人教版七年级数学下册 第九章 达标检测提升卷(含答案)
人教版七年级数学下册 第九章 达标检测提升卷(含答案)

人教版七年级数学下册 第九章 达标检测提升卷一、选择题(每题3分,共30分)1. (2019河北)语句“x 的18与x 的和不超过5”可以表示为( ) A. x 8+x ≤5 B. x 8+x ≥5 C. 8x +5≤5 D.8x+x =5 2.若x y >,则下列式子中错误的是( )A .33x y ->-B .33x y >C .33x y +>+D .33x y ->-3. 已知(x -2)2+|2x -3y -m|=0中,y 为正数,则m 的取值范围是( )A.m <2B.m <3C.m <4D.m <54.点A (4,12m m --)在第三象限,则m 的取值范围是( ).A.12m >B.4m <C.142m << D.4m > 5. (2019海南)下列四个不等式组中,解集在数轴上表示如图所示的是( )A. ⎩⎪⎨⎪⎧x ≥2x >-3B. ⎩⎪⎨⎪⎧x ≤2x <-3C. ⎩⎪⎨⎪⎧x ≥2x <-3D. ⎩⎪⎨⎪⎧x ≤2x >-36.方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( ) A .-4<k <0 B .-1<k <0 C .0<k <8 D .k >-47.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )A.6折B.7折C.8折D.9折8.若关于x 的不等式组3210x x m -≤⎧⎨-<⎩的所有整数解的和是6,则m 的取值范围是( )A .3<m <4B .3≤m <4C .3<m ≤4D .3≤m ≤49.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a <-36B .a ≤-36C .a >-36D .a ≥-36 10.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( )A .2a >-B .2a <C .22a -<<D .2a ≤11. 某校举行关于“活力毕节”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是( )A.16B.17C.15D.1212. 对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,那么x 的取值范围是( )A. x >49B. x >44C. x<49D. x<44二、填空题(每题3分,共30分)13.x 的12与5的差不小于3,用不等式可表示为____________. 14.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度) 0<x ≤2000.48 200<x ≤4000.53 x >400 0.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是 .15.不等式2x +3<-1的解集为________.16.使不等式x -5>3x -1成立的x 的值中,最大整数为________.17.定义新运算a ⊗b =b (a <b ),若5x -42⊗1=1,则x 的取值范围是__________. 18.不等式组-3≤2x -13<5的解集是____________. 19.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________. 20.某校为庆祝“十九大”的胜利召开,举行了以“永远跟党走”为主题的党史知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对________道题.21.若不等式组⎩⎪⎨⎪⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 021=________. 22.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是________.三、解答题(22~24题每题8分,其余每题12分,共60分)23.解下列不等式或不等式组,并把它们的解集在数轴上表示出来.(1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎪⎨⎪⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②24.如果关于x 的方程x 6-6m -13=x -5m -12的解不大于1,且m 是一个正整数,试确定m 的值并求出原方程的解.25.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.26.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并购买一些乒乓球拍做奖品.已知每个乒乓球1.5元,每个乒乓球拍22元.如果购买金额不超过200元,且购买的球拍数量要尽可能多,那么小张同学应该购买多少个球拍?27.对x ,y 定义一种新运算T ,规定:T(x ,y )=ax +by2x +y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a ×0+b ×12×0+1=b .已知T(1,-1)=-2,T(4,2)=1.(1)求a ,b 的值; (2)若关于m 的不等式组⎩⎪⎨⎪⎧T (2m ,5-4m )≤4,T (m ,3-2m )>p恰好有3个整数解,求实数p 的取值范围.28.江西赣州于都县黄麟乡井塘杨梅基地着力打造“杨梅文化”,吸引了邻近几个县的众多游客前来观赏、采摘.为了扩大基地规模,今年该基地计划购买甲、乙两种杨梅树苗共800株,甲种杨梅树苗每株24元,乙种杨梅树苗每株30元.相关资料表明:甲、乙两种杨梅树苗的成活率分别为85%,90%.(1)若购买这两种杨梅树苗共用去21 000元,则甲、乙两种杨梅树苗各购买了多少株?(2)若要使这批杨梅树苗的总成活率不低于88%,则甲种杨梅树苗至多购买多少株?参考答案一、1.A 2.D 3.C 4.C 5.D 6.A 7.B 8.C 9.C 10.D 11.A 12.A二、13.12x -5≥3 14.396 15.x <-2 16.-3 17.x <65 18.