】本题考查二次函数综合问题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,圆的相关性质,以及相似三角形的判定与性质等,添加恰当的辅助线构造全等三角形是解题关键. 14.如图,在矩形ABCD 中,AB =6,BC =8,点O 为对角线AC 的中点,动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,点P 运动速度为每秒2个单位长度,点Q 运动速度为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止运动,连结PQ ,设点P 运动时间为t (t >0)秒.(1)cos∠BAC= .(2)当PQ⊥AC时,求t的值.(3)求△QOP的面积S关于t的函数表达式,并写出t的取值范围.(4)当线段PQ的垂直平分线经过△ABC的某个顶点时,请直接写出t的值.【答案】(1)35;(2)1813t=秒;(3)22434512(0)552434512(5)552S t t tS t t t⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩;(4)当2t=或t=秒时,线段PQ的垂直平分线经过△ABC的某个顶点.【分析】(1)利用勾股定理先求得AC的长,即可求解;(2)在Rt△ABC中,利用余弦函数构建方程即可求解;(3)过P作PE⊥AQ于点E,过O作OF⊥AQ于点F,分52t<<,52t=和552t<≤三种情况讨论,利用三角形面积公式即可求解;(4)分线段PQ的垂直平分线经过点C时,经过点A时,经过点B时,三种情况讨论,求得结论即可.【详解】(1)在Rt△ABC中,AB=6,BC=8,10=,∴63 cos105ABBACAC∠===;故答案为:35;(2)当PQ⊥AC时,∵AP=2t,AQ=6t-,∴在Rt△ABC中,∴23cos 65AP t PAQ AQ t ∠===-, 解得:1813t =秒, 经检验,1813t =是方程的解, ∴1813t =(秒); (3)过P 作PE ⊥AQ 于点E ,过O 作OF ⊥AQ 于点F ,在Rt △ABC 中,AB =6,BC =8,AC 10=, ∴4sin 5BC BAC AC ∠==,4sin 25PE PE PAE AP t ∠===,4sin 55OF OF OAF AO ∠===, ∴PE=85t ,OF=4, ①当502t <<时, ()()2POQ AOQ APQ 1184346461222555t S S S t t t t =-=-⨯--⨯=-+, 即24341255S t t =-+(502t <<); ②当52t =时,POQ 不存在; ③当552t <≤时,()()2POQ APQ AOQ 1814346641225255t S S S t t t t =-=-⨯--⨯=-+-, 即24341255S t t =-+-(552t <≤);综上,△QOP 的面积S 关于t 的函数表达式是22434512(0)552434512(5)552S t t t S t t t ⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩; (4)①当线段PQ 的垂直平分线经过点C 时,PC=QC=102t -,在Rt △QBC 中,222QB BC QC +=,∴()2228102t t +=-,解得:203t -=(负值已舍); ②当线段PQ 的垂直平分线经过点A 时,AQ=AP ,即62t t -=,解得:2t =;③当线段PQ 的垂直平分线经过点B 时,过P 作PG ⊥BC 于点G ,3sin 5AB PG ACB AC PC ∠===,4cos 5BC PG ACB AC GC ∠===, ∴PG=()36102655t t -=-,CG=()48102855t t -=-, BG= BC -CG=888855t t ⎛⎫--= ⎪⎝⎭, 在Rt △BPG 中,222BG PG BP +=, 即22286655t t t ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 整理得:215721800t t -+=, ()2247241518056160b ac =-=--⨯⨯=-<,方程无解,∴线段PQ 的垂直平分线不会经过点B ,综上,当2t =或203t -=秒时,线段PQ 的垂直平分线经过△ABC 的某个顶点. 【点睛】本题考查了矩形性质,解直角三角形,线段垂直平分线性质等知识,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.15.问题探究:如图,在Rt △ABC 和Rt △DEC 中,∠ACB =∠DCE =90°,∠CAB =∠CDE =60°,点D 为线段AB 上一动点,连接BE .(1)求证:△ADC ∽△BEC .(2)求证:∠DBE =90°.拓展延伸:把问题探究中的“点D 为线段AB 上一动点”改为“点D 为直线AB 上一动点”,其他条件不变,若点M 为DE 的中点,连接BM ,且有AD =1,AB =4,请直接写出BM 的长度.【答案】(1)见解析;(2)见解析;拓展延伸:BM .