分子生物学知识点

合集下载

分子生物学知识点

分子生物学知识点

1.DNA\RNA的最大吸收峰在260nm,OD260/OD280:纯的DNA为1.8;纯RNA为2.02.遗传物质的本质总是核酸3.DNA的一级结构:DNA是由脱氧核糖核苷单磷酸通过3´, 5´-磷酸二酯键连接成高聚合物。

DNA的二级结构是指两条多核苷酸链反向平行盘绕所形成的双螺旋结构。

DNA 的高级结构是指DNA双螺旋进一步扭曲盘绕形成的特定空间结构,是DNA结构的一种普遍形式。

主要形式是超螺旋(superhelix, supercoil ),包括负超螺旋和正超螺旋。

4.从同一个磷酸基的3’酯键到5’ 酯键的方向定为链的方向。

5.超螺旋的作用:超螺旋是DNA三级结构的固有特性,在所有的细胞DNA中都存在,它与许多生命过程密切相关,受到高度的调节。

细胞DNA中的松缠程度约为5%到7%。

主要以负超螺旋形式存在,一小部分采取单链泡状结构形式,二者处于平衡状态。

这种单链泡状结构,对于DNA复制、基因的转录以及DNA重组等过程的起始有重要作用,这可能就是生物体内DNA总是采取负超螺旋的主要原因。

另外,DNA包装成核小体是引入了负超螺旋。

6.超螺旋总是向着抵消初级螺旋改变的方向发展。

7.DNA变性:当DNA被加热或在某些试剂作用下(比如变性剂尿素、甲酰胺)或在碱性条件(如pH11.3时,全部氢键被淘汰),配对碱基之间的氢键和相邻碱基键的堆积力遭到破坏,变为没有规则的线团构型,这一过程称为变性(denaturation),又叫熔解(melt ing)。

8.DNA的复性:变性DNA在一定条件下又可以恢复天然状态的DNA结构,这个过程叫复性(renaturation)或退火(annealing)。

9.原核生物与真核生物的区别:有没有细胞核。

10.常染色质(euchromatin):在细胞核的大部分区域,染色质的折叠压缩程度比较小,细胞染色时着色较浅,这部分染色质称常染色质,包装比约为1000-2000,主要由单一序列和中度重复序列构成。