-4≤x <8 19.0 20.14 21.1 22.131或26或5或45三、23.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.(2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.(3)解不等式①得x <-6;解不等式②得x >2.所以原不等式组无解.不等式组的解集在数轴上表示如图.(4)解不等式①得x ≥45;解不等式②得x <3,所以原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.24.解:解原方程,得x =3m -15. 因为原方程的解不大于1,即x ≤1,所以3m -15≤1, 解得m ≤2.因为m 是一个正整数,所以m =1或m =2.当m =1时,x =25; 当m =2时,x =1.25.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6, 得m =-1,∴m 2-2m -11=-8.26.解:设小张同学应该购买x 个球拍,依题意,得1.5×20+22x ≤200,解得x ≤7811. 因为x 是整数,所以x 的最大值为7.答:小张同学应该购买7个球拍.27.解:(1)∵T(1,-1)=a -b2-1=-2,∴a -b =-2.∵T(4,2)=4a +2b 8+2=1,∴2a +b =5, 联立以上两式,解得a =1,b =3.(2)根据题意,得⎩⎪⎨⎪⎧2m +3(5-4m )4m +5-4m≤4,①m +3(3-2m )2m +3-2m>p ,② 由①,得m ≥-12;由②,得m <9-3p 5, ∴不等式组的解集为-12≤m <9-3p 5. ∵不等式组恰好有3个整数解,即m =0,1,2,∴2<9-3p 5≤3, 解得-2≤p <-13. 28.解:(1)设购买甲种杨梅树苗x 株,购买乙种杨梅树苗y 株.由题意,得⎩⎪⎨⎪⎧x +y =800,24x +30y =21 000,解得⎩⎪⎨⎪⎧x =500,y =300.答:购买甲种杨梅树苗500株,乙种杨梅树苗300株.(2)设购买甲种杨梅树苗z 株,则购买乙种杨梅树苗(800-z )株,由题意,得85%z +90%(800-z )≥800×88%,解得z ≤320.答:甲种杨梅树苗至多购买320株.。
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
2022-2023学年新人教版初中七年级数学下册第九单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中七年级数学下册第九单元综合能力提升测试卷时间:90分钟 满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分) 1.(3分)不等式2x−33>3x+16−1的解集表示在数轴上,其中正确的是( )A .B .C .D .2.(3分)设x ,y ,c 是实数,正确的是( ) A .若x =y ,则x +c =y ﹣c B .若x =y ,则xc =yc C .若x >y ,则cx >cyD .若x >y ,则xc>yc3.(3分)若关于x 的不等式组{2x +3≥11x −a <0恰有2个整数解,则实数a 的取值范围是( )A .5<a <6B .5<a ≤6C .5≤a <6D .5≤a ≤64.(3分)某一元一次不等式组的解集在数轴上表示如图,则该一元一次不等式组可能为( )A .{−2−x ≥01−x <0B .{−2−x >01−x ≤0C .{x +2≥0x −1<0D .{x +2>0x −1≤05.(3分)一元一次不等式3(7﹣x )≥1+x 的正整数解有( ) A .3个B .4个C .5个D .6个6.(3分)已知三个实数a 、b 、c ,满足3a +2b +c =5,2a +b ﹣3c =1,且a ≥0、b ≥0、c ≥0,则3a +b ﹣7c 的最小值是( ) A .−111B .−57C .37D .7117.(3分)若不等式x+52>−x −72与不等式﹣6x <m +1的解集相同,则实数m 的值( )A .m =23B .m =22C .m =﹣23D .m =﹣258.(3分)若关于x 的不等式组{x −m <05−2x <1的整数解共有2个,则m 的取值范围是( )A .5<m ≤6B .4<m ≤5C .5≤m <6D .4≤m <59.(3分)如果关于x 的不等式(1﹣a )x >a ﹣1的解集是x <﹣1,那么a 的取值范围是( ) A .a ≤1B .a ≥1C .a >1D .a <010.(3分)某次知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分.小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对的题数是( ) A .15B .16C .17D .18二.填空题(共5小题,满分15分,每小题3分)11.(3分)定义新运算;a ⊕b =1﹣ab ,则不等式组{x ⊕2≤3−13⊕x <73的整数解的个数为 .12.(3分)不等式组{1−x ≤3x +2<6的最大整数解是 .13.(3分)把一堆苹果分给几个孩子,如果每人分3个苹果,那么多8个苹果.如果前面每人分5个苹果,那么最后一人得到的苹果不足3个,则有 个孩子. 14.(3分)不等式x >m 有三个负整数解,求m 的取值范围 . 15.(3分)定义一种运算:a ∗b ={a ,a ≥b b ,a <b,则不等式(2x +1)*(2﹣x )>3的解集是 .三.解答题(共10小题,满分75分)16.(6分)解不等式组:{2x +3>−7−2x+12≥−1,并写出所有整数解.17.(6分)阅读与思考请仔细阅读材料,并完成相应任务.任务一:你认为小明和小亮的方法正确吗?若正确请补充完整解题过程;若不正确,请说明理由.任务二:请尝试利用已学知识解关于x 的不等式:x−2x+3<2.18.(6分)(1)解不等式2x−13−5x+12≥1,并把它的解集在数轴上表示出来.(2)解不等式组{2x +3>3xx+33−x−16≥12.19.