【分析】(1)先证得∠ACD =∠BCE ,再利用tan 60BC CE AC CD ︒===AC BC CD CE=,即可证明结论; (2)由(1)的结论得∠CAD =∠CBE ,即可证明;拓展延伸:分D 在线段AB 上和D 在BA 延长线上两种情况讨论,利用△ADC ∽△BEC 的 性质求得BE 的长,再利用直角三角形的性质即可求解.【详解】(1)∵∠ACB =∠DCE =90°,∴∠ACD+∠BCD =∠BCE+∠BCD =90°,∴∠ACD =∠BCE ,∵∠CAB =∠CDE =60°,∴tan 60BC CE AC CD ︒===AC BC CD CE=, ∴△ADC ∽△BEC ;(2)由(1)得:∠CAD =∠CBE ,∴∠CBE +∠CBA =∠CAD +∠CBA =90°,∴∠DBE =90°;拓展延伸:在Rt △ABC 中,∠ACB =90°,∠CAB =60°,AB =4,∴AC=2,BC =由(1)得:△ADC ∽△BEC , ∴AC AD BC BE=, ∵AD =1,∴由(2)得:∠DBE =90°,∵点M 为DE 的中点,∴BM=12DE ; ①当D 在线段AB 上时,如图:在Rt △BDE 中,BD=AB -AD=4-1=3,,∴DE ==∴BM=12 ②当D 在BA 延长线上时,如图:在Rt △BDE 中,BD=AB+AD=4+1=5,,∴DE ==∴BM=12综上,BM【点睛】本题考查了相似三角形的判定和性质,特殊角的三角函数值,勾股定理,等腰三角形的性质,直角三角形的性质,证明△ADC ∽△BEC 是本题的关键.16.如图,在△ABC 中,AB =BC =AC =12cm ,点D 为AB 上的点,且BD =34AB ,如果点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,同时,点Q 在线段CA 上由C 点向终点A 运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由.(2)如(图二)若点Q 的运动速度与点P 的运动速度相等(点P 不与点B 和点C 重合),连接点A 与点P ,连接点B 与点Q ,并且线段AP ,BQ 相交于点F ,求∠AFQ 的度数.(3)若点Q 的运动速度为6cm /s ,当点Q 运动几秒后,可得到等边△CQP ?【答案】(1)BPD CQP ≌,证明见解析;(2)60︒(3)43【分析】 (1)根据时间和速度求得BP 、CQ 的长,根据SAS 判定两个三角形全等.(2)利用第(1)小题的方法可证得ABP BCQ ≌,BAP CBQ ∠=∠,根据三角形外角性质可得APB PAC C ∠=∠+∠,根据等边三角形性质和三角形内角和定理可得18060BFP CBQ APB ∠=︒-∠-∠=︒,根据对顶角性质可得AFQ ∠的度数.(3)设点Q 运动时间是x 秒,根据CP CQ =列一元一次方程,根据任意一角为60︒的等腰三角形是等边三角形,即可求出答案.【详解】(1)BPD CQP ≌.证明:点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,经过1s 后,∠133BP =⨯=,∠点Q 的运动速度与点P 的运动速度相等,∠3CQ BP ==,∠AB =BC =AC =12cm ,BD =34AB , ∠ABC 是等边三角形,60B C ∠=∠=︒,31294BD =⨯=, ∠1239PC BC BP =-=-=,在BDP △和CPQ 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠BPD CQP ≌(SAS ).(2)解:∠点Q 的运动速度与点P 的运动速度相等,∠BP CQ =,∠AB =BC =AC ,∠ABC 是等边三角形,60BAC ABC C ∠=∠=∠=︒,∠在ABP △和BCQ △中,AB BC ABC C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠ABP BCQ ≌,∠BAP CBQ ∠=∠;在BPF △中,180()BFP CBQ APB ∠=︒-∠+∠,∵=CBQ APB CBQ CAP C ∠+∠∠+∠+∠,∵=60CBQ CAP BAP CAP ∠+∠∠+∠=︒,60C ∠=°,∴=6060=120CBQ APB ∠+∠︒+︒︒,∴180()=180120=60BFP CBQ APB ∠=︒-∠+∠︒-︒︒,∴=60AFQ BFP ∠∠=︒(对顶角相等).(3)解:设点Q 运动时间是x 秒,若CP CQ =,可列方程:1236x x -=, 解得:43x =. ∵在CQP 中,CP CQ =,=60C ∠︒, ∴当43x =秒时,CQP 是等边三角形(任意角是60︒的等腰三角形是等边三角形). ∴当点Q 运动43秒后,可得到等边CQP . 【点睛】。
中考复习 动态几何型压轴题

1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
中考数学压轴题策略之动态几何问题

中考数学压轴题策略之动态几何问题
面对中考,考生对待考试需保持平常心态,复习时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最正确的解题方法,进一步提高解题能力。
下文准备了动态几何问题的解题策略的内容。
解这类问题的基本策略是:
1.动中觅静:这里的〝静〞就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:〝静〞只是〝动〞的瞬间,是运动的一种特殊形式,动静互化就是抓住〝静〞的瞬间,使一般情形转化为特殊问题,从而找到〝动〞与〝静〞的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变。
具体做法是:
①全面阅读题目,了解运动的方式与形式,全方位考察运动中的变与变的量及其位置关系;
②应用分类讨论思想,将在运动过程中导致图形本质发生变化的各种时刻的图形分类画出,变〝动〞为〝静〞;
③在各类〝静态图形〞中运用相关的知识和方法(如方程、相似等)
进行探索,寻找各个相关几何量之间的关系,建立相应的数学模型进行求解。
另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是此题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出【答案】,更重要的是明确此题的方法和思路。
2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)1.如图,点O是等边ABC内一点,AOB 110 , BOC .以OC为一边作等边三角形OCD,连接AC、AD .(1)若120 ,判断OB OD BD (填“,或”)(2)当150 ,试判断AOD的形状,并说明理由;(3)探究:当时,AOD是等腰三角形.(请直接写出答案)【答案】(1) 二; (2) ADO是直角三角形,证明见详解;(3) 125、110、140 .【分析】(1)根据等边三角形性质得出COD 60 ,利用?BOC a = 120。
求出BOD 180 ,所以B, 0, D三点共线,即有OB+ OD = BD ;(2)首先根据已知条件可以证明BOC ADC ,然后利用全等三角形的性质可以求出ADO的度数,由此即可判定AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2 .如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.图3 G(1)求点E的坐标;(2)P O O A E2E时停止运动,设P的运动时间为t, VPCE的面积为S,求S与t的关系式,直接写出t 的取值范围;3(3)在(2)的条件下,当PA=]PE 时,在平面直角坐标系中是否存在点Q,使得以点P 、E 、G Q 为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q 的坐标.【答案】(1) E (10, 6); (2) S= -8t+54 (0<t<3)或 S=-6t+48 (3vtW8); (3)存 在,Q (14.4 , -4.8 )或(18.4 , -4.8 ). 【详解】解:(1)如图 1,矩形 ABO, B (18, 6),• .AB=18 BC=6,设 AE=x,贝U EC=x BE=18-x,Rt^EBC 中,由勾股定理得: EB"+BC 2=EC 2,(18-x) 2+62=x 2, x=10,即 AE=10,①当P 在OA 上时,0WtW3,如图 2,=18X 6-1X10(62) — - X8X6 - 1X 18X2t , 2 2 2=-8t+54 ,②当P 在AE 上时,3<t<8,如图3,S = S 矩形 OABC S △ PAE -S △ BEC -S △OPCj• •E ( 10, 6);(2)分两种情况:S=1PE?BC=1 X 6X(16-2t)=3 (16-2t ) =-6t+48 ;2 2(3)存在,由PA=3PE可知:P在AE上,如图4,过G作GHLOC于H,2•.AP+PE=10.•.AP=6 PE=4,设OF=y,则FG=y, FC=18-y,由折叠得:/ CGFW AOF=90 ,由勾股定理得:FC2=FC+CG,•. ( 18-y) 2=y2+62,y=8,•.FG=8 FC=18-8=10,1FC?GH= 1FG?CG221X10XGH= 1 X6X8,22GH=4.8,由勾股定理得:FH=J82 4 82 =6.4 ,• .OH=8+6.4=14.4,.•.G ( 14.4 , -4.8 ),•・•点P、E G Q为顶点的四边形为平行四边形,且PE=4,.•.Q ( 14.4 , -4.8 )或(18.4 , -4.8 ). k ,3.如图1,平面直角坐标系xoy中,A(-4, 3),反比例函数y —(k 0)的图象分别x交矩形ABOC勺两边AC, BC于E, F (E, F不与A重合),沿着EF将矩形ABO所叠使A, D重合.②若折叠后点 D 落在矩形ABOCrt (不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ ABD 是等腰三角形,请直接写出此时点 D 的坐标.7 . 23 3. 11 3.【答案】(1)①EC= 2;②3 CE 4; (2)点D 的坐标为(一,一)或(一,一)88 2 5 5【详解】,k k解:(1)①由题意得E(k,3) , F( 4,-), 3 4k kk 0 ,则 EC — , FB 一, 3 4AF 3 一, 417(12 k) 4 3 1 3 4(12 k) 3..