分子生物学知识点总结

分子生物学知识点总结

分子生物学知识点总结分子生物学结构分子生物学部分绪论①总述:进化论、细胞学说、生化遗传学、DNA的发现②分子生物学:定义、研究内容(四方面)③发展史:里程碑④三个相关学科:生物化学、细胞生物学、遗传学⑤中心法则:经典、现代Ⅰ DNA ①结构:碱基比率、配对规则、种数(4n)、0.34nm的应用(碱基对M/2x,长度0.34×M/2x) ⑴三类DNA(ABZ):结构、形成、特点及Z-DNA的作用⑵质粒超螺旋:正负超螺旋定义、转化、意义、计算、主要以负超螺旋存在 3-⑶其它:0.34nm的计算、※DNA稳定因素(PO4)与Tm、Z-DNA不稳②性质⑴复性:五条件、机制(Cot曲线)、三个吸光度⑵修饰:甲基化(ACG)O⑶变性:DNA碱性全变性、90C以上全变性增色37%、增色效应(Tm)⑷水解:酸(PHGUG>UUG)、T1/2、原核特有SD序列②真核mRNA三类帽:0、1、2类定义③原核mRNA的SD序列:5‘,作用,结构Ⅴ蛋白质与核酶①结构域:②分子伴侣:分类、作用机制③核酶:定义、分类(剪接、剪切)剪切分三类:锤头、发夹、丁肝病毒核酶基因组学部分Ⅰ染色体①观察:有丝分裂中期光学显微镜可见②功能:遗传载体③作为遗传物质所需四要素:稳定、半保留复制、产生蛋白质、可变异Ⅱ真核基因组①组成:DNA(或RNA)+Protain(组、非组)②DNA:C值与C值反常现象、三序列(不重复、中度重复、高度重复)占序列比例,单/多拷贝③组蛋白:六种、特征(保守、特例、氨基酸不对称、修饰、H5-赖氨酸)④非组蛋白:三种常见,DNA结合蛋白的定义⑤真核基因组结构基础--核小体⑴组成:200bpDNA+八聚体⑵八聚体:2×(H2A+H2B+H3+H4)⑶结构:颗粒(八聚体+120bpDNA链,直径10nm,DNA链绕1.65圈) 连接DNA(80bpDNA 链+H1,H1作用)是负超螺旋⑥染色单体:螺线管、螺旋n倍⑦端粒与端粒酶⑴端粒:真核基因组末端,功能(防真核基因组末端结合)⑵端粒酶:反转录酶、功能(反转录成端粒、连接后随链所得的冈崎片段)、反转录机理(Ⅲ原核基因组①真原核基因组比较:大小(真核大,原核小)复杂度(断裂/连续、大多为调控/表达区、重复序列/重叠基因)复制(真核多向,原核单向)转录(单顺反子/多顺反子)真核特殊(DNA多态性、端粒)②真原核基因表达的比较:复制、表达连续性及机理Ⅳ真核基因组结构①hnRNA内含子:GU-AG法则,3‘嘧啶区,5‘保守区、3’上游18-50处的保守区②启动子:核心(TATA,决定转录起始位点)、识别RNA聚合酶(CG、CAAT,决定转录起始频率)③增强子:定义、结构、作用机制、特点、代表(β-珠蛋白基因)④终止子:两类(依赖/不依赖ρ因子)、结构特点、作用机理、穷追模型Ⅴ原核基因组结构①启动子:-35区(识别RNA聚合酶),-10区(结合RNA聚合酶)Ⅵ基因组学①几个定义:重叠基因、断裂基因、基因家族、基因簇、超基因家族、假基因、管家基因、奢侈基因、组织特异性基因②顺式与反式作用因子:⑴顺式作用元件:定义,启动子、增强子、沉默子⑵反式作用元件:定义,转录复合物③人类基因组计划:④比较基因组学:基因表达部分ⅠDNA复制①半保留复制:定义、意义、发现(N14N15)②半不连续复制:前导链、后随链、冈崎片段、过程、实验证明(电泳、30s)③复制起点:复制叉、复制子、复制起点特征④复制方式:线性-眼形,环状-3种(θ型、滚环型、D环型;各对应DNA种类、机制)⑤复制方向、速度:三种,以定点反向等速为主⑥复制所需酶、蛋白:拓扑异构酶(两类)、解旋酶、SSB(作用);引发酶;DNA聚合酶(见下)、DNA连接酶※ DNA聚合酶:原核:Ⅰ→Ⅴ结构与功能(聚合酶活性、外切酶活性),Ⅲ最主要真核:αβγωδ,αδ最主要功能总结:与连接酶共同作用(合成子链、损伤修复校正、补冈崎片段的连接处)⑦原核DNA复制过程及酶的作用:DNA解旋(三种酶)→引发(引物的作用)→延伸→终止⑧复制特点:子链复制方向:5’→3‘,原核、真核连续性⑨复制的调控:⑴原核:复制叉多少决定起始频率,起始频率直接调控因子—RNP ⑵真核:三个水平(细胞周期、染色体、复制子)Ⅱ DNA损伤与修复①损伤:三种(紫外线、脱氨、甲基化、氧化机制,对应修复法):碱基异常(U-G、T-G)②变异:基因突变基础、突变类型、突变后果③修复:切除(碱基、核苷酸),错配(Dam、5‘GATC3’),重组(先复制后修复),直接(光修复、去甲基化),SOS();各修复机理(所需酶)Ⅲ DNA转录与逆转录①转录的定义:转录、转录单元②转录特点:不对称(正负链定义、负链为模板,多基因DNA正负链相间);连续单向(mRNA5‘→3’);有起始终止位点(启动子、终止子定义);能力(双链强于单链及原因);不需完全解链③转录起始位点:定义、上下游表示法(-n/+n);原核启动子(-10区、-35区结构、功能,两区最佳间距)、真核启动子(TATA区、CAAT区、GC区结构、功能);启动子的上升/下降突变④转录所需酶、复合物:RNA聚合酶(见下);复合物(转录因子定义、分类、结构与功能)※ RNA聚合酶:真核:ⅠⅡⅢ(对应三种内含子),Ⅱ最主要,对应三种RNA(rRNA、hnRNA、tRNA),对α-鹅膏蕈碱敏感度(三类)原核:(α2ββˊ)σ:α2ββˊ为核心酶,ββˊ与原核启动子识别、结合,σ协助ββˊ。

分子生物学知识点总结

分子生物学知识点总结

宛本人自己总结, 大家随便一看。

基因与基因组基因(gene): 储存有功能的蛋白质多肽链或RNA序列信息, 及表达这些信息所必须的全部核苷酸序列所构成的遗传单位。

1.顺式作用元件有: 启动子和上游启动子元件, 反应元件, 增强子, 沉默子, Poly加尾信号启动子: 有方向性, 转录起始位点上游, TA TA盒, B地贫, 与RNA聚合酶特异结合及启动转录上游启动子元件: TATA盒上游, 与反式作用因子结合, 调控基因转录效率。

CAAT盒, GC盒, CACA盒—B地贫反应元件: 与激活的信息分子受体结合, 调控基因表达增强子: 与反式作用因子结合, 基因表达正调控, 无方向性沉默子: 与反式作用因子结合, 基因表达负调控Poly加尾信号: 结构基因末端AA TAAA及下游富含GT或T区, 多聚腺苷酸化特异因子, 在3末端加200个A B地贫1.除逆转录病毒外, 通常为单倍体基因组。