(9分)某汽车贸易公司销售A ,B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A ,B 两种新能源汽车,可能有多少种采购方案? (3)该公司准备用不超过300万,采购A ,B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?20.(8分)某商场计划购进A 、B 两种新型台灯共80盏,它们的进价与售价如表所示:(1)若商场预计进货款为2900元,则这两种台灯各购进多少盏?(2)将两种台灯全部售出,若总利润不低于1500元,则该商场最多购进多少盏A型台灯?21.(8分)已知某公司采购A,B两种不同洗手液共138瓶,设采购了A种洗手液x瓶(1)嘉嘉说:“买到的B种洗手液的瓶数是A种的三倍.”琪琪由此列出方程:x+3x=138,请用列出的方程判断嘉嘉的说法是否正确;(2)采购人员说:“B种洗手液比A种至少多32瓶.”请通过列不等式的方法说明A种洗手液最多有几瓶.22.(8分)自发生新冠疫情以来,部分企业受到了不同程度的影响,为落实“保民生、促经济”政策,某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年2月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年3月份的工资不低于7000元,那么丙该月至少应销售多少件产品?23.(8分)看电影已经成为人们在春节假期生活的新热潮.2022年春节电影总票房持续走高,其中《长津湖》《四海》和《奇迹》三部电影七天票房总额达到37亿元.(1)若《四海》的票房比《奇迹》的票房少2亿,《长津湖》的票房比《奇迹》的票房的3倍多4亿,求电影《长津湖》的票房;(2)若电影院票价每张60元,学生实行半价优惠.某学校计划用不超过1500元组织老师和学生共40名去电影院观看《长津湖》,问:至少组织多少名学生观看电影?24.(8分)在某官方旗舰店购买3个冰墩墩和6个雪融融毛绒玩具需1194元;购买1个冰墩墩和5个雪融融毛绒玩具需698元.(1)求冰墩墩、雪融融毛绒玩具单价各是多少元?(2)某单位准备用不超过3000元的资金在该官方旗舰店购进冰墩墩、雪融融两种毛绒玩具共20个,问最多可以购进冰墩墩毛绒玩具多少个?25.(8分)为增强市民的节能意识,我市试行阶段电价,从2021年开始,按照每户的每年的用电量分三个档次计费,具体规定如表,小明统计了自家2021年前5个月的实际用电量为1300度,请帮助小明分析下面问题:注:从2021年开始,阶梯电价电量按年度计算.(1)若小明家2021年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家计划2022年电费不能超过总收入的3%,已知小明家年收入90000元,请问2022年小明家用电量最多可以为多少?参考答案1.A ; 2.B ; 3.B ; 4.C ; 5.C ; 6.B ; 7.A ; 8.B ; 9.C ; 10.C ; 11.5; 12.3; 13.6; 14.﹣4≤m <﹣3; 15.x >1或x <﹣1; 16.解:{2x +3>−7①−2x+12≥−1②,解不等式①得:x >﹣5, 解不等式②得:x ≤32,∴不等式组的解集为﹣5<x ≤1.5,∴不等式组的所有整数解为﹣4,﹣3,﹣2,﹣1,0,1. 17.解:任务一:小明的方法正确,根据“两数相除,同号得正”,可以将原不等式转化为{x +1>03x −2>0或{x +1<03x −2<0,解得x >23或x <﹣1;小亮的方法错误;不符合不等式的性质. 任务二:x−2x+3<2,整理得x−2x+3−2<0,即x+8x+3>0,根据“两数相除,同号得正”,可以将原不等式转化为{x +8>0x +3>0或{x +8<0x +3<0,解得x >﹣3或x <﹣8.18.解:(1)去分母得:2(2x ﹣1)﹣3(5x +1)≥6, 去括号得:4x ﹣2﹣15x ﹣3≥6, 移项合并得:﹣11x ≥11, 解得:x ≤﹣1,(2){2x +3>3x ①x+33−x−16≥12②,由①得:x <3, 由②得:x ≥﹣4,∴不等式组的解集为﹣4≤x <3.19.解:(1)设销售一台A 型新能源汽车的利润是x 万元,销售一台B 型新能源汽车的利润是y 万元,依题意得:{2x +5y =3.1x +2y =1.3,解得:{x =0.3y =0.5.答:销售一台A 型新能源汽车的利润是0.3万元,销售一台B 型新能源汽车的利润是0.5万元.(2)设采购A 型新能源汽车p 辆,B 型新能源汽车q 辆, 根据题意得:12p +15q =300, ∴q =20−4p5, ∵p 、q 是非负整数,∴p =0,q =20或p =5,q =16或p =10,q =12或p =15或q =8或p =20,q =4或p =25,q =0,∴一共有6种方案;(3)设需要采购A 型新能源汽车m 台,则采购B 型新能源汽车(22﹣m )台, 依题意得:12m +15(22﹣m )≤300, 解得:m ≥10.答:最少需要采购A 型新能源汽车10台.20.解:(1)设购进A 型台灯x 盏,B 型台灯y 盏, 根据题意得:{x +y =8030x +50y =2900,解得{x =55y =25,答:购进A 型台灯55盏,B 型台灯25盏; (2)设购进A 型台灯a 盏,B 型台灯(80﹣a )盏, 根据题意得:(45﹣30)a +(70﹣50)(80﹣a )≥1500, 解得a ≤20,答:该商场最多购进20盏A 型台灯.21.解:(1)∵x +3x =138, ∴4x =138, 解得x =34.5, ∵x 为是整数, ∴嘉嘉的说法不正确;(2)设采购了A 种洗手液x 瓶,则采购了B 种洗手液(138﹣x )瓶, ∵B 种洗手液比A 种至少多32瓶, ∴(138﹣x )﹣x ≥32, 解得x ≤53,答:A 种洗手液最多有53瓶.22.解:(1)设工资分配方案调整后职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元,依题意得:{x +200y =6800x +180y =6600,解得:{x =4800y =10.答:工资分配方案调整后职工的月基本保障工资为4800元,销售每件产品的奖励金额为10元.(2)设丙该月应销售m 件产品, 依题意得:4800+10m ≥7000, 解得:m ≥220.答:丙该月至少应销售220件产品.23.解:(1)设电影《奇迹》的票房为x 亿元,则电影《四海》的票房为(x ﹣2)亿元,电影《长津湖》的票房为(3x +4)亿元, 依题意得:3x +4+x ﹣2+x =37, 解得:x =7,∴3x +4=3×7+4=25.