由 A(-4, 3)得:AC 4, AB 3,,AC 4一 --- 一,AB 3 AE AC AF AB '又A=Z A,・ .△AE% AACB ・ •/AEF4 ACB ・ •.EF// CB如图2,连接AD 交EF 于点H ,••• AE.AE (1)①如图2,当点D 恰好在矩形 ABOC 勺对角线BC 上时,求CE 的长;②由折叠得EF 垂直平分AD,••• /AHE 90 ,则 EAH AEF又• BAD EAH BAC 90 ,BAD AEF ,・ .△AE% ABAQAE AF 口"AB AE 4--- ----- ,则 ----- ------ -,AB BD BD AF 34 3 9 BDAB - 3 - 3 4 4设 AF=x,贝U FB=3— x, FD=AF=x 在Rt^BDF 中,由勾股定理得:FB 2 BD 2 FD 2,r i图2由折叠的性质得: •••D 在 BC 上, ,AE AHEC DH 1 EC AC 2AH=DH 1,则 AE EC 2;即(3 x)2x 2 ,解得:如图,当D 落在BO 上时,: EAF ABD 90 ,B力。
中考数学压轴题专题复习--动态几何探究题.docx

最新中考数学压轴题专题复习一动态几何探究题1.已知在矩形ABCD中,E为边上一点,AE.LDE, AB=12, BE=16, F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片ZNGM=90。
,NG=6, MG =&斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上•如图②,△GMN 从图①的位置出发,以每秒1个单位的速度沿向点B匀速移动,同时点户从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q 为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为r秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求/的值;(2)在整个运动过程中,是否存在点P,使是等腰三角形?若存在,求出f的值;若不存在,说明理由;(3)在整个运动过程中,设AGHN与重叠部分的面积为S.请直接写岀S与7之间的函数关系式以及自变量r的取值范围;(4)在运动过程中,是否存在某一时刻r,使得S:S MM\,=1:2?若存在,求出r的值,若不存在,请说明理由.解:(1)在R2GMN中,GN=6, GM=& ・・・MN=10・由题意,易知点G的运动线路平行于BC.如解图①所示,过点G作BC的平行线,分别交4E、AF于点Q、R・・•・・ZAED= ZEGM=90°t :.AE//GM,•••四边形QEMG为平行四边形,••• QG=EM=W,.*.r= —= 10.秒;1(2)存在符合条件的点P.在Rt^ABE中,AB=12, BE=\6,由勾股定理得:3 4设ZAEB=0,则sinO= — , cos9=—,4•:N「E=t, :.QE=NE*cos^=-t9AQ=AE-QE=20--t f5LAPQ是等腰三角形,有三种可能的情形:4过点P作PK丄AE于点K,则AK= AP・cos0=54 4\9AQ=2AK, A20--/=2x-r,25解得/=上;3有r=20--®AQ=PQ.如解图④所示:®AP=PQ・如解图②所示:第1题解图②AE=20.解得t=100~9~®AP=AQ・如解图③所示:第1题解图③第1题解图⑤ 1题解图⑥I )・ 4 16过点 Q 作 QK 丄AP 于点 K,则 AK=AQ ・cosO= 20--t x- = 16 ---------- 1.5 25WK, *2 (16晋),解得:t= — .5725 综上所述,当『=二 3(3)如解图①所示, ]00 Q()() 歹或市秒时,存在“使沁是等腰三角形. 点N到达点F的时间为t=7;由(1)知,点G 到达点Q 的时间为z=10;4(2E=10x-=8, AQ=20-8=12,GR//BC,:.—=—,即坐=旦_EF AE 721・如亍20・•・点G 到达点R的时间为r=10+—715点N 到达终点B的时间为t= 16.则在△GMN运动的过程中: ①当0<t<7时,如解图⑤所示: QE=NE^cosB = 4 —t5QN=NE-sine = 3—t②当7</<10时,如解图⑥所示::・JNF=/IFN, MNF为等腰三衛形• 底边NF上的高h=丄NF• tan Z.INF =21 12 15^=-^./z = -x(r-7)x-(r-7)= -(r-7)2,由②得:S MYF= 3 (f _ 7)2 ,••・S=S AGMA^S MYF=24-§(/_7)~= _§尸+§ + 〒;71④当一0S16时,如解图⑧所示:FM=FE-ME=FE- (NE—MN) =17—f.设GM与AF交于点Z,过点I作/K丄MN于点K.AB 4V tan ZZF/C=——=-,BF 3・•・可设/K=4x, FK=3x,则KM=3x+17-t.