逆转录病毒: 单股正链二倍体RNA, 三个结构基因, gag, pol, env, 5端甲基化帽, 3端poly加尾。

HIV免疫缺陷病毒, 白血病病毒, 肉瘤病毒感染细菌的病毒基因组与细菌相似, 基因连续, 感染真核细胞的病毒基因组与真核细胞相似, 有内含子, 基因不连续。

3.基因组连续:冠状病毒, 脊髓灰质炎病毒, 鼻病毒4.编码区占大部分原核生物基因组1.由一条环状双链DNA分子组成, 通常只有一个复制起点。

2.结构基因大多组成操纵子, 形成多顺反子(mRNA)3.非编码区主要是调控序列。

(转录终止区可有强终止子有反向重复序列, 形成茎环结构)4.存在可移动的DNA序列(转座因子:能够在一个DNA内或两个DNA间移动的DNA片段转座因子:插入序列, 转座子, 可转座的噬菌体, 转座作用的机制:复制性转座, 简单转座, 共整合体, 插入突变)5.编码区大于非编码区真核生物基因组1.有同源性的功能相关基因构成基因家族核酸序列相同, 核酸序列高度同源, 编码产物的功能或功能区相同, 假基因2.真核基因为断裂基因, 编码为单顺反子。

分子生物学基础知识点

分子生物学基础知识点

分子生物学基础知识点分子生物学是研究生物体内分子结构与功能的学科,主要研究生物分子的组成、结构、功能以及其在生命过程中的调控。

下面将从DNA、RNA、蛋白质和基因调控四个方面,介绍分子生物学的基础知识点。

DNA(脱氧核糖核酸)DNA是细胞的基因遗传物质,由鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

DNA通过碱基配对的方式,以双螺旋结构存在,形成了著名的DNA双螺旋结构。

DNA 的重要性体现在多个方面,其中包括:1. 遗传信息的传递:DNA携带了生物个体的遗传信息,通过遗传物质的传递实现了物种遗传的延续。

2. DNA复制:DNA能够通过复制过程产生与自身一模一样的新的DNA分子,确保细胞的遗传信息能够传递给下一代细胞。

3. DNA修复:细胞会受到环境因素的影响,导致DNA损伤。

细胞通过DNA修复机制,修复受损的DNA,维持DNA的完整性。

RNA(核糖核酸)RNA也是生物分子的一种,由鸟嘌呤(G)、尿嘧啶(U)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

与DNA不同,RNA通过单链结构存在,包括了信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等不同类型。

