最新浙江高考数列经典例题汇总

合集下载

浙江省普通高校招生学考科目考试2021年高考数学高考数学压轴题 数列多选题分类精编附答案

浙江省普通高校招生学考科目考试2021年高考数学高考数学压轴题 数列多选题分类精编附答案

浙江省普通高校招生学考科目考试2021年高考数学高考数学压轴题 数列多选题分类精编附答案一、数列多选题1.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 【答案】BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2.已知数列{}n a 的首项1a m =且满足()()14751221nn a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,其中n *∈N ,则下列说法中正确的是( )A .当1m =时,有3n n a a +=恒成立B .当21m =时,有47n n a a ++=恒成立C .当27m =时,有108111n n a a ++=恒成立D .当()2km k N *=∈时,有2n kn k aa +++=恒成立【答案】AC 【分析】题设中的递推关系等价为1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,根据首项可找到{}n a 的局部周期性,从而可得正确的选项. 【详解】因为()()14751221nna a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,故1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,当1m =即11a =时,24a =,32a =,41a =,故{}n a 为周期数列且3n n a a +=,故A 正确.当21m =即121a =时,264a =,同理416a =,58a =,64a =,72a =,81a =,故58a a ≠,故B 错误.当2k m =即12ka =时,根据等比数列的通项公式可有11222k kk a -⎛⎫= ⎪⎝⎭=,+1+21,4k k a a ==,+32k a =, +1+3k k a a ≠,故D 错误.对于C ,当27m =时,数列{}n a 的前108项依次为:27,82,42,124,62,31,94,47,142,71,214,107,322,161,484242,121,364,182,91,274,, 137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780, 890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650, 325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,故1098a =,1104a =,1112a =,1121a =,1134a =, 所以109112n n a a ++=对任意1n ≥总成立.(备注:因为本题为多选题,因此根据A 正确,BD 错误可判断出C 必定正确,可无需罗列出前108项) 故选:AC. 【点睛】方法点睛:对于复杂的递推关系,我们应该将其化简为相对简单的递推关系,对于数列局部周期性的研究,应该从特殊情况中总结出一般规律,另外,对于多选题,可以用排除法来确定可选项.3.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.4.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <,又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC. 【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.5.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立,∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.6.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk k S k +=-- 【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k k S k ++=--结论计算即可.【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2,则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=, 60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.7.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭ 由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+⎪⎝⎭,从而判断,属于中档题.8.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤<【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭,代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a n n n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C,令1121612mbm m⎛⎫=-=⎪++⎝⎭得,215308m m++=,解得532m+-±=∉N,所以C错误;对于D,n+∀∈N,1231111112233412nS b b bn n⎛⎫=+++=-+-++-⎪++⎝⎭112211222n n⎛⎫=-=-<⎪++⎝⎭,可以看出n S是关于n递增的,所以1n=时有最小值13,所以113nS≤<,D正确.故选:BD.【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a,然后代入求出n b,考查了学生的推理能力、计算能力.9.将2n个数排成n行n列的一个数阵,如图:该数阵第一列的n个数从上到下构成以m 为公差的等差数列,每一行的n个数从左到右构成以m为公比的等比数列(其中0m>).已知112a=,13611a a=+,记这2n个数的和为S.下列结论正确的有()A.3m=B.18181103354kkia=⨯+=∑C.(31)3ijja i=-⨯D.()1(31)314nS n n=+-【答案】ABD【分析】根据第一列成等差,第一行成等比可求出1361,a a,列式即可求出m,从而求出通项ija,进而可得ii a,根据错位相减法可求得181kkia=∑,再按照分组求和法,每一行求和可得S,由此可以判断各选项的真假.【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅, 0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确; S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) ()()()11211131313131313n n n n a a a ---=+++--- ()()231131.22n n n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =-B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案.【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-. 所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况: (1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定; (2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;。

2024年高考真题汇总 数列(学生版)

2024年高考真题汇总 数列(学生版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.292(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.23(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1= 2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.7(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.2024年高考真题(1)求a n 的通项公式;(2)求数列S n 的通项公式.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.2662(2024·河北张家口·三模)已知数列a n 的前n 项和为S n ,且满足a 1=1,a n +1=a n +1,n 为奇数2a n ,n 为偶数 ,则S 100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-1033(2024·山东日照·三模)设等差数列b n 的前n 项和为S n ,若b 3=2,b 7=6,则S 9=()A.-36B.36C.-18D.184(2024·湖北武汉·二模)已知等差数列a n 的前n 项和为S n ,若S 3=9,S 9=81,则S 12=()A.288B.144C.96D.255(2024·江西赣州·二模)在等差数列a n 中,a 2,a 5是方程x 2-8x +m =0的两根,则a n 的前6项和为()A.48B.24C.12D.86(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.647(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <1008(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.129(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.8810(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列11(2024·广东茂名·一模)已知T n 为正项数列a n 的前n 项的乘积,且a 1=2,T 2n =a n +1n ,则a 5=()A.16B.32C.64D.12812(2024·湖南常德·一模)已知等比数列a n 中,a 3⋅a 10=1,a 6=2,则公比q 为()A.12B.2C.14D.4二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p14(2024·山东泰安·模拟预测)已知数列a n的通项公式为a n=92n-7n∈N*,前n项和为S n,则下列说法正确的是()A.数列a n有最大项a4 B.使a n∈Z的项共有4项C.满足a n a n+1a n+2<0的n值共有2个D.使S n取得最小值的n值为415(2024·山东临沂·二模)已知a n是等差数列,S n是其前n项和,则下列命题为真命题的是() A.若a3+a4=9,a7+a8=18,则a1+a2=5 B.若a2+a13=4,则S14=28C.若S15<0,则S7>S8D.若a n和a n⋅a n+1都为递增数列,则a n>0 16(2024·山东泰安·二模)已知等差数列a n的前n项和为S n,a2=4,S7=42,则下列说法正确的是()A.a 5=4B.S n=12n2+52nC.a nn为递减数列 D.1a n a n+1的前5项和为421 17(2024·江西·三模)已知数列a n满足a1=1,a n+1=2a n+1,则()A.数列a n是等比数列 B.数列log2a n+1是等差数列C.数列a n的前n项和为2n+1-n-2 D.a20能被3整除18(2024·湖北·二模)无穷等比数列a n的首项为a1公比为q,下列条件能使a n既有最大值,又有最小值的有()A.a1>0,0<q<1B.a1>0,-1<q<0C.a1<0,q=-1D.a1<0,q<-1三、填空题19(2024·山东济南·三模)数列a n满足a n+2-a n=2,若a1=1,a4=4,则数列a n的前20项的和为.20(2024·云南·二模)记数列a n的前n项和为S n,若a1=2,2a n+1-3a n=2n,则a82+S8=.21(2024·上海·三模)数列a n满足a n+1=2a n(n为正整数),且a2与a4的等差中项是5,则首项a1= 22(2024·河南·三模)数列a n满足a n+1=e a n-2n∈N*,a2+a3=3x0,其中x0为函数y=e x-2-x2(x> 1)的极值点,则a1+a2-a3=.23(2024·上海·三模)已知两个等差数列2,6,10,⋯,202和2,8,14,⋯,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为.24(2024·湖南长沙·三模)已知数列a n 为正项等比数列,且a 2-a 3=3,则a 1的最小值为.四、解答题25(2024·黑龙江·三模)已知等差数列a n 的公差d >0,a 2与a 8的等差中项为5,且a 4a 6=24.(1)求数列a n 的通项公式;(2)设b n =a n ,n 为奇数,1a n an +2,n 为偶数,求数列b n 的前20项和T 20.26(2024·湖南长沙·三模)若各项均为正数的数列c n 满足c n c n +2-c 2n +1=kc n c n +1(n ∈N *,k 为常数),则称c n 为“比差等数列”.已知a n 为“比差等数列”,且a 1=58,a 2=1516,3a 4=2a 5.(1)求a n 的通项公式;(2)设b n =a n ,n 为奇数b n -1+1,n 为偶数,求数列b n 的前n 项和S n .27(2024·山东潍坊·三模)已知正项等差数列a n的公差为2,前n项和为S n,且S1+1,S2,S3+1成等比数列.(1)求数列a n的通项公式a n;(2)若b n=1S n,n为奇数,S n⋅sin n-1π2,n为偶数,求数列b n 的前4n项和.28(2024·上海·三模)已知等比数列a n的公比q>0,且a3+a1a5=6,a6=16.(1)求a n的通项公式;(2)若数列b n满足b n=λ⋅3n-a n,且b n是严格增数列,求实数λ的取值范围.29(2024·山东泰安·模拟预测)在足球比赛中,有时需通过点球决定胜负.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将(也称为守门员)也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有23的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为p n,易知p1=1,p2=0.① 试证明:p n-1 3为等比数列;② 设第n次传球之前球在乙脚下的概率为q n,比较p2024与q2024的大小.30(2024·湖南邵阳·三模)高中教材必修第二册选学内容中指出:设复数z=a+bi对应复平面内的点Z,设∠XOZ=θ,OZ=r,则任何一个复数z=a+bi都可以表示成:z=r cosθ+i sinθ的形式,这种形式叫做复数三角形式,其中r是复数z的模,θ称为复数z的辐角,若0≤θ<2π,则θ称为复数z的辐角主值,记为argz.复数有以下三角形式的运算法则:若z i=r i cosθi+i sinθi,i=1,2,⋯n,则:z1⋅z2⋅⋯⋅z n=r1r2⋯r n cosθ1+θ2+⋯+θn+i sinθ1+θ2+⋯+θn,特别地,如果z1=z2=⋯z n=r cosθ+i sinθ,那么r cosθ+i sinθn=r n cos nθ+i sin nθ,这个结论叫做棣莫弗定理.请运用上述知识和结论解答下面的问题:(1)求复数z=1+cosθ+i sinθ,θ∈π,2π的模z 和辐角主值argz(用θ表示);(2)设n≤2024,n∈N,若存在θ∈R满足sinθ+i cosθn=sin nθ+i cos nθ,那么这样的n有多少个?(3)求和:S=cos20°+2cos40°+3cos60°+⋯+2034cos2034×20°31(2024·湖南长沙·二模)集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集A +B =a +b a ∈A ,b ∈B ,用符号d (A +B )表示和集A +B 内的元素个数.(1)已知集合A =1,3,5 ,B =1,2,6 ,C =1,2,6,x ,若A +B =A +C ,求x 的值;(2)记集合A n =1,2,⋯,n ,B n =2,22,⋯,n 2 ,C n =A n +B n ,a n 为C n 中所有元素之和,n ∈N *,求证:1a 1+2a 2+⋯+n a n <2(2-1);(3)若A 与B 都是由m m ≥3,m ∈N * 个整数构成的集合,且d (A +B )=2m -1,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等差数列.32(2024·山东泰安·模拟预测)已知数列a n 是斐波那契数列,其数值为:1,1,2,3,5,8,13,21,34⋅⋅⋅⋅⋅⋅.这一数列以如下递推的方法定义:a 1=1,a 2=1,a n +2=a n +1+a n (n ∈N *).数列b n 对于确定的正整数k ,若存在正整数n 使得b k +n =b k +b n 成立,则称数列b n 为“k 阶可分拆数列”.(1)已知数列c n 满足c n =ma n (n ∈N *,m ∈R ).判断是否对∀m ∈R ,总存在确定的正整数k ,使得数列c n 为“k 阶可分拆数列”,并说明理由.(2)设数列{d n }的前n 项和为S n =3n -a a ≥0 ,(i )若数列{d n }为“1阶可分拆数列”,求出符合条件的实数a 的值;(ii )在(i )问的前提下,若数列f n 满足f n =an S n,n ∈N *,其前n 项和为T n .证明:当n ∈N *且n ≥3时,T n <a 21+a 22+a 23+⋅⋅⋅⋅⋅⋅+a 2n -a n a n +1+1成立.。