答:电影《长津湖》的票房为25亿元.(2)设组织y 名学生观看电影,则组织(40﹣y )名老师观看电影, 依题意得:60(40﹣y )+12×60y ≤1500, 解得:y ≥30.答:至少组织30名学生观看电影.24.解:(1)设冰墩墩毛绒玩具的单价为x 元,雪融融毛绒玩具的单价为y 元, 依题意得:{3x +6y =1194x +5y =698,解得:{x =198y =100.答:冰墩墩毛绒玩具的单价为198元,雪融融毛绒玩具的单价为100元.(2)设可以购进冰墩墩毛绒玩具m 个,则可以购进雪融融毛绒玩具(20﹣m )个, 依题意得:198m +100(20﹣m )≤3000, 解得:m ≤50049. 又∵m 为整数, ∴m 的最大值为10.答:最多可以购进冰墩墩毛绒玩具10个.25.解:(1)设6至12月份小明家平均每月用电量为x 度, 依题意得:1300+7x ≤2520, 解得:x ≤17427.又∵x 为整数, ∴x 的最大值为174.答:6至12月份小明家平均每月用电量最多为174度. (2)0.55×2520=1386(元),1386+0.60×(4800﹣2520)=2754(元), 90000×3%=2700(元).设2022年小明家用电量可以为y 度, ∵1386<2700<2754, ∴2520<y <4800.依题意得:1386+0.60(y ﹣2520)≤2700, 解得:y ≤4710.答:2022年小明家用电量最多可以为4710度.。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
最新人教版七年级数学下册第九章单元检测(附答案)1

最新人教版七年级数学下册第九章单元检测(附答案)11.下列式子中,是不等式的有().①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.答案:B2.若a<b,则下列各式正确的是().A.3a>3b;B.-3a>-3b;C.a-3>b-3;D。
ab < 3.答案:B3.“x与y的和的1/3不大于7”用不等式表示为().A。
(x+y)<7/3;B。
(x+y)>7/3;C。
11/3 x+y≤7;D。
3(x+y)≤7.答案:A4.下列说法错误的是().A.不等式x-3>2的解集是x>5;B.不等式x<3的整数解有无数个;C.x=0是不等式2x<3的一个解;D.不等式x+3<3的整数解是空集.答案:D5.(山东滨州中考)不等式组{2x-1≥x+1,x+8≤4x-1}的解集是(x≥3).答案:A6.(湖南娄底中考)不等式组{x-1≤2x+4>0}的解集在数轴上表示为(-∞,5/3].答案:B7.不等式-3<x≤2的所有整数解的代数和是0.答案:A8.已知关于x的方程ax-3=0的解是x=2,则不等式-(a+3/2)x≤1的解集是(x≥-1).答案:A9.已知关于x的不等式组{x-a≥4-x>1}的整数解共有5个,则a的取值范围是(-3≤a<-1).答案:B10.不等式组{2x>-3,x-1≤8-2x}的最小整数解是(-1).答案:A11.用适当的符号表示:x的与y的的差不大于-1为(x-y≤1).12.不等式3x+2≥5的解集是{x≥1}.13.不等式组{2x>10-3x,5+x≥3x}的解集为{x≥5}.14.已知关于x的不等式组{x-a>0,1-x>0}的整数解共有3个,则a的取值范围是(0<a≤2).15.若代数式3x-11-5x的值不小于56,则x的取值范围是{x≤-15}.16.若点(1-2m,m-4)在第三象限内,则m的取值范围是(m>5).17.不等式组{x>a+2,x<a+3}的解集为(a<x<a+3).17.若不等式组无解,则a的取值范围为a。
人教版七年级数学下册 第九章不等式与不等式组 达标检测卷(含详细解答)

人教版七年级数学下册 第九章 达标检测卷(考试时间:120分钟 满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D .1x-3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( )3.如果a<b ,那么下列不等式中一定成立的是 ( )A .a 2<abB .ab<b 2C .a 2<b 2D .a -2b<-b4.下列说法中正确的是 ( )A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26-x ≤-1,去分母,得( ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-16.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( )A .90×3+2x ≥480B .90×3+2x ≤480C .90×3+2x <480D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >0 9.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( )A .a ≥2B .a<-2C .a>2D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾( )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12与5的差不小于3,用不等式可表示为 . 12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是 .13.已知:2k -3x 2+2k >1是关于x 的一元一次不等式,则k = .14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为 .16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果 .个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2 有解,则m 的取值范围是 . 18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x 3,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab = .三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33-1;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32x 成立?21.(8分)已知点A(m -1,4m +6)在第二象限.(1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.22.(8分)要使关于x 的方程3m -x 2 =x -2m 3+1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.23.(10分)阅读下列材料,并解答问题.例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0.解不等式组①,得x >23; 解不等式组②,得x <-12. ∴原不等式的解集为x >23 或x <-12. 仿照上面的解法解下列不等式:(1)求不等式(2x +1)(x -1)≥0的解集;(2)求不等式-(x -3)(x +1)≥0的解集.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A,B两种防疫物品每件各多少元;(2)现要购买A,B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是 ( C)A .5+4>8B .2x -1C .2x ≤5D .1x -3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( D )3.如果a<b ,那么下列不等式中一定成立的是 (D ) A .a 2<ab B .ab<b 2 C .a 2<b 2 D .a -2b<-b4.下列说法中正确的是 (D ) A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26 -x ≤-1,去分母,得 (C ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-1 6.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( C )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( A ) A .90×3+2x ≥480 B .90×3+2x ≤480 C .90×3+2x <480 D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( A ) A .m >92 B .m <0 C .m <92 D .m >09.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( A ) A .a ≥2 B .a<-2 C .a>2 D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾 ( C )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12 与5的差不小于3,用不等式可表示为__12 x -5≥3__.12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是__a<3__.13.已知:2k -3x2+2k>1是关于x 的一元一次不等式,则k =__-12__.14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为__x>a__.15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为__x>-1__.16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果__44__个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是__m >23__.18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x3 ,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab =__5__. 三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33 -1;解:去分母,得3(2x +4)<2(x +3)-6, 去括号,得6x +12<2x +6-6, 移项,合并,得4x<-12, 系数化为1,得x<-3.(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),② 并在数轴上表示其解集.解:解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4. 其解集在数轴上表示如图所示.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立?解:依题意,有⎩⎪⎨⎪⎧4(x +1)>2x -1,12x ≤2-32x ,解得-52 <x ≤1.∵x 取整数值, ∴x =-2,-1,0,1. 即当x 为-2,-1,0和1时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立.21.(8分)已知点A(m -1,4m +6)在第二象限. (1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.解:(1)由题意,得⎩⎪⎨⎪⎧m -1<0,①4m +6>0,②由①,得m<1,由②,得m>-32 ,∴m 的取值范围是-32 <m<1.(2)∵m 是整数, ∴m 取-1,0.∴符合条件的“整数点A ”有(-2,2),(-1,6).22.(8分)要使关于x 的方程3m -x 2 =x -2m3 +1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.解:解方程,得x =13m -65 .