RNA的重要性主要在于:1. 转录:RNA通过转录过程,可以将DNA的遗传信息转录成RNA 分子,为蛋白质的合成提供模板。

2. 翻译:mRNA进入到细胞质中,参与到蛋白质的合成过程中,被tRNA识别并翻译成相应的氨基酸序列,进而组装成蛋白质。

3. 调控功能:RNA还可以通过miRNA、siRNA等形式参与到基因的调控过程中,影响蛋白质合成的速率和用途。

蛋白质蛋白质是生物体内功能最为复杂和多样的分子。

蛋白质的组成由氨基酸构成,共有20种氨基酸,通过肽键连接形成多肽链,进而折叠形成特定的三维结构。

蛋白质的重要性体现在:1. 功能和结构:蛋白质具有多样的功能和结构,是细胞的工作驱动力,包括酶、结构蛋白、抗体等。

分子生物学知识点

分子生物学知识点

一、名词解释:1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链;2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程;3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响;如GAPDH、β-肌动蛋白基因;4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段;5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等;如:乳糖操纵子、色氨酸操纵子等;6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子转录因子;7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列;是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控;8. Ct值:即循环阈值cycle threshold,Ct,是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数;它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和或相对定量;9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链包括DNA和DNA,DNA和RNA,RNA和RNA相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术;10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹;11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段;12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析;13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA 序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体;基因文库包括两类:基因组文库和cDNA文库;14. 克隆:是来自同一始祖的相同副本或拷贝的集合;15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子;16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶;17. 基因工程Genetic Engineering:又称基因操作gene manipulation、DNA重组DNA recombination,是指采用类似于工程建设的方式,按照预先设计的蓝图,将一种或多种生物体供体的基因育载体在体外进行拼接重组构建成杂种DNA分子,然后转入另一种生物体受体内,以改变生物原有的遗传特性并表达出新的性状;获得新品种,生产新产品,或是研究基因的结构和功能;因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因;由于DNA 重组分子大都需在受体细胞中复制扩增,故还可以将基因工程表征为分子克隆Molecular Cloning或基因的无性繁殖;18. 目的基因:感兴趣的基因或DNA序列;19.生长因子:growth factor通过质膜上特异的受体,将信息传递至细胞内部,调节细胞生长与增殖的多肽类物质;20. 基因组:泛指一个生命体、病毒或细胞器的全部遗传物质;21. 蛋白质组:指一个细胞内的全套蛋白质,反映了特殊阶段、环境状态下,细胞或组织在翻译水平的蛋白质表达谱;22. 人类基因组计划:是美国科学家于1986年率先提出,1990年正式启动的,这一计划的目标是为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因产生的蛋白质及其作用,它的实施将会为认识疾病的分子机制以及诊断和治疗提供重要依据;23. 基因诊断:利用现代分子生物学和分子遗传学的技术方法直接检测基因结构及其表达水平是否正常,从而对人体状态和疾病做出诊断的方法;24. 基因治疗:从广义来说,将某种遗传物质转移到患者细胞内,使其在体内发挥作用而达到治疗疾病目的的方法均称为基因治疗;25. 基因替换:用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法;26. 自杀基因:某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”;27. 转录组:是一个细胞内的一套RNA转录物,包含了某一环境条件下、某一生命阶段、某一生理或病理状态下,生命体的细胞或组织所表达的基因种类及水平; 28.癌基因:oncogene细胞内控制细胞生长和分化的基因,它的结构异常或表达异常,可以引起细胞癌变;29. 病毒癌基因:存在于肿瘤细胞中,能使靶细胞发生恶性转化的基因;30. 抑癌基因:也称为抗癌基因;抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的也称抗癌基因;抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的;31. 结构基因组学:是以全基因组测序为目标的基因结构研究,弄清楚基因组中全部基因的位置和结构,为基因功能的研究奠定基础;其主要内容就是制作高分辨率的人类基因组的遗传图和物理图,最终完成人类其他重要模式生物全部基因组DNA 序列测定;二、问答题1.以乳糖操纵子为模型解释原核生物转录水平的调控模式转录水平的调节——操纵子调控模式1操纵子的概念:操纵子是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等;如:乳糖操纵子、色氨酸操纵子等;2乳糖操纵子的结构:乳糖操纵子包括调节基因I、一个操纵序列O、一个启动序列P以及单个结构基因Z、Y、A;其中调节基因I编码生成阻遏蛋白,后者与操纵序列结合;RNA聚合酶与启动序列结合;分解代谢物基因激活蛋白CAP也结合在操纵序列附近;结构基因Z、Y和A分别编码三个与乳糖代谢有关的酶,即:β-半乳糖苷酶,透酶和乙酰转移酶;这三个酶的基因作为一个整体由同一个调控区调节,以实现基因的协调表达;3其调节机制主要有正性和负性两种模式;①阻遏蛋白的负性调节:当没有乳糖时,调节基因表达生成阻遏蛋白,阻遏蛋白结合操纵子序列出,阻碍RNA结合酶与启动序列结合,抑制结构基因的转录启动,此时操纵子处于阻遏状态;当有半乳糖存在时,乳糖首先被转变成半乳糖,半乳糖则作为一种诱导剂与阻遏蛋白结合,诱发蛋白质构象改变,使阻遏蛋白从启动序列上解离下来,从而启动结构基因的转录,此时操纵子处于诱导状态;②CAP的正性调节:当没有葡萄糖时,cAMP浓度升高,与CAP结合,CAP进而结合在启动序列附近,从而进一步促进结构基因的转录;当有葡萄糖时,cAMP浓度降低,结合在启动序列附近的CAP减少,结构基因转录速率降低;③协调调节:实际情况下,上述两种调节方式是相辅相成、相互协调的;譬如:在无乳糖且有葡萄糖时,阻遏蛋白负性调节起作用,此时结构基因不被转录;在有乳糖且有葡萄糖时,阻遏蛋白负性调节不起作用,此时结构基因转录水平低;在有乳糖且无葡萄糖时,阻遏蛋白的抑制作用不解除,CAP正性调节被激活,此时结构基因的转录水平最高;2.