浙江省历年高考数列大题总汇(题目及答案)

浙江省历年高考数列大题总汇(题目及答案)

浙江省历年高考数列大题总汇(题目及答案)1已知二次函数y?f(x)的图像经过坐标原点,其导函数为f?(x)?6x?2。

数列项和为Sn,点(n,Sn)(n?N 求数列*?an?的前n)均在函数y?f(x)的图像上。

?an?的通项公式;m3*,Tn是数列?bn?的前n项和,求使得Tn?对所有n?N都成立的最小20anan?1设bn正整数m。

?2. 己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.求数列{an}的通项公式;设Tn为数列?小值. 3. 设数列?an?的前n项和为Sn,已知a1?1,a2?6,a3?11,且?1?*对?n?N恒成立,求实数?的最?的前n项和,若Tn≤?an?1¨?anan?1?(5n?8)Sn?1?(5n?2)Sn?An?B,n?1,2,3,?,其中A、B 为常数.(Ⅰ) 求A与B的值;(Ⅱ)证明数列?an?为等差数列;(Ⅲ) 证明不等式5amn?aman?1对任何正整数m、n都成立. 4. 已知数列?an?,?bn?满足a1?3,anbn?2,bn?1?an(bn?求证:数列{2),n?N*.1?an1}是等差数列,并求数列?bn?的通项公式;bn111,,成等差数列?若存在,试用p 表示q,r;若不crcqcp设数列?cn?满足cn?2an?5,对于任意给定的正整数p,是否存在正整数q,r(p?q?r),使得存在,说明理. 5. 已知函数f(x)?x?a?lnx (a?0). (1)若a?1,求f(x)的单调区间及f(x)的最小值;(2)若a?0,求f(x)的单调区间;ln22ln32lnn2(n?1)(2n?1)*?2???2与(3)试比较的大小(n?N且n?2),并证明22(n?1)23n你的结论.6已知f(x)?(x?1)2,g(x)?10(x?1),数列{an}满足(an?1?an)g(an)?f(an)?0,9(n?2)(an?1) 10a1?2,bn?求数列{an}的通项公式;(Ⅱ)求数列{bn}中最大项.7. 设k?R,函数f(x)?ex?(1?x?kx2)(x?0).若k?1,试求函数f(x)的导函数f?(x)的极小值;若对任意的t?0,存在s?0,使得当x?(0,s)时,都有取值范围. f(x)?tx2,求实数k的8. 已知等差数列{an}的公差不为零,且a3 =5, a1 , 成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2nbn=an且数列{bn}的前n项和Tn 试比较Tn与-1 3n?1的大小n?19. 已知函数f(x)?12x?(2a?2)x?(2a?1)lnx 2(I )求f(x)的单调区间;(II)对任意的a?[,],x1,x2?[1,2],恒有|f(x1)|?f(x2)??|数?的取值范围. 352211?|,求正实x1x2 1. 解:依题意可设f(x)?ax2?bx(a?0),则f`(x)?2ax?b f`(x)?6x?2 得a?3,b??2,所以f(x)?3x2?2x. 又点(n,Sn)(n?N*) 均在函数y?f(x)的图像上得Sn22?3n2?2n 当n?2时an?Sn?Sn?1?3n?2n???3(n?1)?2(n?1)???6n ?5 当n?1时a1所以an?S1?3?12?2?1?6?1?5 ?6n?5(n?N*)?33111??(?), anan?1(6n?5)?6(n?1)?5?26n?56n?1得bn 故,Tn?111?11111??(1?). =(1?)?(?)?????(?)??26n?12?77136n?56n?1 ?1m11m,即m?10 (1?)?(n?N*)成立的m必须且必须满足?22026n?120因此使得故满足最小的正整数m为10 ?4a1?6d?142. 设公差为d.已知得?....................................3分2?(a1?2d)?a1(a1?6d)解得d?1或d?0(舍去),所以a1?2,故an?n?1 (6)分?1111???,anan?1(n?1)(n?2)n?1n?211n1111?? (9)分?Tn?????…?n?1n?22(n?2)2334n≤?(n+ 2)对?n?N?恒成立?Tn≤?an?1对?n?N?恒成立,即2(n?2)n111?≤?又242(n?2)2(n??4)2(4?4)16n1∴?的最小值为……………………………………………………………12分163. 解:(Ⅰ)a1?1,a2?6,a3?11,得S1?1,S2?2,S3?18.把n?1,2分别代入(5n?8)Sn?1?(5n?2)Sn?An?B,得?解得,A??20,B??8.(Ⅱ)(Ⅰ)知,5n(Sn?1?Sn)?8Sn?1?2Sn??20n?8,即?A?B??28, 2A?B??48?5nan?1?8Sn?1?2Sn??20n?8,①又5(n?1)an?2?8Sn?2?2Sn?1??20(n?1)?8.②②-①得,5(n?1)an?2?5nan?1?8an?2?2an?1??20,即(5n?3)an?2?(5n?2)an?1??20.又(5n?2)an?3?(5n?7)an?2??20.③④④-③得,(5n?2)(an?3?2an?2?an?1)?0,∴an?3?2an?2?an?1?0,∴an?3?an?2?an?2?an?1???a3?a2?5,又a2?a1?5,因此,数列?an?是首项为1,公差为5的等差数列.(Ⅲ)(Ⅱ)知,an?5n?4,(n?N?).考虑5amn?5(5mn?4)?25mn?20.(aman?1)2?aman?2aman?1?aman?am?an?1?25mn?15(m?n)?9.∴5amn?(aman?1)2厖15(m?n)?2915?2?29?1?0.即5amn?(aman?1)2,∴5amn?aman?1.因此,5amn?aman?1. 4. 因为anbn?2,所以an?2,bn42anb2bn4则bn?1?anbn?, (2)分?2?n?2??21?anbn?2bn?21?bn所以111??,bn?1bn2又a1?3,所以b1?即?1?231,故??是首项为,公差为的等差数列,……4分322?bn?131n?22??(n?1)??,所以bn?.………………………6分bn222n?2知an?n?2,所以cn?2an?5?2n?1,①当p?1时,cp?c1?1,cq?2q?1,cr?2r?1,若12111?1?,,成等差数列,则,2q?12r?1crcqcp21?1,1??1,2q?12r?1因为p?q?r,所以q≥2,r≥3,所以不成立.………………………...9分②当p≥2时,若则111,,成等差数列,crcqcp2111214p?2q?1?????,所以,2q?12p?12r?12r?12q?12p?1(2p?1)(2q?1)( 2p?1)(2q?1)2pq?p?2q,所以r?,...........................12分4p?2q?14p?2q?1222即2r?1?欲满足题设条件,只需q?2p?1,此时r?4p?5p?2,..................14分因为p≥2,所以q?2p?1?p,r?q?4p?7p?3?4(p?1)?p?1?0,即r?q...............................15分综上所述,当p?1时,不存在q,r满足题设条件;当p≥2时,存在q?2p?1,r?4p?5p?2,满足题设条件. (16)分 5. (1) 当x?1时,f(x)?x?1?lnx ,f(x)?1?,,21?(x)在?1,???上是递增. x1?(x)在?0,1?上是递减. x故a?1时, f(x)的增区间为?1,???,减区间为?0,1?,f(x)min?f(1)?0. ………4分当0?x?1时,f(x)?x?1?lnx,f(x)??1?(2)○1若a?1, 当x?a时,f(x)?x?a?lnx,f(x)?1?是递增的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,, 1x?1??0,则f(x)在区间?a,???上xx1?0,则f(x)在区间?0,a?上是递x减的 (6)分2若0?a?1, ○当x?a时, f(x)?x?a?lnx, f(x)?1?,1x?1,?,x?1,f(x)?0 ; xxa?x?1,f,(x)?0. 则f(x)在?1,???上是递增的, f(x)在?a,1?上是递减的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,f(x)在区间?0,a?上是递减的,而f(x)在x?a处有意义;则1?0 x f?x?在区间1,???上是递增的,在区间?0,1?上是递减的 (8)分??a,???,递减区间是?0,a?; 当0?a?1,f(x)的递增区间是?1,???,递减区间是?0,1?综上: 当a?1时, f(x)的递增区间是………9分lnx1?1? (3)(1)可知,当a?1,x?1时,有x?1?lnx?0,即xxln22ln32lnn2?2???2 则有223n?1?111111?1????1??n?1?(????)…………12分22222223n23n ?n?1?(111????2?33?4n(n?1)111111?n?1?(???????)2334nn?111(n?1)(2n?1)?n?1?(?)=2n?12(n?1)ln22ln32lnn2(n?1)(2n?1)?2??? 2?故:.............15分2(n?1)223n 6. 题意:(an?1?an)?10(an?1)?(an?1)2?0 ?1)(1 0an?1?9an?1)?0.........3分经化简变形得:(an?an?1,?10an?1变形得:?9an?1?0 (5)分an?1?19? an?1109为公比的等比数列。