解不等式组,得1<x<74 ,∴1<13m -65 <74,∴1113 <m<5952 .23.(10分)阅读下列材料,并解答问题. 例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0. 解不等式组①,得x >23 ;解不等式组②,得x <-12.∴原不等式的解集为x >23 或x <-12 .仿照上面的解法解下列不等式: (1)求不等式(2x +1)(x -1)≥0的解集; (2)求不等式-(x -3)(x +1)≥0的解集.解:(1)由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧2x +1≥0,x -1≥0 或②⎩⎪⎨⎪⎧2x +1≤0,x -1≤0.解不等式组①,得x ≥1;解不等式组②,得x ≤-12 ;∴原不等式的解集为x ≥1或x ≤-12.(2)由有理数的乘法法则“两数相乘,异号得负”可得①⎩⎪⎨⎪⎧x -3≥0,x +1≤0 或②⎩⎪⎨⎪⎧x -3≤0,x +1≥0. 解不等式组①,得无解; 解不等式组②,得-1≤x ≤3; ∴原不等式组的解集为-1≤x ≤3.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A ,B 两种防疫物品每件各多少元;(2)现要购买A ,B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,依题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840, 解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,依题意,得 16m +4(600-m)≤7 000, 解得m ≤38313 ,又∵m 为正整数, ∴m 的最大值为383.答:A 种防疫物品最多购买383件.25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?解:(1)设购买平板电脑a台,则购买学习机(100-a)台,由题意,得3 000a+800(100-a)≤168 000.解得a≤40.答:平板电脑最多购买40台.(2)设购买平板电脑a台,则购买学习机(100-a)台.根据题意,得100-a≤1.7a,解得a≥37127.又∵a为正整数且a≤40,∴a=38,39,40,则学习机依次买:62台,61台,60台.因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.。
人教版七年级下册数学第九章测试题(附答案)

人教版七年级下册数学第九章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.不等式x-3>0的解集是()A. x>-3B. x<-3C. x>3D. x<32.不等式的解集是()A. B. C. D.3.若x>y,则下列式子中错误的是()A. x+ >y+B. ﹣3>y﹣3C. >D. ﹣3x>﹣3y4.下列不等式中,是一元一次不等式的是()A. +1>xB. ﹣y+1>yC. >2D. +1>05.若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A. m>4B. m≥4C. m<4D. m≤46.不等式组的解集在数轴上可表示为()A. B. C. D.7.不等式≤+1去分母后正确的是()A. 3(1-x)≤2x+1B. 3(1-x)≤2x+6C. 3-x≤2x+1D. 3-x≤2x+68.如果a<b,下列各式中错误的是()A. ﹣3a<﹣3bB. ﹣3+a<﹣3+bC. a﹣3<b﹣3D. a3<b39.不等式组的解集在数轴上表示为()A. B.C. D.10.已知不等式,其解集在数轴上表示正确的是()A. B.C. D.11.设a ,b ,c ,d都是整数,且a<2b ,b<3c ,c<4d ,d<20,则a的最大值是()A. 480B. 479C. 448D. 44712.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A. 4B. 4或5C. 5或6D. 6二、填空题(共8题;共16分)13.不等式组的解集是________14.不等式x﹣2019>0的解集是________.15.不等式2x+3<﹣1的解集为________ .16.当a满足条件________ 时,由ax>8可得x<.17.若关于x的不等式仅有两个正整数解,则m的取值范围是________.18.不等式组的解集为________19.若不等式3x-m≤0的正整数解恰好是1、2、3,则m的取值范围是________.20.对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是________三、解答题(共4题;共19分)21.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,求一共购买了多少支签字笔?22.解不等式组,并把它的解集在数轴上表示出来.23.十字形的路口,东西、南北方向的行人车辆来来往往,车水马龙.为了不让双方挤在一起,红绿灯就应动而生,一个方向先过,另一个方向再过.如在南稍门的十字路口,红灯绿灯的持续时间是不同的,红灯的时间总比绿灯长.即当东西方向的红灯亮时,南北方向的绿灯要经过若干秒后才亮.这样方可确保十字路口的交通安全.那么,如何根据实际情况设置红绿灯的时间差呢?如图所示,假设十字路口是对称的,宽窄一致.设十字路口长为m米,宽为n米.当绿灯亮时最后一秒出来的骑车人A,不与另一方向绿灯亮时出来的机动车辆B相撞,即可保证交通安全.根据调查,假设自行车速度为4m/s,机动车速度为8m/s.若红绿灯时间差为t秒.通过上述数据,请求出时间差t要满足什么条件时,才能使车人不相撞.当十字路口长约64米,宽约16米,路口实际时间差t=8s时,骑车人A与机动车B是否会发生交通事故?24.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?四、综合题(共4题;共41分)25.计算。
初一下册第九章不等式提高练习及详细答案

3 / 10
不等式提高练习答案
一.选择题(共 10 小题)
1.(2015 春?石城县月考)已知 m 为整数,则解集可以为﹣ 1<x<1 的不等式组
是( )
A.