生长因子的作用机制生长因子由不同的细胞的细胞合成后分泌,作用于靶细胞上的相应受体,这些受体有的是位于细胞膜上的,有的是位于细胞内部;生长因子与受体结合后,激活细胞内信号传递体系,产生相应的生物学作用;根据受体的分布和对生长因子不同的响应,生长因子是作用机制分为三种情况:①生长因子与具有酪氨酸蛋白激酶TPK 活性的跨膜受体结合,TPK 被活化,磷酸化相应蛋白质,产生生理效应;②与膜上受体结合,通过胞内信息传递,产生第二信使,是蛋白激酶活化,再磷酸化相应的效应蛋白质,这些被磷酸化的蛋白质再活化核内的转录因子,引发基因转录,达到调节生长与分化的作用;③与膜内受体结合,形成生长因子-受体复合物,进入胞核活化相关基因,促进细胞生长;3.常规PCRDNA①变性denature :模板DNA 经加热至95℃左右一定时间后,使模板DNA 双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②退火annealing 复性:模板DNA 经加热变性成单链后,将温度降至引物的Tm 值左右或以下55℃左右,引物与模板DNA 单链的互补序列配对结合,形成杂交链; ③延伸extension :DNA 模板-引物结合物在TaqDNA 聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;以上三步为一个循环,约需2~4分钟,每一循环的产物作为下一个循环的模板,如此循环30次,大约2~3小时后,新生DNA片段理论上可达到2n-1个分子拷贝;4.定量PCR技术的基本原理基本原理:将荧光信号强弱与PCR扩增情况结合在一起,通过监测PCR反应管内荧光信号的变化来实时检测PCR反应进行的情况,PCR反应管内的荧光信号强度达到设定阈值所经历的循环数即Ct值与扩增的起始模板量进行准确的绝对和或相对定量;循环阈值cycle threshold,Ct是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数;荧光阈值threshold一般是以PCR反应的前15个循环的荧光信号作为荧光本底信号baseline,缺省设置是3~15个循环的荧光信号的标准偏差的10倍;实际上就是荧光信号开始由本底信号进入指数增长阶段的拐点时的荧光信号强度;5.Sanger测序法的基本原理Sanger法也称双脱氧链末端终止法,是目前应用最为广泛的方法;基本原理:它巧妙地利用了DNA复制的原理,是利用ddNTP来代替常规的dNTP 作为底物进行DNA合成反应;在DNA合成时,一旦ddNTP参入到合成的DNA链中,由于ddNTP脱氧核糖的3'-位碳原子上缺少羟基而不能与下一位核苷酸的5'-位磷酸基之间形成3',5'-磷酸二酯键,从而使得正在延伸的DNA链在此ddNTP处终止;6.Southern印迹、Northern印迹的异同相同点:基本流程相似不同点:7.基因工程中如何选择载体基因工程选择载体的标准如下:①能自主复制②具有两个以上的遗传标记物,便于重组体的筛选和鉴定③有克隆位点外源DNA插入点,常具有多个单一酶切位点,称为多克隆位点④分子量小,以容纳较大的外源DNA8.重组DNA技术的基本步骤重组DNA技术的基本操作过程可形象的归纳为“分、切、接、转、筛”,即“目的基因的获取→克隆载体的选择和构建→外源基因与载体的连接→DNA导入受体细胞→重组体的筛选→克隆基因的表达”;分述如下:①目的基因的获取;可通过化学合成法、基因组DNA文库、cDNA文库、PCR等方法获取;②克隆载体的选择和构建;根据实验目的和操作基因的性质选择合适的载体和改建方法;③外源基因与载体的连接;将外援DNA通过DNA连接酶进行共价连接;④DNA导入受体细胞;重组DNA 分子导入相应宿主细胞后,随受体细胞生长、增殖而得以复制、扩增;⑤重组体的筛选根据载体体系、宿主细胞特性及外源基因在受体细胞表达情况,采取直接选择法和非直接选择法进行筛选,获得含有重组DNA分子的克隆;⑥克隆基因的表达;克隆的目的基因如果需要正确而大量表达有特殊意义的蛋白质,则需要建立相应的表达体系,包括表达载体的构建、受体细胞的建立及表达产物的分离、纯化等; 9.目前基因治疗采用的方法分为哪几种基因治疗的方法分为以下:①基因矫正,将致病基因的异常碱基进行纠正,而正常部分予以保留的基因治疗方法;②基因置换,用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法;③基因增补,将目的基因导入病变或其他细胞,不去除异常基因,通过目的基因的非定点整合,使其表达产物补偿缺陷基因的功能或使原有的功能得以加强的基因治疗方法;④基因失活,将特定的序列导入细胞后,在转录或翻译水平阻断某些基因的异常表达的治疗方法;⑤自杀基因的应用,用某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物前体在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”;10.基因治疗的基本过程基因治疗的基本过程包括:①治疗性基因的选择,选择对疾病有治疗作用的特定目的基因是基因治疗的首要问题;②基因载体的选择,目前使用的载体分病毒性载体和非病毒性载体两类,而一般临床多选用病毒性载体;目前被用作基因转移的病毒有逆转录病毒、腺病毒、腺相关病毒;③靶细胞的选择,根据受体细胞的不同,基因治疗可分为体细胞的基因治疗和生殖细胞的基因治疗,而目前基因治疗禁止使用生殖细胞,仅限于使用体细胞为靶细胞;④基因转移,如何有效地将外源基因导入受体细胞,是基因治疗研究的一个重要环节,可分为非病毒介导的基因转移和病毒介导的基因转移;⑤外源基因表达的筛检,一般利用载体中的标记基因对转染细胞进行筛检,再检测转化细胞中的标记基因表达情况;⑥回输体内,将治疗基因修饰的细胞以不同的方式回输体内以发挥治疗作用;11.人类基因组计划的基本任务及意义HCG内容包括人类基因组作图及序列分析,基因的鉴定、基因组研究技术的建立与创新、模式生物基因组作图和测序、信息系统的建立、存储及相应软件的开发、相关产业的开发等;HCG基本任务可用四张图谱来概括,即遗传图、物理图、转录图基因图、序列图;①遗传图:又称连锁图,是具有遗传多态性的遗传标记作为“位标”,遗传学距离为“图距”的基因组图;需要应用多态性标志——RFLP、VNTR、SNP;②物理图谱:是以一段已知核苷酸的DNA片段为“位标”,以DNA实际长度Mb或kb作为图距的基因组图;③5转录图:是以表达序列标记作为位标,实际上就是人类“基因图”的雏形,又称cDNA图或“表达序列图”;④序列图:也就是人类基因组核苷酸序列图,是分子水平上最高层次、最详尽的物理图;这四张图被誉为人类“分子水平上的解剖图”或“生命元素周期表”,可见其重要性;意义:①鉴定人类的全部基因,推动生物技术的进一步发展;②将把人类带入基因医学的新时代;③推动模式生物基因组的研究;④促进学科交叉与重组;12.什么是基因组学包括哪些内容基因组学于1986年被首次提出,以“人类基因组计划”为诞生标志,由“后基因组计划”的实施推动其发展的一门学科;基因组学的内容亚领域内容结构基因组学整个基因组的遗传制图、物理制图及DNA测序功能基因组学认识、分析整个基因组所包含的基因、非基因序列及其功能比较基因组学比较不同物种整个基因组,增强对各个基因组功能及发育相关性的认识13.蛋白质组学研究的主要内容及方法有哪些蛋白质组是指基因组表达的所有相应的蛋白质;研究细胞内全部蛋白质的组成及其活动规律的科学称为蛋白质组学;蛋白质组研究包括两个方面的内容:一是对蛋白质组成表达模式的研究,二是对蛋白质组功能模式的研究;前者主要采取双向凝胶电泳和质谱技术;后者采用酵母双杂交系统;。