高考数学数列超经典裂项求和真题总结

高考数学数列超经典裂项求和真题总结

高考数学数列超经典裂项求和真题总结一、 常规题型(1)等差型1. (2013新课标一17)()已知等差数列{}n a 的前n 项和n S 满足350, 5.S S ==-(1)求数列{}n a 的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和2. (2015新课标一17)() n S 为数列}{n a 的前n 项和,已知342,02+=+>n n n n S a a a .(1)求数列}{n a 的通项公式; (2)设11+=n n n a a b ,求数列}{n b 的前n 项和值.3. (2020浙江20)()已知数列{}n a ,{}n b ,{}n c 中,11111121,,()nn n n n n n b a b c c a a c c n b ++++====-=⋅∈*N . (1)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式; (2)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+.(2)根式型4. (2018华侨、港澳、台联考高考数学试卷20题)()已知数列{}n a 的前n 项和为n S ,1112,0,() 2.n n n n a a a S S ++=>⋅+=(1)求n S ; (2)求12231111.n n S S S S S S +++⋅⋅⋅++++(3) 指数型5. (2015安徽18)()已知数列{}n a 是递增的等比数列,且14239,8a a a a +==.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(4)三角型6. (2011安徽文21(2))()设tan(2)tan(3)n b n n =++,求数列求数列{}n b 的前n 项和n S .二、 变形题型1. (2013江西17)()正项数列{}n a 的前n 项和n S 满足:()()22210n n s n n s n n -+--+=(1)求数列{}n a 的通项公式n a ; (2)令()2212n nn b n a+=+,数列{}n b 的前n 项和为n T .证明:对于任意 n ∈N*,都有564n T <.2. (2014山东19)()已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式; (2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T .3. (2018天津18)()设{}n a 是等比数列,公比大于0,其前n 项和为n S ()n *∈N ,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为n T ()n *∈N ,(i)求n T ;(ii)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=-+++∑()n *∈N .4. (2010湖南20)()给出下面的数表序列:其中表n (n =1,2,3)有n 行,第1行的n 个数是1,3,5,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(2)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为{}n b 求和:32412231n n n bb b b bb b b b ++++*()n N ∈ .124 4 8表1 表2 表3 ∙∙∙1 1 3 1 3 5。

2021年高考数学专题分类汇编:数列(含答案)

2021年高考数学专题分类汇编:数列(含答案)

数列1.(2021•浙江)已知数列{a n}满足a1=1,a n+1=(n∈N*).记数列{a n}的前n项和为S n,则()A.<S100<3B.3<S100<4C.4<S100<D.<S100<52.(2021•甲卷)记S n为等比数列{a n}的前n项和.若S2=4,S4=6,则S6=()A.7B.8C.9D.1016.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n次,那么S k=dm2.17.(2021•上海)已知等差数列{a n}的首项为3,公差为2,则a10=.33.(2021•浙江)已知数列{a n}的前n项和为S n,a1=﹣,且4S n+1=3S n﹣9(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足3b n+(n﹣4)a n=0(n∈N*),记{b n}的前n项和为T n,若T n≤λb n对任意n∈N*恒成立,求实数λ的取值范围.34.(2021•甲卷)记S n为数列{a n}的前n项和,已知a n>0,a2=3a1,且数列{}是等差数列,证明:{a n}是等差数列.35.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知+=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.36.(2021•甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.37.(2021•乙卷)设{a n}是首项为1的等比数列,数列{b n}满足b n=,已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式;(2)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n<.38.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.39.(2021•上海)已知数列{a n}满足a n≥0,对任意n≥2,a n和a n+1中存在一项使其为另一项与a n﹣1的等差中项.(1)已知a1=5,a2=3,a4=2,求a3的所有可能取值;(2)已知a1=a4=a7=0,a2、a5、a8为正数,求证:a2、a5、a8成等比数列,并求出公比q;(3)已知数列中恰有3项为0,即a r=a s=a t=0,2<r<s<t,且a1=1,a2=2,求a r+1+a s+1+a t+1的最大值.答案解析1.(2021•浙江)已知数列{a n}满足a1=1,a n+1=(n∈N*).记数列{a n}的前n项和为S n,则()A.<S100<3B.3<S100<4C.4<S100<D.<S100<5【解答】解:因为,所以,所以,,∴,故,由累加法可得当n≥2 时,,又因为当n=1 时,也成立,所以,所以,∴,故,由累乘法可得当n≥ 2 时,,所以.故选:A.2.(2021•甲卷)记S n为等比数列{a n}的前n项和.若S2=4,S4=6,则S6=()A.7B.8C.9D.10【解答】解:∵S n为等比数列{a n}的前n项和,S2=4,S4=6,由等比数列的性质,可知S2,S4﹣S2,S6﹣S4成等比数列,∴4,2,S6﹣6成等比数列,∴22=4(S6﹣6),解得S6=7.故选:A.16.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为5;如果对折n次,那么S k=dm2.【解答】解:易知有,,共5种规格;由题可知,对折k次共有k+1种规格,且面积为,故,则,记,则,∴=,∴,∴.故答案为:5;.17.(2021•上海)已知等差数列{a n}的首项为3,公差为2,则a10=21.【解答】解:因为等差数列{a n}的首项为3,公差为2,则a10=a1+9d=3+9×2=21.故答案为:21.18.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为39π.【解答】解:由圆锥的底面半径为6,其体积为30π,设圆锥的高为h,则,解得,所以圆锥的母线长,所以圆锥的侧面积.故答案为:39π.33.(2021•浙江)已知数列{a n}的前n项和为S n,a1=﹣,且4S n+1=3S n﹣9(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足3b n+(n﹣4)a n=0(n∈N*),记{b n}的前n项和为T n,若T n≤λb n对任意n∈N*恒成立,求实数λ的取值范围.【解答】解:(Ⅰ)由4S n+1=3S n−9 可得4S n=3S n−1−9(n≥2),两式作差,可得:4a n+1=3a n,∴,很明显,,所以数列{a n} 是以为首项,为公比的等比数列,其通项公式为:.(Ⅱ)由3b n+(n−4)a n=0,得,,,两式作差可得:==,则.据此可得恒成立,即λ(n−4)+3n≥0 恒成立.n=4时不等式成立;n<4时,,由于n=1时,故λ≤1;n>4时,,而,故:λ≥−3;综上可得,{λ|−3≤λ≤1}.34.(2021•甲卷)记S n为数列{a n}的前n项和,已知a n>0,a2=3a1,且数列{}是等差数列,证明:{a n}是等差数列.【解答】证明:设等差数列{}的公差为d,由题意得=;===2,则d=﹣=2﹣=,所以=+(n﹣1)=n,所以S n=n2a1①;当n≥2时,有S n﹣1=(n﹣1)2a1②.由①②,得a n=S n﹣S n﹣1=n2a1﹣(n﹣1)2a1=(2n﹣1)a1③,经检验,当n=1时也满足③.所以a n=(2n﹣1)a1,n∈N+,当n≥2时,a n﹣a n﹣1=(2n﹣1)a1﹣(2n﹣3)a1=2a1,所以数列{a n}是等差数列.35.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知+=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【解答】解:(1)证明:当n=1时,b1=S1,由+=2,解得b1=,当n≥2时,=S n,代入+=2,消去S n,可得+=2,所以b n﹣b n﹣1=,所以{b n}是以为首项,为公差的等差数列.(2)由题意,得a1=S1=b1=,由(1),可得b n=+(n﹣1)×=,由+=2,可得S n=,当n≥2时,a n=S n﹣S n﹣1=﹣=﹣,显然a1不满足该式,所以a n=.36.(2021•甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.【解答】解:选择①③为条件,②结论.证明过程如下:由题意可得:a2=a1+d=3a1,∴d=2a1,数列的前n项和:,故(n≥2),据此可得数列是等差数列.选择①②为条件,③结论:设数列{a n}的公差为d,则:,数列为等差数列,则:,即:,整理可得:d=2a1,∴a2=a1+d=3a1.选择③②为条件,①结论:由题意可得:S2=a1+a2=4a1,∴,则数列的公差为,通项公式为:,据此可得,当n≥2时,,当n=1时上式也成立,故数列的通项公式为:a n=(2n−1)a1,由a n+1−a n=[2(n+1)−1]a1−(2n−1)a1=2a1,可知数列{a n}是等差数列.37.(2021•乙卷)设{a n}是首项为1的等比数列,数列{b n}满足b n=,已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式;(2)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n<.【解答】解:(1)∵a1,3a2,9a3成等差数列,∴6a2=a1+9a3,∵{a n}是首项为1的等比数列,设其公比为q,则6q=1+9q2,∴q=,∴a n=a1q n﹣1=,∴b n==n•.(2)证明:由(1)知a n=,b n=n•,∴=,,①∴,②①﹣②得,,∴,∴T n﹣=﹣<0,∴T n<.38.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.【解答】解:(1)因为a1=1,a n+1=,所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,b n﹣b n﹣1=a2n﹣a2n﹣2=a2n﹣a2n﹣1+a2n﹣1﹣a2n﹣2=1+2=3,n≥2,所以数列{b n}是以b1=2为首项,以3为公差的等差数列,所以b n=2+3(n﹣1)=3n﹣1.(2)由(1)可得a2n=3n﹣1,n∈N*,则a2n﹣1=a2n﹣2+2=3(n﹣1)﹣1+2=3n﹣2,n≥2,当n=1时,a1=1也适合上式,所以a2n﹣1=3n﹣2,n∈N*,所以数列{a n}的奇数项和偶数项分别为等差数列,则{a n}的前20项和为a1+a2+...+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=10+×3+10×2+×3=300.39.(2021•上海)已知数列{a n}满足a n≥0,对任意n≥2,a n和a n+1中存在一项使其为另一项与a n﹣1的等差中项.(1)已知a1=5,a2=3,a4=2,求a3的所有可能取值;(2)已知a1=a4=a7=0,a2、a5、a8为正数,求证:a2、a5、a8成等比数列,并求出公比q;(3)已知数列中恰有3项为0,即a r=a s=a t=0,2<r<s<t,且a1=1,a2=2,求a r+1+a s+1+a t+1的最大值.【解答】解:(1)由题意,2a n=a n+1+a n﹣1或2a n+1=a n+a n﹣1,∴2a2=a3+a1解得a3=1,2a3=a2+a1解得a3=4,经检验,a3=1,(2)证明:∵a1=a4=a7=0,∴a3=2a2,或,经检验,;∴,或(舍),∴;∴,或(舍),∴;∴,或(舍),∴;综上,a2、a5、a8成等比数列,公比为;(3)由2a n=a n+1+a n﹣1或2a n+1=a n+a n﹣1,可知或,由第(2)问可知,a r=0,则a r﹣2=2a r﹣1,即a r﹣1﹣a r﹣2=﹣a r﹣1,∴a r=0,则===,∴,同理,=,∴,同理,,∴a r+1+a s+1+a t+1的最大值.。