B.
C.
D.
解 解: A 、不等式组的解集大于 1,不等式组的解集不同,故本选项错误; 答: B、 ∵m>0 时,不等式组的解集是 x< ,
. =ad﹣bc,例如
=2×5﹣3×4=10﹣12=﹣ 2,
若 x,y 均为整数,且满足 1< < 3,则 x+y 的值是
.
14.( 1997?重庆)已知不等式组
的解集 1≤x<2,则
a=
.
15.( 2009?凉山州)若不等式组
的解集是﹣ 1<x <1,则( a+b)
2009=
.
三.解答题(共 3 小题)
故答案为: <a≤1.
8 / 10
恰有两个整数
13.( 2010?江津区)我们定义
=ad﹣bc,例如 =2×5﹣3×4=10﹣12=﹣ 2,
若 x,y 均为整数,且满足 1< < 3,则 x+y 的值是 ±3 .
解 解:由题意得, 1< 1×4﹣xy< 3,即 1<4﹣xy< 3,
答:
∴
,
∵ x、 y 均为整数, ∴ xy 为整数, ∴ xy=2, ∴ x=±1 时, y=±2; x=±2 时, y=±1; ∴ x+y=2+1=3 或 x+y= ﹣2﹣1=﹣ 3.
10.( 2004?三明)已知不等式组
有解,则 a 的取值范围为(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册 第九章 达标检测提升卷
一、选择题(每题3分,共30分)
1. (2019河北)语句“x 的18
与x 的和不超过5”可以表示为( ) A. x 8
+x ≤5 B. x 8+x ≥5 C. 8x +5≤5 D.8x
+x =5 2.若x y >,则下列式子中错误的是( )
A .33x y ->-
B .33x y >
C .33x y +>+
D .33x y ->-
3. 已知(x -2)2+|2x -3y -m|=0中,y 为正数,则m 的取值范围是( )
A.m <2
B.m <3
C.m <4
D.m <5
4.点A (4,12m m --)在第三象限,则m 的取值范围是( ).
A.12m >
B.4m <
C.142
m << D.4m > 5. (2019海南)下列四个不等式组中,解集在数轴上表示如图所示的是( )
A. ⎩⎪⎨⎪⎧x ≥2x >-3
B. ⎩⎪⎨⎪⎧x ≤2x <-3
C. ⎩⎪⎨⎪⎧x ≥2x <-3
D. ⎩⎪⎨⎪⎧x ≤2x >-3
6.方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3
的解满足0<x +y <1,则k 的取值范围是( ) A .-4<k <0 B .-1<k <0 C .0<k <8 D .k >-4
7.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )
A.6折
B.7折
C.8折
D.9折
8.若关于x 的不等式组3210x x m -≤⎧⎨-<⎩
的所有整数解的和是6,则m 的取值范围是( ) A .3<m <4 B .3≤m <4 C .3<m ≤4 D .3≤m ≤4
9.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92
+1≥x +13-1有解,则实数a 的取值范围是( )
A .a <-36
B .a ≤-36
C .a >-36
D .a ≥-36 10.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( )
A .2a >-
B .2a <
C .22a -<<
D .2a ≤
11. 某校举行关于“活力毕节”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是( )
A.16
B.17
C.15
D.12
12. 对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,那么x 的取值范围是( )
A. x >49
B. x >44
C. x<49
D. x<44
二、填空题(每题3分,共30分)
13.x 的12
与5的差不小于3,用不等式可表示为____________. 14.某市居民用电的电价实行阶梯收费,收费标准如下表:
一户居民每月用电量x(度)
电费价格(元/度) 0<x ≤200
0.48 200<x ≤400
0.53
x >400 0.78
七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是 .
15.不等式2x +3<-1的解集为________.
16.使不等式x -5>3x -1成立的x 的值中,最大整数为________.
17.定义新运算a ⊗b =b (a <b ),若5x -42
⊗1=1,则x 的取值范围是__________. 18.不等式组-3≤2x -13
<5的解集是____________. 19.不等式组⎩
⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________. 20.某校为庆祝“十九大”的胜利召开,举行了以“永远跟党走”为主题的党史知识竞赛,共有20
道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对________道题.