[K 4x 3 3VtanZIA/F=——= ----------------- =-,解得x=-(17-Z)KM 3x + 17-r 4 712IK=4x=—(17 -t).:.S=-FM IK =-(t-\7V ・27・・• tan—Z7NF= 型~ =仝GN 3tanZZFN= —=-BF 375 3 3•• S=SbQNErSbiNF=第1题解图⑦ 第1题解图⑧(一7)令敦-7)6 7—r 2(0<r<7) 25r(7<r<10)25 3 31 2 14 23/一 71——t + —1 + — (105/v —)33 3 5-(t-17)2(—<r<16) 7 5(4)存在,理由如下: 当 S:Sgwv=l :2 时,S=-x 丄xMGxNG=12,2 2当SU12时,代入5'=—- r,得/=5丿^ (舍去),25代入 s= - — t 2+ — t~—r=25- —V70 ,75 3 3 71 14 23 代入 S= ----- 12H --- 1H ----- ,得 /二13 或 /=1 (舍去),3 3 3代入5=-(r-17)2,^r=17±V14 (舍去),7・•・存在满足条件的时刻r 的值为13.2、如图,已知正方形A BCD 的边长与Rt^PQR 的直角边PQ 的长均为4cm, QR 二8cm, AB 与QR在同一直线/上,开始时点Q 与点4重合,让△PQR 以lcm/s 的速度在直线/上运动, 同时M 点从点Q 出发以lcm/s 沿QP 运动,直至点Q 与点3重合时,都停止运动,设运动 的时间为1 (s),四边形PMBW 的面积为S (cm 2) •图①第2题图(1)当uls 时,求S 的值;(2) 求S 与f 之间的函数关系式,并写出自变量r 的取值范围(不考虑端点); (3) 是否存在某一时刻f,使得四边形PMBV 的面积S= + S、PQR .若存在,求出此时/的值;若不存在,说明理由;综上所述,S 与/之间的函数关系式为:图②(4)是否存在某一时刻/,使得四边形PMBN为平行四边形?若存在,求出此时/的值若不存在,说明理由.解:(1 )当匸1 时,AQ=MQ=\y AB=PQ=49■ ・・・MP 二QB 二4-1 二3,・・• QR二&・•・ B/?=8-3=5,•・•在Rt^PQR中,PQ=4,QR二&PQ 1..tan Z PRQ= ----- =—,QR 2.BN _ 1••―9BR 2.BN 1.. --- =—,5 2・•・ BN =2.5,°(3 + 2.5)x3 33Sc四边形PMBN- - ------ —— (0<r<4);乙■(2)由题意得,AQ=MQ=t,PM=BQ=4-t,BR=S-(4-t)=4+t,:.BN=2+-t,2( 1、4-/ + 2 + -((4-/)•• S 四边形PMBN= ----- ----------2=-r -4r + 12(o</<4);(3)由题意得,—t2 -4r+ 12 =丄x丄x4x8 ,4 4 2解得/I=8+4A/2去),^2=8-4^2 ,・•“的值为8-4^2 ;(4)存在,理由如下:・・•四边形PMBN是平行四边形,・•・ PM=BN,「•PM 二4・/0N=2+ —A2/• 4-f=2+ —t、2•••丐,:.t=-时,四边形PMBN是平行四边形.33、如图17,点人是厶ABC和厶ADE的公共顶点,ZBAC+ ZDAE=\SO°f AB=k AE, AC= 仁AD,点M是DE的中点,直线AM交直线BC于点N.(1)探究ZANB与ZBAE的关系,并加以证明.说明:如果你经过反复探索没解决问题,可以从下面①②中选取一个作为已知条件,再完成你的证明,选取①比选原题少得2分,选取②比选原题少得5分.①如图18, k=\;②如图19, AB=AC.(2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中⑴的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并直接写出变化后ZANB与ZBAE的关系.解:(1) ZA^B+ZBAE=180° ............ 1分证明:(法一)如图1,延长A7V到F,使MF=AM,连接D氏EF.•••点M是DE的中点,「DM二ME,•••四边形ADFE是平行四边形,•…:.AD//EF, AD二EF, :. ZDAE+ZAEF T ZBAC+ZDAE=\SO°f:.ZBAC=ZAEF , .......... 4 分9:AB=kAE f AC=kAD,.AB AC . AB AC < 八B• •—, ■ ■— ....... 0刀AE AD AE EF:.LABC^^EAF :.ZB=ZEAF .....................................8 分•/ ZANB+ZB+ZBAF = \SO Q :.ZANB+ZEAF+ZBAF = \S0°(法二)如图2,延长D4到F, AF=AD 9连接EFVZBAC+ZDAE= 180°, ZDAE + ZEAF =180°, :.ZBAC=ZEAF,• AB AC . AB _ AC ••旋一乔’^~\E~~\F•: △ABCs A AEF,又\9AF=AD, :.AM 是△£)£,的中位线,:.AM//EF, .......... 7 分 ・・・上NAE 二 ZAEF, :.ZB=ZNAE, ............... 8 分 I ZANB+ZB+ZBAN=180°,•I ZANB+ ZNAE^Z BAN =180°,即ZANB+ZBAE=\S0°....................... 10 分(2)变化.如图3 (仅供参考),ZANB=ZBAE ................ 12分选取(i ),如图4.