专题09 数列-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

专题09 数列-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

专题09 数列【2021年】一、【2021·浙江高考】已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( ) A.100332S << B. 10034S << C. 100942S <<D.100952S << 【答案】A 【解析】【分析】显然可知,10012S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】因为)111,N n a a n *+==∈,所以0n a >,10012S >.由211111124n n n a a a ++⎛⎫=⇒==+-⎪⎪⎭2111122n a +⎛⎫∴<+⇒<+⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得: 所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100321S <<. 故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.【2021·浙江高考】已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-. (1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤. 【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a +=122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n nT n +=-⋅, 由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.二、【2021·江苏高考】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为______ ;如果对折n 次,那么∑S k n k=1= ______ dm 2.【答案】5 240(3−n+32n)【知识点】数列求和方法【解析】解:易知有20dm ×34dm,10dm ×32dm,5dm ×3dm,52dm ×6dm ,54dm ×12dm ,共5种规格; 由题可知,对折k 次共有k +1种规格,且面积为2402k ,故S k =240(k+1)2k,则∑S k n k=1=240∑k+12kn k=1,记T n =∑k+12kn k=1,则12T n =∑k+12k+1n k=1, ∴12T n =∑k+12k n k=1−∑k+12k+1n k=1=1+(∑k+22k+1n−1k=1−∑k+22k+1n k=1)−n+12n+1=1+14(1−12n−1)1−12−n+12n+1=32−n+32n+1,∴T n =3−n+32n,∴∑S k n k=1=240(3−n+32n). 故答案为:5;240(3−n+32n).依题意,对折k 次共有k +1种规格,且面积为2402k ,则S k =240(k+1)2k,∑S k n k=1=240∑k+12knk=1,然后再转化求解即可.本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.【2021·江苏高考】已知数列{a n }满足a 1=1,a n+1={a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.【答案】解:(1)因为a 1=1,a n+1={a n +1,n 为奇数a n +2,n 为偶数,所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,b n−b n−1=a2n−a2n−2=a2n−a2n−1+a2n−1−a2n−2=1+2=3,所以数列{b n}是以b1=2为首项,以3为公差的等差数列,所以b n=2+3(n−1)=3n−1.(2)由(1)可得a2n=3n−1,n∈N∗,则a2n−1=a2n−2+2=3(n−1)−1+2=3n−2,n≥2,当n=1时,a1=1也适合上式,所以a2n−1=3n−2,n∈N∗,所以数列{a n}的奇数项和偶数项分别为等差数列,×3+则{a n}的前20项和为a1+a2+...+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=10+10×92×3=300.10×2+10×92【知识点】数列的递推关系、数列求和方法【解析】(1)由数列{a n}的通项公式可求得a2,a4,从而可得求得b1,b2,由b n−b n−1=3可得数列{b n}是等差数列,从而可求得数列{b n}的通项公式;(2)由数列{a n}的通项公式可得数列{a n}的奇数项和偶数项分别为等差数列,求解即可.本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.【2020年】一、【2020·北京高考】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【知识点】等差数列的通项公式、等差数列的性质、数列的函数特征【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案. 【解答】解:设等差数列{a n }的首项为d ,由a 1=−9,a 5=−1,得d =a 5−a 15−1=−1−(−9)4=2,∴a n =−9+2(n −1)=2n −11. 由a n =2n −11=0,得n =112,而n ∈N ∗,可知数列{a n }是单调递增数列,且前5项为负值,自第6项开始为正值. 可知T 1=−9<0,T 2=63>0,T 3=−315<0,T 4=945>0为最大项, 自T 5起均小于0,且逐渐减小. ∴数列{T n }有最大项,无最小项. 故选:B .【2020·北京高考】已知{a n }是无穷数列.给出两个性质:①对于{a n }中任意两项a i ,a j (i >j),在{a n }中都存在一项a m ,使得 a i2a j =a m ;②对于{a n }中任意一项a n (n ≥3),在{a n }中都存在两项a k ,a l (k >l),使得a n =a k2a l.(Ⅰ)若a n =n(n =1,2,…),判断数列{a n }是否满足性质①,说明理由;(Ⅱ)若a n =2n−1(n =1,2,…),判断数列{a n }是否同时满足性质①和性质②,说明理由; (Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n }为等比数列. 【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i 2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1q k−1<a m2a l<a 1q k ,同时a k+1=a m2a l>a m >a l ,所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1, 原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以k −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列. 【知识点】等比数列的性质、数列的函数特征 【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n}也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归纳法等,考查逻辑思维能力,属于难题.二、【2020·浙江高考】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【知识点】等差数列的通项公式、数列的递推关系、等差数列的求和【解析】【分析】本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.【解答】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.【2020·浙江高考】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【知识点】数列的通项公式、数列的函数特征【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020·浙江高考】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,……a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【知识点】数列的递推关系、数列求和方法、裂项相消法、等比数列的通项公式【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力,属于综合题.(1)先根据等比数列的通项公式将b 2=q ,b 3=q 2代入b 1+b 2=6b 3,计算出公比q 的值,然后根据等比数列的定义化简c n+1=b nbn+2⋅c n 可得c n+1=4c n ,则可发现数列{c n }是以1为首项,4为公比的等比数列,从而可得数列{c n }的通项公式,然后将通项公式代入c n+1=a n+1−a n ,可得a n+1−a n =c n+1=4n ,再根据此递推公式的特点运用累加法可计算出数列{a n }的通项公式; (2)通过将已知关系式c n+1=b nbn+2⋅c n 不断进行转化可构造出数列{b n b n+1c n },且可得到数列{b n b n+1c n }是一个常数列,且此常数为1+d ,从而可得b n b n+1c n =1+d ,再计算得到c n =1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.三、【2020·天津高考】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n , ∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0, ∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14knk=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=14+34+⋯+2n−34+2n−14,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n−49.【知识点】错位相减法、等差数列的通项公式、数列求和方法、等比数列的通项公式【解析】本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题. (Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则可证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.四、【2020·上海高考】计算:lim n→∞ n+13n−1=【答案】13【知识点】极限思想 【解析】 【分析】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题. 由极限的运算法则和重要数列的极限公式,可得所求值. 【解答】解:,故答案为:13.【2020·上海高考】已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则a1+a2+⋯+a9a10=.【答案】278【知识点】等差数列的通项公式、等差数列的求和【解析】【分析】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.根据等差数列的通项公式可由a1+a10=a9,得a1=−d,在利用等差数列前n项和公式化简a1+a2+⋯+a9a10即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=−d,所以a1+a2+⋯+a9a10=9a1+9×8d2a1+9d=9a1+36da1+9d=−9d+36d−d+9d=278.故答案为:278.【2020·上海高考】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−1,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【知识点】等差数列与等比数列的综合应用、等比数列的通项公式【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质P,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2019年】一、【2019·北京高考(理)】设等差数列{a n}的前n项和为S n,若a2=−3,S5=−10,则a5=(1),S n的最小值为(2).【答案】0 −10【知识点】等差数列的通项公式、数列的函数特征、等差数列的求和【解析】【分析】本题考查等差数列的性质,考查等差数列的前n项和的最小值的求法,属于基础题.利用等差数列{a n}的前n项和公式、通项公式列出方程组,能求出a1=−4,d=1,由此能求出a5的S n的最小值.【解答】解:设等差数列{a n}的前n项和为S n,a2=−3,S5=−10,∴{a1+d=−35a1+5×42d=−10,解得a1=−4,d=1,∴a5=a1+4d=−4+4×1=0,S n=na1+n(n−1)2d=−4n+n(n−1)2=12(n−92)2−818,∴n=4或n=5时,S n取最小值为S4=S5=−10.故答案为0,−10.【2019·北京高考(理)】已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<⋯<i m),若a i1<a i2<⋯<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n}的长度为p的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n.若p<q,求证:a m0<a n;(Ⅲ)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s−1,且长度为s末项为2s−1的递增子列恰有2s−1个(s=1,2,…),求数列{a n}的通项公式.【答案】解:(I)1,3,5,6.(II)证明:考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,∴a n0>该数列的第p项≥a m,∴a m0<a n.(III)解:考虑2s−1与2s这一组数在数列中的位置.若{a n}中有2s,2s在2s−1之后,则必然存在长度为s+1,且末项为2s的递增子列,这与长度为s的递增子列末项的最小值为2s−1矛盾,∴2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列.∵对于数列2n−1,2n,由于2n在2n−1之前,∴研究递增子列时,不可同时取2n与2n−1,∵对于1至2s的所有整数,研究长度为s+1的递增子列时,第1项是1与2二选1,第2项是3与4二选1,……,第s项是2s−1与2s二选1,故递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.∴2,1,4,3,6,5,……,是唯一构造.即a2k=2k−1,a2k−1=2k,k∈N∗.【知识点】数列的递推关系【解析】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.(I)1,3,5,6.答案不唯一.(II)考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,可得a n0>该数列的第p项≥a m,即可证明结论.(III)考虑2s−1与2s这一组数在数列中的位置,可得2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列,即可得出:递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.可得2,1,4,3,6,5,……,是唯一构造.【2019·北京高考(文)】设{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.【答案】解:(Ⅰ)∵{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(−2+2d)2=d(−4+3d),解得d=2,∴a n=a1+(n−1)d=−10+2n−2=2n−12.(Ⅱ)由a1=−10,d=2,得:S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,∴n=5或n=6时,S n取最小值−30.【知识点】等差数列的通项公式、等比数列的性质、等差数列的概念、等差数列的求和【解析】本题考查数列的通项公式、前n项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{a n}的通项公式;(Ⅱ)由a1=−10,d=2,得S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,由此能求出S n的最小值.二、【2019·浙江高考】设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N∗,则()A. 当b=12时,a10>10 B. 当b=14时,a10>10C. 当时,a10>10D. 当时,a10>10【答案】A【知识点】数列的递推关系、数列的函数特征【解析】【分析】本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,属于难题.逐项检验,可得结果.【解答】解:对于B,令λ2−λ+14=0,得λ=12,取a1=12,∴a2=12,…,a n=12<10,∴当b =14时,a 10<10,故B 错误;对于C ,令λ2−λ−2=0,得λ=2或λ=−1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =−2时,a 10<10,故C 错误; 对于D ,令λ2−λ−4=0,得λ=1±√172, 取a 1=1+√172,∴a 2=1+√172,…,a n =1+√172<10,∴当b =−4时,a 10<10,故D 错误;对于A ,a 2=a 2+12≥12,a 3=(a 2+12)2+12≥34, a 4=(a 4+a 2+34)2+12≥916+12=1716>1, a n+1−a n >0,{a n }递增, 当n ≥4时,a n+1a n=a n +12a n>1+12=32,∴{ a 5a 4>32a 6a 5>32⋅⋅⋅a 10a 9>32,∴a 10a 4>(32)6,∴a 10>72964>10.