21.若不等式组⎩⎪⎨⎪⎧x -a >2,b -2x >0
的解集是-1<x <2,则(a +b )2 021=________. 22.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的
值是________.
三、解答题(22~24题每题8分,其余每题12分,共60分)
23.解下列不等式或不等式组,并把它们的解集在数轴上表示出来.
(1)5x +15>4x -13; (2)2x -13≤3x -46
;
(3)⎩⎪⎨⎪⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②
24.如果关于x 的方程x 6
-6m -13=x -5m -12的解不大于1,且m 是一个正整数,试确定m 的值并求出原方程的解.
25.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12
x -mx =6的解,求m 2-2m -11的
值.
26.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并购买一些乒乓球拍做奖品.已
知每个乒乓球1.5元,每个乒乓球拍22元.如果购买金额不超过200元,且购买的球拍数量要尽可能多,那么小张同学应该购买多少个球拍?
27.对x ,y 定义一种新运算T ,规定:T(x ,y )=ax +by
2x +y (其中a ,b 均为非零常数),这里等式右边
是通常的四则运算,例如:T(0,1)=
a ×0+
b ×12×0+1=b .已知T(1,-1)=-2,T(4,2)=1.
(1)求a ,b 的值; (2)若关于m 的不等式组⎩⎪⎨⎪⎧T (2m ,5-4m )≤4,T (m ,3-2m )>p
恰好有3个整数解,求实数p 的取值范围.
28.江西赣州于都县黄麟乡井塘杨梅基地着力打造“杨梅文化”,吸引了邻近几个县的众多游客前来
观赏、采摘.为了扩大基地规模,今年该基地计划购买甲、乙两种杨梅树苗共800株,甲种杨梅树苗每株24元,乙种杨梅树苗每株30元.相关资料表明:甲、乙两种杨梅树苗的成活率分别
为85%,90%.
(1)若购买这两种杨梅树苗共用去21 000元,则甲、乙两种杨梅树苗各购买了多少株?
(2)若要使这批杨梅树苗的总成活率不低于88%,则甲种杨梅树苗至多购买多少株?
参考答案
一、1.A 2.D 3.C 4.C 5.D 6.A 7.B 8.C 9.C 10.D 11.A 12.A
二、13.12
x -5≥3 14.396 15.x <-2 16.-3 17.x <65 18.-4≤x <8 19.0 20.14 21.1 22.131或26或5或45
三、23.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.
(2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数
轴上表示如图.
(3)解不等式①得x <-6;解不等式②得x >2.所以原不等式组无解.不等式组的解集在数轴上表示如
图.
(4)解不等式①得x ≥45;解不等式②得x <3,所以原不等式组的解集为45
≤x <3.不等式组的解集在数轴上表示如图.
24.解:解原方程,得x =3m -15
. 因为原方程的解不大于1,即x ≤1,
所以3m -15
≤1, 解得m ≤2.
因为m 是一个正整数,
所以m =1或m =2.
当m =1时,x =25
; 当m =2时,x =1.
25.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.
它的最小整数解是x =4.
把x =4代入方程12
x -mx =6, 得m =-1,∴m 2-2m -11=-8.
26.解:设小张同学应该购买x 个球拍,
依题意,得1.5×20+22x ≤200,
解得x ≤7811. 因为x 是整数,所以x 的最大值为7.
答:小张同学应该购买7个球拍.
27.解:(1)∵T(1,-1)=a -b
2-1=-2,∴a -b =-2.
∵T(4,2)=4a +2b 8+2
=1,∴2a +b =5, 联立以上两式,解得a =1,b =3.
(2)根据题意,得⎩
⎪⎨⎪⎧2m +3(5-4m )4m +5-4m
≤4,①m +3(3-2m )2m +3-2m >p ,② 由①,得m ≥-12;由②,得m <9-3p 5, ∴不等式组的解集为-12≤m <9-3p 5
.
∵不等式组恰好有3个整数解,即m =0,1,2,
∴2<9-3p 5
≤3, 解得-2≤p <-13
. 28.解:(1)设购买甲种杨梅树苗x 株,购买乙种杨梅树苗y 株.
由题意,得⎩⎪⎨⎪⎧x +y =800,24x +30y =21 000,
解得⎩⎪⎨⎪⎧x =500,y =300.
答:购买甲种杨梅树苗500株,乙种杨梅树苗300株.
(2)设购买甲种杨梅树苗z 株,则购买乙种杨梅树苗(800-z )株,由题意,得85%z +90%(800-z )≥800×88%,
解得z ≤320.
答:甲种杨梅树苗至多购买320株.。