证明:延长AM 到F,使MF=AM,连接DF 、EF.T 点M 是DE 的中点,・・・DM=ME・•・四边形ADFE 是平行四边形, ....... 4分:.AD//FE, AD 二EF, :. ZDAE+ZAEF = \S0°,J ZBAC+ZDAE= 180°,ZBAC=ZDAE f .................... 6 分9:AB=kAE, AC=kAD, k = \ ,:.AB=AE , AC=AD,:.AC=EF, .......... 7 分 A /•上B 二ZEAF,…8 分T ZANB+ZB+ZBAF=]S0°9 :. ZANB+ZEAF+ZBAF=]SO°,即 Zy47VB+ZBAE=18O° ... 10 分 选取(ii ),如图5. 证明:VAB=AC t :.ZB=- (180°・ZBAC ), ........................2•・• ZBAC+ZDAE=180°, ZDAE=\S0°-ZBAC f:.ZB=- ZDAE, a :AB=kAE f AC=kAD,2:.AE=AD,9:AM 是N ADE 的中线,AB=AC,:.ZB=ZAEF 9......... 6分 •••点M 是DE 的中点,二DM=ME,2分D图严3 分•:AB=kAE, AC=kAD,CF图4备用图 备用图解:(1)因为 OA = 4,OB = 3・•・ ZEAM 二一乙DAE, :. ZB=ZEAM, .................. 4 分2・.・ ZANB+ ZB+ZBAM= 180°,ZANB+ZE4M + ZBAM 二 180°,即ZANB+ZBAE=1SO°. ...5 分4、如图,在平面直角坐标系中,直线AB 与兀轴、y 轴分别交于点A(—4,0)、8(0,3), 动点P从点O 出发,沿兀轴负方向以每秒1个单位长度的速度运动,同时动点Q 从 点B 出发,沿射线BO 方向以每秒2个单位长度的速度运动,过点P 作PC 丄4B 于 点C,连接PQ 、CQ f 以PQ 、CQ 为邻边构造平行四边形PQCD,设点P 运动 的时间为r s.(1) 当点Q 在线段OB 上时,用含/的代数式表示PC 、AC 的长.(2) 在运动过程中,①当点D 落在兀轴上时,求出满足条件的f 的值;②当点D 落在 AABO 内部(不包括边界)时,直接写出]的取值范围.(3) 作点Q 关于兀轴的对称点0‘,连接CQ 、在运动过程中,是否存在某时刻使过A 、P 、C 三点的圆与△CQQ'三边中的一条边相切?若存在,请求出f 的值;若不存在, 请说明理由.所以 AB = yJOB 2+OA 2=5. 在 Rt\ACP 中,PA = 4_f, CR 因为 sinZOAB = —=—, PAAB 所以 pc = |(4-r).因为 cosZOAB = —=—, AB PA 4所以 AC = -(4-t). (2)①当点D 落在x 轴上时,如图①. 因为 QC//OA f“ BQ BC 所以一兰=——, BO AB4 2( 5丐(一) 所以_1 = _5 ----------------------- 3 527 解得/二一. 38所以他=空,OB OA..3 _ 2f t所以 ----- =-, 3 4解得/ =旦.112712 所以当— <t<—时,点D 落在\AB O 内部(不包 38 11 括边界).⑶如图③,0(0,3 — 20,0(0,2—3). 所以 ZQCM = 90° ,所以 ZQCP + ZPCM = 90° • 因为 ZQCP^-ZQCB = 90°, 所以 ZQCB =乙PCM = ZAPC. 因为 ZAPC-iZOAB = 90° 9 ZOBA +ZOAB = 90° , 所以 ZAPC = ZOBA,②如图,因为PQH AB ,当0C 与©M 相切时,QC 丄CM,所以ZOBA = ZQCB , 所以BQ = CQ.因为cos伽心眷誥,1 4所以 ------ 5 --------- = _,It 59解得t = -.81 4-[5--(4-/)] 3当CQ'与。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题全面突破之一•动态几何题型特点动态几何问题,是在几何知识和具体的几何图形背景下,通过点、线、形的运动,图形的平移、旋转、对称等来探究图形有关性质和图形之间的数量关系、位置关系的问题.常结合图形面积、存在性问题等考查.处理原则①研究基本图形,分析运动状态,确定分段;②画图,表达线段长;③借助几何特征建等式.难点拆解解决动态几何问题需要注意分段和线段长表达.①分段关键是找状态转折点.动点问题状态转折点通常是折线转折处或动点相遇处;图形运动问题状态转折点通常是边与顶点的交点.②线段长表达的方法有:s vt,线段和差、边角关系、勾股定理及相似.对于复杂的动态几何问题,如:起始时刻不同、往返运动、运动过程中速度变化等类型,需注意:表达线段长时找准对应的速度和时间.1.(2011山西太原改编)如图,在平面直角坐标系中,四边形OABC是平行四边形,直线l经过O,C两点,点A的坐标为(8,0),点B的坐标为(11,4).动点P 在线段OA 上从点O 出发以每秒1个单位长度的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位长度的速度沿A →B →C 的方向向点C 运动.