故A 正确. 故选:A .【2019·浙江高考】设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =√an2b n,n ∈N ∗,证明:c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【答案】解:(Ⅰ)设数列{a n }的公差为d , 由题意得{a 1+2d =4a 1+3d =3a 1+3d ,解得a 1=0,d =2, ∴a n =2n −2,n ∈N ∗. ∴S n =n 2−n ,n ∈N ∗,∵数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.∴(S n+1+b n )2=(S n +b n )(S n+2+b n ),解得b n =1d (S n+12−S n S n+2), 解得b n =n 2+n ,n ∈N ∗.证明:(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗, 用数学归纳法证明:①当n =1时,c 1=0<2,不等式成立;②假设n =k ,(k ∈N ∗)时不等式成立,即c 1+c 2+⋯+c k <2√k , 则当n =k +1时,c 1+c 2+⋯+c k +c k+1<2√k +√k (k +1)(k +2)<2√k +√1k +1<2√k +√k+1+√k=2√k +2(√k +1−√k)=2√k +1,即n =k +1时,不等式也成立.由①②得c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【知识点】等差数列的通项公式、运用数学归纳法证明、数列的综合应用【解析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出a 1=0,d =2,从而a n =2n −2,n ∈N ∗.S n =n 2−n ,n ∈N ∗,利用(S n+1+b n )2=(S n +b n )(S n+2+b n ),能求出b n .(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗,用数学归纳法证明,得到c 1+c 2+⋯+c n <2√n ,n ∈N ∗.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.三、 【2019·天津高考(理)】设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2−2,b 3=2a 3+4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N ∗. (i)求数列{a2n(c2n−1)}的通项公式;(ii)求∑a i 2ni=1c i (n ∈N ∗).【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 依题意有:{6q =6+2d 6q 2=12+4d,解得{d =3q =2, ∴a n =4+(n −1)×3=3n +1,b n =6×2n−1=3×2n .(Ⅱ)(i)∵数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N ∗. ∴a 2n (c 2n−1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1, ∴数列{a 2n (c 2n −1)}的通项公式为:a2n (c 2n −1)=9×4n −1. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i ni=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1) =(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n =27×22n−1+5×2n−1−n −12.(n ∈N ∗).【知识点】等差数列的通项公式、分组转化求和法、等比数列的求和、等比数列的通项公式、等差数列的求和【解析】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{a n }和{b n }的通项公式.(Ⅱ)(i)由a2n (c 2n −1)=a 2n (b n −1),能求出数列{a 2n (c 2n −1))}的通项公式. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i n i=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1),由此能求出结果.【2019·天津高考(文)】设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+⋯+a 2n c 2n (n ∈N ∗).【答案】解:(Ⅰ){a n }是等差数列,{b n }是等比数列,公比大于0,设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,由题意可得:3q=3+2d①,3q2=15+4d②,解得:d=3,q=3,故a n=3+3(n−1)=3n,b=3×3n−1=3n,(Ⅱ)数列{c n}满足a1c1+a2c2+⋯+a2n c2n(n∈N∗)=(a1+a3+a5+⋯+a2n−1)+(a2b1+a4b2+a6b3+⋯+a2n b n)=[3n+n(n−1)2×6]+(6×3+12×32+18×33+⋯+6n×3n)=3n2+6(1×3+2×32+⋯+n×3n)令T n=(1×3+2×32+⋯+n×3n)①,则3T n=1×32+2×33+⋯+n3n+1②,②−①得:2T n=−3−32−33…−3n+n3n+1=−3×1−3n1−3+n3n+1=(2n−1)3n+1+32,故a1c1+a2c2+⋯+a2n c2n=3n2+6T n=(2n−1)3n+2+6n2+92(n∈N∗).【知识点】错位相减法、分组转化求和法、数列的递推关系【解析】本题主要考查等差等比数列通项公式和前n项和的求解,考查数列求和的基本方法分组和错位相减法的运算求解能力,属中档题.(Ⅰ)由等差等比数列通项公式和前n项和的求解{a n}和{b n}的通项公式即可.(Ⅱ)利用分组求和和错位相减法得答案.四、【2019·上海高考】已知数列{a n},a1=3,前n项和为S n.(1)若{a n}为等差数列,且a4=15,求S n;(2)若{a n}为等比数列,且limn→+∞S n<12,求公比q的取值范围.【答案】解:(1)设公差为d∵a4=a1+3d=3+3d=15,∴d=4,∴S n =3n +n(n−1)2×4=2n 2+n ;(2)设公比为q ,当q =1时,S n =3n ,显然不满足lim n→∞S n <12,故q ≠1, ∴S n =3(1−q n )1−q ,∵lim n→+∞S n 存在,∴−1<q <1,且q ≠0, ∴lim n→+∞S n =lim n→+∞3(1−q n )1−q=31−q , ∴31−q <12,∴q <34,∴−1<q <0或0<q <34, ∴公比q 的取值范围为(−1,0)∪(0,34).【知识点】等比数列的求和、极限思想、等差数列的求和【解析】本题考查了等差数列和等比数列的前n 项和及等差数列的通项公式,考查了极限的定义,考查了推理能力与计算能力,属于中档题.(1)求出公差即可求S n ;(2)当q =1时,显然不合题意,由lim n→+∞S n 存在得−1<q <1且q ≠0,由lim n→+∞S n <12得q <34,取交集可得公比q 的取值范围.【2019·上海高考】已知等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}.(1)若a 1=0,d =2π3,求集合S ; (2)若a 1=π2,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:b n+T =b n ,T 是不超过7的正整数,求T 的所有可能的值.【答案】解:(1)∵等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}. ∴当a 1=0,d =2π3, 集合S ={−√32,0,√32}. (2)∵a 1=π2,数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}恰好有两个元素,如图:根据三角函数线,①等差数列{a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d =π, ②a 1终边落在OA 上,要使得集合S 恰好有两个元素,可以使a 2,a 3的终边关于y 轴对称,如图OB ,OC ,此时d =2π3, 综上,d =23π或者d =π.(3)①当T =1时,b n+1=b n ,数列{b n }为常数列,S 仅有1个元素,显然不符合条件;②当T =2时,b n+2=b n ,,数列{b n }的周期为2,S 中有2个元素,显然不符合条件;③当T =3时,b n+3=b n ,集合S ={b 1,b 2,b 3},(1)情况满足,符合题意.④当T =4时,b n+4=b n ,sin(a n +4d)=sina n ,a n +4d =a n +2kπ,k ∈Z ,或者a n +4d =π+2kπ−a n ,k ∈Z ,当时,集合S ={−1,0,1},符合条件.⑤当T =5时,b n+5=b n ,sin(a n +5d)=sina n ,a n +5d =a n +2kπ,k ∈Z ,或者a n +5d =π+2kπ−a n ,k ∈Z ,因为d ∈(0,π],取,,集合S ={sin π10,1,−sin 3π10}满足题意.⑥当T =6时,b n+6=b n ,sin(a n +6d)=sina n ,所以a n+6d=a n+2kπ,k∈Z,或者a n+6d=π+2kπ−a n,k∈Z,d∈(0,π],取a1=0,,S={−√32,0,√32},满足题意.⑦当T=7时,b n+7=b n,sin(a n+7d)=sina n,所以a n+7d=a n+2kπ,k∈Z,或者a n+7d=π+2kπ−a n,k∈Z,d∈(0,π],故取,k=1,2,3,当k=1时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,,d=2πm−n =2π7,m−n=7,m>7,不符合条件.当k=2时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,d=2πm−n =4π7,m−n不是整数,不符合条件.当k=3时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π或者4π,d=2πm−n =6π7,或者d=4πm−n=6π7,此时,m−n均不是整数,不符合题意.综上,T=3,4,5,6.【知识点】数列综合、集合中元素的性质、正弦、余弦函数的图象与性质【解析】本题考查等差数列的相关知识、集合元素的性质以及三角函数的周期性,是一道综合题.(1)根据等差数列及三角函数周期性求解;(2)由集合S的元素个数,结合题意进而可求得答案;(3)分别令T=1,2,3,4,5,6,7进行验证,判断T的可能取值.【2018年】一、【2018·北京高考(理)】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为( )A. √23fB. √223fC. √2512fD. √2712f【答案】D 【知识点】等比数列的应用【解析】【分析】本题考查等比数列的应用,考查计算能力,属于基础题.根据题意,进行求解即可.【解答】解:由题意,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为:(√212)7⋅f =√2712f .故选:D .【2018·北京高考(理)】设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为______.【答案】a n =6n −3【知识点】等差数列的通项公式【解析】【分析】本题考查等差数列的通项公式,属于基础题.列出方程组,求出d ,由此能求出{a n }的通项公式.【解答】解:设数列{a n }的公差为d ,∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴{a 1=3a 1+d +a 1+4d =36, 解得a 1=3,d =6,∴a n =a 1+(n −1)d =3+(n −1)×6=6n −3.∴{a n }的通项公式为a n =6n −3.故答案为a n =6n −3.【2018·北京高考(文)】设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{a n}的通项公式;(Ⅱ)求e a1+e a2+⋯+e a n.【答案】解:(Ⅰ){a n}是等差数列,且a1=ln2,a2+a3=5ln2.可得:2a1+3d=5ln2,可得d=ln2,{a n}的通项公式;a n=a1+(n−1)d=nln2,(Ⅱ)e a n=e ln2n=2n,∴e a1+e a2+⋯+e a n=21+22+23+⋯+2n=2(1−2n)=2n+1−2.1−2【知识点】等差数列的通项公式、等比数列的求和【解析】本题考查等差数列以及等比数列的应用,数列的通项公式以及数列求和,考查计算能力.(Ⅰ)求{a n}的通项公式;(Ⅱ)化简数列的通项公式,利用等比数列求和公式求解即可.二、【2018·浙江高考】已知a1,a2,a3,a4成等比数列,且若a1>1,则()A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4【答案】B【知识点】等比数列的性质、对数与对数运算、对数函数及其性质、分类讨论思想【解析】【分析】本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查分类讨论思想,难度比较大.利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,有a1+a2+a3+a4>a1+a2+a3,所以a1+a2+a3+a4=ln(a1+a2+a3)不成立;当q=−1时,a1+a2+a3+a4=0,ln(a1+a2+a3)=ln(a1)>0,等式不成立,所以q≠−1;当q<−1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立;所以q ∈(−1,0),此时有a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 故选B .【2018·浙江高考】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项 .数列{b n }满足b 1=1,数列{(b n+1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【答案】解:(1)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,可得2a 4+4=a 3+a 5=28−a 4,解得a 4=8,由8q +8+8q =28,可得q =2或q =12(舍去),则q 的值为2;(2)由q =2及a 3+a 4+a 5=28可得a 1(q 2+q 3+q 4)=28,解得a 1=1,故a n =1×2n−1=2n−1,设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,可得n =1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n −2(n −1)2−(n −1)=4n −1,上式对n =1也成立,则(b n+1−b n )a n =4n −1,即有b n+1−b n =(4n −1)⋅(12)n−1,可得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1)=1+3×(12)0+7×12+⋯+(4n −5)⋅(12)n−2,12b n=12+3×12+7×(12)2+⋯+(4n −5)⋅(12)n−1, 相减可得12b n =72+4[12+(12)2+⋯+(12)n−2]−(4n −5)⋅(12)n−1=72+4⋅12(1−12n−2)1−12−(4n −5)⋅(12)n−1,化简可得b n =15−(4n +3)⋅(12)n−2.【知识点】等差数列与等比数列的综合应用【解析】本题考查等比数列的通项公式、前n 项和公式及等差数列的性质、错位相减法的运用,考查运算能力,属于中档题.(1)运用等比数列的通项公式和等差数列中项性质,解方程可得公比q ;(2)设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,运用数列的递推式可得c n =4n −1,再由数列的恒等式求得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1),运用错位相减法,可得所求数列的通项公式.三、【2018·天津高考(理)】设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N ∗),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N ∗),(i)求T n ;(ii)证明∑(T k +b k+2)b k (k+1)(k+2)n k=1=2n+2n+2−2(n ∈N ∗).【答案】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2−q −2=0.∵q >0,可得q =2.故a n =2n−1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d =4,由a 5=b 4+2b 6,得3b 1+13d =16,∴b 1=d =1.故b n =n ;(Ⅱ)(i)解:由(Ⅰ),可得S n =1−2n 1−2=2n −1,故T n =∑(n k=12k −1)=∑2k n k=1−n =2×(1−2n )1−2−n =2n+1−n −2;(ii)证明:∵(T k +b k+2)b k (k+1)(k+2)=(2k+1−k−2+k+2)k (k+1)(k+2) =k⋅2k+1(k+1)(k+2)=2k+2k+2−2k+1k+1. ∴∑(T k +b k+2)b k (k +1)(k +2)n k=1=(233−222)+(244−233)+⋯+(2n+2n +2−2n+1n +1) =2n+2n+2−2.【知识点】等差数列与等比数列的综合应用、裂项相消法。