分子生物学知识点汇总

分子生物学知识点汇总

分子生物学知识点汇总A:细胞与大分子1、生物界的三域学说及其划分的依据三界:真细菌、古细菌、真核生物依据:核糖体小亚基上RNA16s和18s的序列比较+比较其同源性水平2、原核细胞与真核细胞的主要区别3、真核细胞除了细胞核外,还有哪些细胞器具有自身的基因组DNA:线粒体+叶绿体4、Nucleoprotein 核蛋白:核酸与蛋白质的结合体如核糖体、端粒酶、RNase P5、Celluar differentiation 细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态结构和生理功能上发生稳定性的差异的过程称为细胞分化B:蛋白质结构4、结构域 domain :生物大分子中具有特异结构和独立功能的区域基序Motif :二级结构元件组合或在蛋白质家族的相关成员中常发现的氨基酸序列同源的Homolog :起源一个古老的基因及随后的趋异进化,如球蛋白家族的相关多肽直向同源Orthlog :不同物种的具有相同功能、承担相同生化角色的蛋白质家族成员共生同源Paralog :进化不同但功能类似的蛋白(alpha 与belta 球蛋白) 类似物Analog :由趋同进化而得到的类似结构和功能的蛋白质,即由无关基因进化到产生具有相似结构和催化活性的蛋白质。

C :核算的性质2:磷酸二酯键phosphodiester linkage在DNA或RNA分子中,核苷酸通过一个磷酸基团与前一个核糖的5’-羟基和下一个核糖的3’-羟基的共价连接形成多聚物,该连接为磷酸二酯键。

4:为什么细胞中的DNA通常是负超螺旋的?负超螺旋易于解链,DNA复制、重组和转录都需要将两条链解开,负超螺旋利于这些功能的进行,而正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,不易解链5:维持DNA和RNA二级结构稳定的主要力量是什么?主要是碱基对之间的堆积力其他少量的还有氢键和偶极矩6:碱性环境分别对DNA和RNA产生什么效应?为什么?Effect of alkaline 碱效应:强碱条件下可使DNA分子的碱基的互变异构态改变,影响特定碱基间氢键的作用,导致DNA双链解离,即DNA变性。