过点P 作PM 垂直于x 轴,与折线OC ﹣CB 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)随着P ,Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?2. (2012重庆)如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.lyxC B AQ M PO lyO A BC lyO A BClyO A BC(1)当正方形的顶点F 恰好落在对角线AC 上时,求线段BE 的长.(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B 'EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B 'EFG 的边EF 与AC 交于点M ,连接B 'D ,B 'M ,DM ,是否存在这样的t ,使△B 'DM 是直角三角形?若存在,求出t 的值;若不存在,说明理由.(3)在(2)问的平移过程中,设正方形B 'EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.3. (2008河北)如图,在Rt △ABC 中,∠C =90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,BC 的中点.点P 从点D 出发,沿折线DE ﹣EF ﹣FC ﹣CD 以每秒7个单位长度的速度匀速运动;点Q 从点B 出发,沿BA 方向以每秒4个单位长度的速度匀速运动.过点Q 作射线QK ⊥AB ,交折线BC ﹣CA 于点G .点DCB A(E )DCB AA B CDDCB AP ,Q 同时出发,当点P 绕行一周回到点D 时,P ,Q 两点都停止运动,设点P ,Q 运动的时间是t 秒(t >0).(1)D ,F 两点间的距离是__________________.(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出相应的t 值;若不能,说明理由.(3)当点P 运动到折线EF -FC 上,且点P 又恰好落在射线QK 上时,求t 的值.(4)连接PG ,当PG ∥AB 时,请直接写出t 的值.4. (2012江苏无锡)如图,菱形ABCD 的边长为2c m ,∠BAD =60°.点P 从点A 出发,以错误!未找到引用源。
c m /s 的速度,沿AC 向点C 做匀速运动;与此同时,点Q 也从点A 出发,以1 c m /s 的速度,沿射线AB 做匀速运动,当点P 运动到点C 时,P ,Q 两点都停止运动.设点P 的运动时间为t (s ). (1)当点P 异于A ,C 时,请说明PQ ∥BC ;QKG FEDC BAPABCDEFABC D EFABC D EFA BC DEF(2)以点P 为圆心、PQ 的长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?5. (2012广东梅州)如图,四边形OABC 为矩形,A (6,0),C (0,2错误!未找到引用源。
)),D (0,3错误!未找到引用源。
),射线l 过点D 且与x 轴平行,点P ,Q 分别是l 和x 轴正半轴上的动点,且满足∠PQO =60°.(1)①点B 的坐标是____________;②∠CAO =_______度;③当点Q 与点A 重合时,点P 的坐标为_____________;(2)设OA 的中点为N ,PQ 与线段AC 相交于点M ,是否存在点P ,使△AMN 为等腰三角形?若存在,请求出点P 的横坐标;若不存在,请说明理由.A B C DDC BAABC D PQA BCDDCBA(3)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.6. (2009山东青岛改编)如图,在梯形ABCD 中,AD ∥BC ,AD =6c m ,CD =4c m ,BC =BD =10c m .点P 由B 出发,沿BD 方向匀速运动,速度为 1 c m /s ;同时,线段EF 由DC 出发,沿DA 方向匀速运动,速度为1c m /s ,交BD 于Q .连接PE ,设运动时间为t (s )(0 < t < 5).解答下列问题: (1)当t 为何值时,PE ∥AB ?(2)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.(3)设△PEQ 的面积为y (c m 2),试求出y 与t 之间的函数关系式.ONQAMBPCD lxy y xlD CBA O y xl D CBA O y x lDC B A O y xlD CBA O7. (2009甘肃兰州)如图1,正方形 ABCD 中,点A ,B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同的速度在x 轴正半轴上运动,当点P 到达点D 时,两点同时停止运动,设运动的时间为t 秒.(1)当点P 在AB 边上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请求出点Q 开始运动时的坐标及点P 的运动速度.(2)求正方形ABCD 的边长及顶点C 的坐标.(3)在(1)中当t 为何值时,△OPQ 的面积最大?求出此时点P 的坐标.Q PA BCD E FQ PA B CDE F(4)如果点P ,Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等?若能,请求出所有符合条件的t 值;若不能,请说明理由.8. (2011重庆)如图,矩形ABCD 中,AB =6,BC =错误!未找到引用源。