浙江高考数列经典例题汇总.docx

浙江高考数列经典例题汇总.docx

浙江高考数列经典例题汇总1.【2014年.浙江卷.理19】(本题满分14分)已知数列 和'bn ■满足a 1a2an= (J 2 F (n 匸 N )若 En }为等比数列 且 a 1 = 2, 3 = 6 + b 2 .(I ) 求 a n 与 bn ;(∏ )设Cn TE 「N l 记数列⑺的前n 项和为S n(i )求 Sn ;(ii )求正整数k ,使得对任意n ∙ N ",均有S k- S n2.【2011年.浙江卷•理19】(本题满分14分)已知公差不为O 的等差数列{an }的首项a ^ a(aR ),设数列的前n 项和为Sn ,且a 1 ,(I)求数列{a n}的通项公式及 SnA l与Bn 的大小.% , %成等比数列A n(∏)记丄丄丄SS2S 3-B nSn丄丄丄a 〔 a ? a ?2丄a2n ,当n 一 2时,试比较3.【2008年•浙江卷•理22】 (本题14分)已知数列^n [ an≥0 a 1 = Oa ; 1 a . 1 T = a 2(n ∙ N t ) S n ^ a 1a 2 R nT n+1 a 1(1 a 1)(1 a 2)+…+(1 *1)(1 *2厂(1 a n )求证: 当n . N •时, (I) an ::: an 1 ;(∏)S n n -'2;(川)Tn < 3O4.【2007年浙江卷 理21】(本题15分)已知数列{an }中的相邻两项 舷」,如 是关于X 的 方程的两个根,且a 2k 」-a 2k (k =1,2,3,…) (I)求 a 1,a 3,a 5,a 7 ;1 5 *求证:Ln 讨n N )5.【2005年•浙江卷•理20】设点An (Xn , 0), Pn(Xn ,2 )和抛物线Cn : y = x2 + an X +1n 4bn(n ∈ N*)其中an = - 2 — 4n — 2 , Xn 由以下方法得到: x1 = 1,点P2(x2 , 2)在抛物 线C1 : y = x2 + a1x + b1上,点 A1(x1 , 0)到P2的距离是 A1到C1上点的最短距离,(∏)求数列{an}的前2n 项的和S2n ;f(n)T 直 3)(川)i 己 2 Sln n ,Tna.(-1)f ⑶.(-1)f (4). (-1)f (τa 5a6a2n∕a2na 3a4点 P n 1 (X n I ,2 )在抛物线 C n : = χ2 + an X + bn 上,点 Al(Xn , 0)到 Pn -1 的距离是 An 到 Cn 上点的最短距离.(求 x2及C1的方程. (∏证明{xn }是等差数列.16.【2015高考浙江,理20】已知数列 E 满足a ι=2且a n 1 = a n -a ^ ( n N i )-电-2*(1 )证明:1a n1( nN );1 / S n 』1/ 2 A(2)设数列® '的前n 项和为S n ,证明2(n∙2) n 2(n I) ( n N )a n% 1 < 12 丨 n = N*(I )证明: a n 白2心(a 1 -2 ) n 乏N *.a n(II )若7.【2016高考浙江理数】 设数列y 满足n2n ,证明:例1 .(浙江省新高考研究联盟 2017届高三下学期期初联考) 已知数列^a n 满足a 1=3,(III )若 2c n=b n ,求证:2≤(c ^1)n <3∙C n例2 •(浙江省温州中学 2017届高三3月高考模拟)正项数列a n a n- 3an 12an 1 ,a i _ 1•(I )求a 2的值;(∏)证明:对任意的 n∙ N , a n 乞2a n1;(川)记数列Ia nI 的前n 项和为S h ,证明:对任意的 n∙ Na n+ι=a n 2+2a n , n ∈ N* , 设b n =∣og 2(a n +1)∙ ⑴求{a n }的通项公式;:a n ∙'满足(II )求证:例3•(浙江省温州市十校联合体2017届高三上学期期末) 已知数列{a n}满足12a naι =1,a8 n(1)若数列{a n}是常数列,求m的值;(2)当m∙1时,求证:a n::: a n 1;(3)求最大的正数m,使得a n 4对一切整数n恒成立,并证明你的结论。