分子生物学知识点总结

分子生物学知识点总结

分子生物学知识点总结分子生物学是研究生物体中分子结构、功能和相互作用的学科。

它在解释细胞和生命现象的分子基础方面发挥着重要作用。

以下是分子生物学的几个核心知识点总结:DNA的结构和功能DNA是生物体中遗传信息的储存和传递的分子。

它由核苷酸组成,每个核苷酸包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。

DNA的双螺旋结构由两股互补的链组成,通过氢键相连。

DNA的功能包括遗传信息的复制、转录和翻译,是细胞遗传信息的储存库。

RNA的结构和功能RNA也是由核苷酸组成的分子,与DNA的结构类似,但包含的糖是核糖,而不是脱氧核糖。

RNA起到多种功能,其中包括转录DNA信息、参与蛋白质合成等。

mRNA是将DNA信息转录成蛋白质合成的模板,tRNA通过与mRNA和氨基酸的配对作用,在翻译过程中帮助氨基酸正确排列。

基因表达调控基因表达调控是细胞根据内外环境调节基因转录和翻译的过程。

它包括转录因子、启动子、启动子结合因子、RNA干扰等。

转录因子结合在DNA上的启动子区域,促进或抑制转录的发生。

通过不同的基因表达调控方式,细胞可以在不同的发育和环境条件下产生不同的蛋白质。

基因突变和遗传疾病基因突变是DNA序列发生突变或改变的现象。

它可以是点突变、插入突变、缺失突变等。

基因突变可能导致蛋白质功能的改变,从而引起遗传疾病。

例如,单基因遗传病如囊性纤维化和苯丙酮尿症,以及复杂遗传病如癌症,都与基因突变有关。

PCR技术聚合酶链反应(PCR)是一种体外扩增DNA的技术,可以从微弱的DNA样本中扩增特定片段。

PCR由三步循环组成:变性、退火和延伸。

它广泛应用于分子生物学研究、基因工程和医学诊断等领域。

基因克隆和DNA测序基因克隆是将特定的DNA片段插入载体DNA(如质粒)中,形成重组DNA分子。

通过基因克隆,可以大量复制目标DNA片段。

DNA 测序是确定DNA序列的过程,它有助于揭示基因的结构和功能,促进遗传学和进化生物学的研究。

分子生物学总结知识点

分子生物学总结知识点

分子生物学总结知识点(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分子生物学总结知识点分子生物学总结知识点篇一:分子生物学总结第一章绪论1、细胞学说1847年由德国科学家施莱登和施旺提出。

细胞学说的主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。

2、分子生物学的概念:分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与核酸、蛋白质与蛋白质之间的相互作用的关系及其基因表达调控机理的学科。

3、中心法则1958年由克里克提出4、分子生物学的研究内容:a:DNA重组技术(基因工程)b:基因的表达调控c:生物大分子的结构和功能研究(结构分子生物学)d:基因组、功能基因组与生物信息学研究RNA复制逆转录蛋白质【名词解释】:1、同功tRNA:多个tRNA携带一种氨基酸,这些tRNA称为同功tRNA。

2、iRNA:即起始RNA,DNA合成的引物3、核酶:即具有催化作用的一类RNA分子。

4、端粒酶:是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。

5、反义核酸:是根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA或RN段(或其化学修饰的衍生物),能够与目的序列结合,通过空间位阻效应或诱导RNase活性,在复制、转录、剪接、mRNA转运及翻译等水平,抑制或封闭目的基因的表达。

第二章核酸的结构与功能1、染色质的类型分为两种类型:常染色质和异染色质。

常染色质处于伸展状态,碱性染料着色浅而均匀;异染色质处于凝集状态,碱性染料着色较深。

2、染色质蛋白质分为两类:组蛋白和非组蛋白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学知识点Last revision on 21 December 2020一、名词解释:1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链。

2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。

3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。

如GAPDH、β-肌动蛋白基因。

4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。

5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。

如:乳糖操纵子、色氨酸操纵子等。

6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。

7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列。

是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。

8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。

(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。

)9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。

10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。

11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。

12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析。

13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体。

基因文库包括两类:基因组文库和cDNA文库。

14. 克隆:是来自同一始祖的相同副本或拷贝的集合。

15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA 的一类内切酶。

17. 基因工程(Genetic Engineering):又称基因操作(gene manipulation)、DNA重组(DNA recombination),是指采用类似于工程建设的方式,按照预先设计的蓝图,将一种或多种生物体(供体)的基因育载体在体外进行拼接重组构建成杂种DNA分子,然后转入另一种生物体(受体)内,以改变生物原有的遗传特性并表达出新的性状。

获得新品种,生产新产品,或是研究基因的结构和功能。

因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。

由于DNA重组分子大都需在受体细胞中复制扩增,故还可以将基因工程表征为分子克隆(Molecular Cloning)或基因的无性繁殖。

18. 目的基因:感兴趣的基因或DNA序列。

19.生长因子:(growth factor)通过质膜上特异的受体,将信息传递至细胞内部,调节细胞生长与增殖的多肽类物质。

20. 基因组:泛指一个生命体、病毒或细胞器的全部遗传物质。

21. 蛋白质组:指一个细胞内的全套蛋白质,反映了特殊阶段、环境状态下,细胞或组织在翻译水平的蛋白质表达谱。

22. 人类基因组计划:是美国科学家于1986年率先提出,1990年正式启动的,这一计划的目标是为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因产生的蛋白质及其作用,它的实施将会为认识疾病的分子机制以及诊断和治疗提供重要依据。

23. 基因诊断:利用现代分子生物学和分子遗传学的技术方法直接检测基因结构及其表达水平是否正常,从而对人体状态和疾病做出诊断的方法。

24. 基因治疗:从广义来说,将某种遗传物质转移到患者细胞内,使其在体内发挥作用而达到治疗疾病目的的方法均称为基因治疗。

25. 基因替换:用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法。

26. 自杀基因:某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”。

27. 转录组:是一个细胞内的一套RNA转录物,包含了某一环境条件下、某一生命阶段、某一生理或病理状态下,生命体的细胞或组织所表达的基因种类及水平。

28.癌基因:(oncogene)细胞内控制细胞生长和分化的基因,它的结构异常或表达异常,可以引起细胞癌变。

29. 病毒癌基因:存在于肿瘤细胞中,能使靶细胞发生恶性转化的基因。

30. 抑癌基因:也称为抗癌基因。

抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的(也称抗癌基因。

抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的。

)31. 结构基因组学:是以全基因组测序为目标的基因结构研究,弄清楚基因组中全部基因的位置和结构,为基因功能的研究奠定基础。

其主要内容就是制作高分辨率的人类基因组的遗传图和物理图,最终完成人类其他重要模式生物全部基因组DNA序列测定。

二、问答题1.以乳糖操纵子为模型解释原核生物转录水平的调控模式转录水平的调节——操纵子调控模式(1)操纵子的概念:操纵子是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。