,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从点O 出发,以每秒1个单位长度的速度沿OA 匀速运动,到达点A 后,立即以原速度沿AO 返回;另一动点F 从点P 出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E ,F 同时出发,当两点相遇时停止运动.在点E ,F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值.(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请求出S 与t 之间的函数关系式及相应的自变量t 的取值范围.10111Oxt图2图1ABCDO PQ xy备用图yxODCBA备用图yxODCBA备用图yxODCBA(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出相应的t 值;若不存在,请说明理由.9. (2012吉林长春)如图,在Rt △ABC 中,∠ACB =90°,AC =8c m ,BC =4c m ,D ,E 分别为边AB ,BC 的中点,连接DE .点P 从点A 出发,沿折线AD ﹣DE ﹣EB 运动,到点B 停止.点P 在AD 上以错误!未找到引用源。
c m /s 的速度运动,在折线DE ﹣EB 上以1c m /s 的速度运动.当点P 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 落在线段AC 上,且在点Q 的左侧.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为_______c m (用含t 的代数式表示).(2)当点N 落在AB 边上时,求t 的值.PFEBACD O P B A CD PB A CD D CA B PO O O DCA B PO(3)当正方形PQMN 与△ABC 重叠部分的图形为五边形时,设该五边形的面积为S (c m 2),求S 与t 的函数关系式.(4)连接CD ,当点N 与点D 重合时,有一点H 从点M 出发,在线段MN 上以2.5 c m /s 的速度沿M →N →M 做往返运动,直至点P 与点E 重合时,点H 停止运动;当点P 在线段EB 上运动时,点H 始终在线段MN 的中点处.请求出在点P 的整个运动过程中,点H 落在线段CD 上时t 的取值范围.EDCBA A BC DEQP N MEDC BAABCDEEDC BAABC DEA B C DE参考答案动态几何1. (1)(3,4),4=3y x . (2)当502t <≤时,2216=+153S t t ; 当532t <≤时,23223S t t =-+; 当1633t <<时,=6+32S t -. (3)60=13t . 2. (1)BE =2.(2)存在,20=7t 或=3+17t -. (3)当403t ≤≤时,21=4S t ; 当423t <≤时,212=+83S t t --; 当1023t <≤时,235=+283S t t --; 当1043t <≤时,15=+22S t -. 3. (1)25;(2)57=8t ;(3)185=41t 或15=2t ;(4)5=3t 或340=43t . 4. (1)证明略;(2)当=436t -或=2t 或133t -<≤时,有一个交点; 当4361t -<≤时,有两个交点.5. (1)①(6,23);②30;③(3,33).(2)存在,点P 的横坐标为0或2或33-.(3)当0≤x ≤3时,34334+=x S ; 当3<x ≤5时,233313232-+-=x x S ; 当5<x ≤9时,312332+-=x S ; 当x >9时,x S 354=. 6. (1)154t =;(2)不发生变化;(提示:S △BPF =S △DEP ,可利用这两个三角形全等转移面积)(3)2464+6255y t t =-. 7. (1)点Q 开始运动时的坐标为(1,0),点P 的运动速度为每秒1单位长度.(2)边长为10,C (14,12).(3)476t =时,△OPQ 面积最大,此时点P 的坐标为 (9415,5310). (4)OP 与PQ 能相等,符合条件的t 值为53或29513. 8. (1)1t =.(2)当0≤t ≤1时,23+43S t =;当1<t ≤3时,2373+33+22S t t =-; 当3<t ≤4时,43+203S t =-;当4<t ≤6时,23123+363S t t =-.(3)存在,0t =或2t =或4t =或3+3t =或33t =-.9. (1)(t -2).(2)4t =或203t =. (3)当2<t <4时,21+24S t t =-; 当203<t <8时,25+22844S t t =--. (4)143t =或5t =或6≤t ≤8时,点H 落在线段CD 上.。