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

压轴题型09 数列通项、求和及综合灵活运用命题预测数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.高频考法(1)数列通项、求和问题(2)数列性质的综合问题(3)实际应用中的数列问题(4)以数列为载体的情境题(5)数列放缩01 数列通项、求和问题1、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n qq a p a p p +⎛⎫+=+ ⎪−−⎝⎭,则1nq a p ⎧⎫+⎨⎬−⎩⎭是以11qa p +−为首项,以p 为公比的等比数列,由此可以求出n a ; (2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n nn na a p q q q ++=⋅+,设2024届高考数学专项练习n n na b q =,从而变成1n b +=1n p b q +,从而将问题转化为第(1)个问题; (3)形如11n n n n qa pa a a ++−=,可以考虑两边同时除以1n n a a +,转化为11n n q p a a +−=的形式,设1n nb a =,则有11n n qb pb +−=,从而将问题转化为第(1)个问题.2、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.3、用裂项相消法求和时,要对通项进行变换,如:()11n k n kn n k=+−++,1111()n n k k n n k ⎛⎫=− ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式: (1)111(1)1n n n n =−++; (2)1111(21)(21)22121n n n n ⎛⎫=− ⎪−+−+⎝⎭;(3)1111(2)22n n n n ⎛⎫=− ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=−⎢⎥+++++⎣⎦; (5)(1)(2)(1)(1)(1)3n n n n n n n n ++−−++=.4、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS −”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和; (2)通项公式为,,n n n b n a c n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题. 【典例1-1】(2024·河北沧州·一模)在数列{}n a 中,已知321212222nn a a a a n −++++=. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a +成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).【解析】(1)当1n =时,12a =; 当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a −−−−⎛⎫⎛⎫=++++−++++⎪ ⎪⎝⎭⎝⎭()2212n n =−−=, 所以122nn a −=⇒2n n a =,2n ≥. 当1n =时,上式亦成立, 所以:2n n a =. (2)由()123155n n ⎡⎤+++++−=⎣⎦⇒10n =.所以新数列{}n b 前55项中包含数列{}n a 的前10项,还包含,11x ,21x ,22x ,31x ,32x ,,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=, ()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+.设123935719T a a a a =++++1239325272192=⨯+⨯+⨯++⨯则234102325272192T =⨯+⨯+⨯++⨯,所以()1239102322222192T T T −=−=⨯+⨯+++−⨯101722=−⨯−.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【典例1-2】(2024·高三·河南濮阳·开学考试)已知等比数列{}n a 的首项为2,公比q 为整数,且1243424a a a a ++=.(1)求{}n a 的通项公式;(2)设数列21n n n a ⎧⎫⋅的前n 项和为nS ,比较nS 与4的大小关系,并说明理由.【解析】(1)由已知可得12n n a q −=⨯,因为1243424a a a a ++=,所以324222242q q q ⨯+⨯+⨯=⨯,即324240q q q −++=,则()()22220q q q −−−=,解得2q或13所以2q,()1*222n n n a n −=⋅=∈N .(2)由(121212nnn n n a n =⋅⋅1122222n n n nn n n n −−=−=⋅⋅ 令12n n nb −=,设{}n b 前n 项和为n C ,则01211232222n n nC −=++++, 所以123112322222n n n C =++++,两式相减得1211111122222nn n n C −=++++−1122212212n n n n n −+=−=−−, 所以42442n nnC +=−<, 令12n n x n −=⋅0n x >, 设{}n x 前n 项和为n T ,则0n T >, 所以4n n n S C T =−<.【变式1-1】(2024·四川泸州·三模)已知n S 是数列{}n a 的前n 项和,11a =,()12n n na n S +=+,则n a = . 【答案】()212n n −+⋅【解析】当2n ≥时,()()111n n n a n S −−=+,即12n n n S a n +=+,111n n n S a n −−=+, 则11121n n n n n n n S S a a a n n −+−−=−=++,即()1221n n n a a n ++=+,则有()121nn n a a n −+=,1221n n a n a n −−=−,,21232a a ⨯=, 则()212112112n n n n n n a a a a a n a a a −−−−=⨯⨯⨯⨯=+⋅,当1n =时,11a =,符合上式,故()212n n a n −=+⋅.故答案为:()212n n −+⋅.【变式1-2】(2024·青海西宁·二模)已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++= .【答案】33−【解析】设数列{}n a 的公比为(0)q q >,则333221a a a q q ++=,即21112121qq ⎛⎫++= ⎪⎝⎭, 化简得23440q q −−=,解得2q(负值舍去),所以331312232n n n n a a q −−−=⋅=⨯=⨯.于是111333,4,12a a b a b =+=+=, 所以等差数列{}n n a b +的公差为()()3311431a b a b +−+=−,所以()14414,4432n n n n n a b n n b n a n −+=+−==−=−⨯,所以()()23412345412345312222b b b b b ++++=⨯++++−⨯++++()56032133=−⨯−=−.故答案为:33−02 数列性质的综合问题1、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=. 在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.2、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S . ①n S ,2n n S S −,32n n S S −,…也成等差数列,公差为2n d . ②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+− ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd −=奇偶,1k kS a S a +=偶奇. 若项数为奇数21k +,则1 k S S a +−=奇偶,1S k S k+=奇偶. (2)设等比数列{}n a 的公比为q ,前n 项和为.n S①当1q ≠−时,n S ,2n n S S −,32n n S S −,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =. ③若项数为偶数2k ,则()21 11k a q S S q−−=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质. 3、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}n a λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a 也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.【典例2-1】(2024·山西晋城·二模)已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a 的取值范围是( )A .67,78⎛⎫ ⎪⎝⎭B .613,715⎛⎫⎪⎝⎭C .67,,78⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭D .613,,715⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可得:()158168915080S a S a a =>⎧⎨=+<⎩,即88900a a a >⎧⎨+<⎩,可知90a <,设等差数列{}n a 的公差为d ,则980d a a =−<, 可得等差数列{}n a 为递减数列,则10a >,由88900a a a >⎧⎨+<⎩可得11702150a d a d +>⎧⎨+<⎩,则112715d a −<<−,所以211116131,715a a d d a a a +⎛⎫==+∈ ⎪⎝⎭. 故选:B.【典例2-2】(2024·北京顺义·二模)设1a ,2a ,3a ,…,7a 是1,2,3,…,7的一个排列.且满足122367a a a a a a −≥−≥≥−,则122367a a a a a a −+−++−的最大值是( )A .23B .21C .20D .18【答案】B【解析】122367a a a a a a −+−++−即为相邻两项之差的绝对值之和,则在数轴上重复的路径越多越好,又122367a a a a a a −≥−≥≥−,比如1726354→→→→→→,其对应的一个排列为1,7,2,63,5,4,则122367a a a a a a −+−++−的最大值是6+5+4+3+2+1=21故选:B【变式2-1】(2024·浙江宁波·二模)已知数列{}n a 满足2n a n n λ=−,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是( )A .11,148⎡⎤⎢⎥⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦【答案】C【解析】因为对任意{}1,2,3n ∈都有1n n a a +>, 所以数列{}n a 在[]1,3上是递减数列, 因为对任意{}7,N n n n n ∈≥∈都有1n n a a +<, 所以数列{}n a 在[)7,+∞上是递增数列,所以0172211522λλλ⎧⎪>⎪⎪>⎨⎪⎪<⎪⎩,解得11157λ<<, 所以实数λ的取值范围是11,157⎛⎫⎪⎝⎭.故选:C.【变式2-2】(多选题)(2024·浙江绍兴·二模)已知等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,且*n ∀∈N ,101na q q<−,则( ) A .数列{}n a 是递增数列B .数列{}n a 是递减数列C .若数列{}n S 是递增数列,则1q >D .若数列{}n T 是递增数列,则1q >【答案】ACD【解析】由题意可知()()()()111211111,1n n n n n n n a q S T a a q a q a qq−−−===−,且*n ∀∈N ,101na q q<−, 故有101a q <−且0q >(否则若0q <,则11na q q −的符号会正负交替,这与*n ∀∈N ,101n a q q<−,矛盾), 也就是有101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩,无论如何,数列{}n a 是递增数列,故A 正确,B 错误;对于C ,若数列{}n S 是递增数列,即110n n n S S a ++−=>,由以上分析可知只能101a q >⎧⎨>⎩,故C 正确;对于D ,若数列{}n T 是递增数列,显然不可能是1001a q <⎧⎨<<⎩,(否则()121n n n n T a q −=的符号会正负交替,这与数列{}n T 是递增数列,矛盾),从而只能是101a q >⎧⎨>⎩,且这时有111n n n T a T ++=>,故D 正确. 故选:ACD.03 实际应用中的数列问题(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; ②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点 ①根据题意,正确确定数列模型; ②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.【典例3-1】(2024·北京房山·一模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第三天走的路程为( ) A .12里 B .24里 C .48里 D .96里【答案】C【解析】由题意可得,此人6天中每天走的路程是公比为12的等比数列, 设这个数列为{}n a ,前n 项和为n S ,则16611163237813212a S a ⎛⎫− ⎪⎝⎭===−,解得1192a =, 所以321192482a =⨯=, 即该人第三天走的路程为48里. 故选:C.