如:乳糖操纵子、色氨酸操纵子等。

(2)乳糖操纵子的结构:乳糖操纵子包括调节基因I、一个操纵序列O、一个启动序列P以及单个结构基因Z、Y、A。

其中调节基因I编码生成阻遏蛋白,后者与操纵序列结合;RNA聚合酶与启动序列结合;分解代谢物基因激活蛋白(CAP)也结合在操纵序列附近;结构基因Z、Y和A分别编码三个与乳糖代谢有关的酶,即:β-半乳糖苷酶,透酶和乙酰转移酶。

这三个酶的基因作为一个整体由同一个调控区调节,以实现基因的协调表达。

(3)其调节机制主要有正性和负性两种模式。

①阻遏蛋白的负性调节:当没有乳糖时,调节基因表达生成阻遏蛋白,阻遏蛋白结合操纵子序列出,阻碍RNA结合酶与启动序列结合,抑制结构基因的转录启动,此时操纵子处于阻遏状态;当有半乳糖存在时,乳糖首先被转变成半乳糖,半乳糖则作为一种诱导剂与阻遏蛋白结合,诱发蛋白质构象改变,使阻遏蛋白从启动序列上解离下来,从而启动结构基因的转录,此时操纵子处于诱导状态。

②CAP的正性调节:当没有葡萄糖时,cAMP浓度升高,与CAP结合,CAP进而结合在启动序列附近,从而进一步促进结构基因的转录。

当有葡萄糖时,cAMP浓度降低,结合在启动序列附近的CAP减少,结构基因转录速率降低。

③协调调节:实际情况下,上述两种调节方式是相辅相成、相互协调的。

譬如:在无乳糖且有葡萄糖时,阻遏蛋白负性调节起作用,此时结构基因不被转录;在有乳糖且有葡萄糖时,阻遏蛋白负性调节不起作用,此时结构基因转录水平低;在有乳糖且无葡萄糖时,阻遏蛋白的抑制作用不解除,CAP正性调节被激活,此时结构基因的转录水平最高。

2.生长因子的作用机制生长因子由不同的细胞的细胞合成后分泌,作用于靶细胞上的相应受体,这些受体有的是位于细胞膜上的,有的是位于细胞内部。

生长因子与受体结合后,激活细胞内信号传递体系,产生相应的生物学作用。

根据受体的分布和对生长因子不同的响应,生长因子是作用机制分为三种情况:①生长因子与具有酪氨酸蛋白激酶(TPK)活性的跨膜受体结合,TPK被活化,磷酸化相应蛋白质,产生生理效应。

②与膜上受体结合,通过胞内信息传递,产生第二信使,是蛋白激酶活化,再磷酸化相应的效应蛋白质,这些被磷酸化的蛋白质再活化核内的转录因子,引发基因转录,达到调节生长与分化的作用。

③与膜内受体结合,形成生长因子-受体复合物,进入胞核活化相关基因,促进细胞生长。

基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。

由变性——退火——延伸三个基本反应步骤构成。

①变性(denature):模板DNA经加热至95℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备。

②退火(annealing)(复性):模板DNA经加热变性成单链后,将温度降至引物的Tm 值左右或以下(55℃左右),引物与模板DNA单链的互补序列配对结合,形成杂交链。

③延伸(extension):DNA模板-引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。

以上三步为一个循环,约需2~4分钟,每一循环的产物作为下一个循环的模板,如此循环30次,大约2~3小时后,新生DNA片段理论上可达到2n-1个分子拷贝。

4.定量PCR技术的基本原理基本原理:将荧光信号强弱与PCR扩增情况结合在一起,通过监测PCR反应管内荧光信号的变化来实时检测PCR反应进行的情况,PCR反应管内的荧光信号强度达到设定阈值所经历的循环数(即Ct值)与扩增的起始模板量进行准确的绝对和(或)相对定量。

循环阈值(cycle threshold,Ct)是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。

荧光阈值(threshold)一般是以PCR反应的前15个循环的荧光信号作为荧光本底信号(baseline),缺省设置是3~15个循环的荧光信号的标准偏差的10倍。

实际上就是荧光信号开始由本底信号进入指数增长阶段的拐点时的荧光信号强度。

5.Sanger测序法的基本原理Sanger法也称双脱氧链末端终止法,是目前应用最为广泛的方法。

相关文档
最新文档