【典例3-2】(2024·北京海淀·一模)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为( )A .6B .7C .8D .9【答案】C【解析】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:3131134,2,248,则31353842155724+++=>+=, 黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和, 即1311432164316841+28114228231144++⎛⎫⎛⎫+++⨯+++≈+⨯=<= ⎪⎪⎝⎭⎝⎭−−, 综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm , 故选:C【变式3-1】(2024·四川·模拟预测)分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )A .2022312−B .2023332−C .202231−D .202333−【答案】A【解析】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得1113,2,2n n n n n n n n n a b a a b b b a −+++==+=+,且有111,0a b ==,故有()11113,,n n n n n n n n a b a b a b a b ++++⎧+=+⎨−=−⎩,所以{}n n a b +是以111a b 为首项,3为公比的等比数列,{}n n a b −为常数数列,且111a b −=,所以{}n n a b −是以111a b −=为首项,1为公比的等比数列,故13,1,n n n n n a b a b −⎧+=⎨−=⎩故1131,231,2n n n na b −−⎧+=⎪⎪⎨−⎪=⎪⎩所以20222023312b −=. 故选:A.【变式3-2】(2024·江西九江·二模)第14届国际数学教育大会(ICME -International Congreas of Mathematics Education )在我国上海华东师范大学举行.如图是本次大会的会标,会标中“ICME -14”的下方展示的是八卦中的四卦——3、7、4、4,这是中国古代八进制计数符号,换算成现代十进制是3210387848482020⨯+⨯+⨯+⨯=,正是会议计划召开的年份,那么八进制107777⋅⋅⋅个换算成十进制数,则换算后这个数的末位数字是( )A .1B .3C .5D .7【答案】B【解析】由进位制的换算方法可知,八进制107777⋅⋅⋅个换算成十进制得:1098110187878787878118−⨯+⨯+⋅⋅⋅+⨯+⨯=⨯=−−,()101001019919101010101010811021C 10C 102C 102C 21−=−−=+⨯+⋅⋅⋅+⨯+−因为01019919101010C 10C 102C 102+⨯+⋅⋅⋅+⨯是10的倍数,所以,换算后这个数的末位数字即为101010C 21−的末尾数字,由101010C 211023−=可得,末尾数字为3.故选:B04 以数列为载体的情境题解决数列与数学文化相交汇问题的关键【典例4-1】(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【解析】对于命题①,对于数列{}n a ,令21,12,2n n n a n −=⎧=⎨≥⎩,则11,12,2n n n S n −=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列, 当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S −=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项, 故命题①正确;对于命题②,等差数列{}n a ,令1a d =−,则()()112n a a n d n d =+−=−, 则()()()123222n n n d n d n a a n n S d ⎡⎤−+−+−⎣⎦===, 因为21n −≥−且2Z n −∈, ()2313912228n n n −⎛⎫=−−≥− ⎪⎝⎭,且()3N*,Z 2n n n −∈∈, 所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”, 故命题②正确; 故选:A.【典例4-2】(2024·广东梅州·二模)已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =−(1,2,3,n =⋅⋅⋅),并将数列{}n p 称为{}n a 的“生成数列”. (1)若3n n a =,求其生成数列{}n p 的前n 项和; (2)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =;(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +,⋅⋅⋅是等差数列.【解析】(1)因为3nn a =关于n 单调递增,所以{}12max ,,,3nn n n M a a a a =⋅⋅⋅==,{}121min ,,,3n n m a a a a =⋅⋅⋅==,于是33nn n n p M m =−=−,{}n p 的前n 项和()()()()()1231333333333313132n n nn P n n −=−+−++−=−=−−−.(2)由题意可知1n n M M +≥,1n n m m +≤, 所以11n n n n M m M m ++−≥−,因此1n n p p +≥,即{}n p 是单调递增数列,且1110p M m ==-, 由“生成数列”的定义可得n n q p =.(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,12n n n a a a ++⋯,,,是等差数列. 当{}n p 是一个常数列,则其公差d 必等于0,10n p p ==, 则n n M m =,因此{}n a 是常数列,也即为等差数列;当{}n p 是一个非常数的等差数列,则其公差d 必大于0,1n n p p +>, 所以要么11n n n M a M ++>=,要么11n n n m a m ++=<,又因为{}n a 是由正整数组成的数列,所以{}n a 不可能一直递减, 记2min ,{}n n a a a a =,,,,则当0n n >时,有n n M m =, 于是当0n n >时,0n n n n n p M m a a =−=−, 故当0n n >时,0n n n a p a =+,…,因此存在正整数0n ,当0n n ≥时,12n n n a a a ++,,,…是等差数列. 综上,命题得证.【变式4-1】(2024·全国·模拟预测)“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为由图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1220111a a a ++⋅⋅⋅+的值为 .【答案】4021【解析】设第n 个数为n a ,则11a =,212a a −=,323a a −=,434a a −=,…,1n n a a n −−=, 叠加可得()11232n n n a n +=+++⋅⋅⋅+=, ∴122011122212232021a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯ 111114021223202121⎛⎫=⨯−+−+⋅⋅⋅+−= ⎪⎝⎭.故答案为:4021. 【变式4-2】(2024·内蒙古呼伦贝尔·一模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等.对这类高阶等差数列的研究·杨辉之后一般被称为“垛积术”.现有高阶等差数列前几项分别为1,4,8,14,23,36,54,则该数列的第21项为 . (注:()()22221211236n n n n +++++⋅⋅⋅+=)【答案】1391【解析】设题设高阶等差数列为{}n a ,令1n n n b a a +=−,设数列{}n b 的前n 项和为n B ,则数列{}n b 的前几项分别为3,4,6,9,13,18,1111n n n B a a a ++=−=−,令1+=−n n n c b b ,设数列{}n c 的前n 项和为n C ,则数列{}n c 的前几项分别为1,2,3,4,5,1113n n n C b b b ++=−=−,易得2,2n n n n c n C +==,所以21332n n n n b C ++=+=+,故()21133222n n n n b n −=+=−+,则()()()()()1211111632626n n n n n n n n n B n n ⎡⎤++++−=−+=+⎢⎥⎣⎦, 所以11n n a B +=+,所以211391a =.故答案为:139105 数列放缩在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.【典例5-1】(2024·天津滨海新·二模)已知数列{}n a 满足112,1,2n n n n a t qa n a −−=⎧⎪=⎨+≥⎪⎩,其中220,0,0,N q t q t n ≥≥+≠∈.(1)若0qt =,求数列{}n a 的前n 项的和; (2)若0=t ,2q且数列{}n d 满足:11n nn n n a a d a a =++−,证明:121ni i d n =<+∑. (3)当12q =,1t =时,令)22,2n n b n n a =≥∈−N ,判断对任意2n ≥,N n ∈,n b 是否为正整数,请说明理由.【解析】(1)因为0qt =,220q t +≠,所以当0q =时,0t ≠,2n ≥时,1n n t a a −=,即n 为奇数时,2n a =;n 为偶数时,2n ta =. 记数列{}n a 的前n 项的和为n S ,当n 为偶数时,222n n t S ⎛⎫=+ ⎪⎝⎭,当n 为奇数时,112221224n n n t tn tS S n −−−⎛⎫=+=++=++ ⎪⎝⎭, 综上2,2221,214n n t n k S tn t n n k ⎧⎛⎫+= ⎪⎪⎪⎝⎭=⎨−⎪++=+⎪⎩,其中N k ∈.当0=t 时,0q ≠,2n ≥时,1n n a qa −=,此时{}n a 是等比数列, 当1q =时,2n S n =;当1q ≠时,()211nn q S q−=−,故()2,121,11nn n q S q q q=⎧⎪=−⎨≠⎪−⎩. (2)由(1)知,0=t ,2q时,2n n a =,22112121n n n n n n n n n a a d a a =+=++−+−1122121n n =+−−+,112211111112212121212121nin n i dn =⎛⎫⎛⎫⎛⎫=+−+−++− ⎪ ⎪ ⎪−+−+−+⎝⎭⎝⎭⎝⎭∑ 1212121n n n ≤+−<++(3)对任意2n ≥,N n ∈,n b 是正整数.理由如下: 当12q =,1t =时,21111322a a a =+=,此时24b =; 2321117212a a a =+=,此时324b =;由202n n b a =>−,平方可得2242n n a b =+,212142n n a b ++=+, 又222121111124n n n n n a a a a a +⎛⎫=+=++ ⎪⎝⎭,所以22221414221442n n n n b b b b +⎛⎫+=+++ ⎪+⎝⎭, 整理可得()222142n n n b b b +=+,当3n ≥时,()2221142n n n b b b −−=+,所以()()222222111424242n n n n n n b b b b b b +−−⎡⎤=+=++⎣⎦ ()()22242211141241n n n n n b b b b b −−−=++=+,所以()21121n n n b b b +−=+,由23N,N b b ∈∈,所以4N b ∈,以此类推,可知对任意2n ≥,N n ∈,n b 是正整数.【典例5-2】(2024·全国·模拟预测)已知数列{}n a 的各项均为正数,11a =,221n n n a a a ++≥.(1)若23a =,证明:13n n a −≥;(2)若10512a =,证明:当4a 取得最大值时,121112na a a +++<. 【解析】(1)由题意知,211n n n n a a a a +++≥,设1n n na q a +=,12n q q q ∴≤≤≤,23a =,11a =,13q ∴=,当2n ≥时,113211121111213n n nn n n a a a a a a q q q a q a a a −−−−=⋅⋅=⋅⋅≥⋅=.当1n =时,11a =满足13n n a −≥,综上,13n n a −≥.(2)()31011291231512a a q q q q q q a =⋅⋅=≥⋅⋅⋅,1238q q q ∴⋅⋅≤,4a ∴的最大值为8,当且仅当123456789q q q q q q q q q ⋅⋅=⋅⋅=⋅⋅时取等号.而12n q q q ≤≤≤,1292q q q ∴====,而10n ≥时,192n n q q q −≥≥≥=,1112n n n a a q −−≥∴⋅=,2112111111111121()()2121222212nn n n a a a −⎛⎫⋅− ⎪⎛⎫⎝⎭∴+++≤++++==−< ⎪⎝⎭−. 【变式5-1】(2024·浙江杭州·二模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d .由4224,21n nS S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+−=+−+⎩, 解得:1a 1,d2,所以()()12121n a n n n *=+−=−∈N .(2)由(1)知,()()12123n n n b n b +−=+, 即12123n n b n b n +−=+,12321n n b n b n −−=+,122521n n b n b n −−−=−,……,322151,75b b b b ==, 利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n −−−−−=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅+− ()()()99112212122121n n n n n ⎛⎫==−≥ ⎪−+−+⎝⎭,13b =也符合上式,12311nkn n k bb b b b b −==+++++∑9111111112335572121n n ⎡⎤⎛⎫=−+−+−++− ⎪⎢⎥−+⎝⎭⎣⎦911221n ⎛⎫=−⎪+⎝⎭所以191912212nk k b n =⎛⎫=−< ⎪+⎝⎭∑.【变式5-2】(2024·广西·二模)在等差数列{}n a 中,26a =,且等差数列{}1n n a a ++的公差为4. (1)求10a ; (2)若2111n n n n b a a a −+=+,数列{}n b 的前n 项和为n S ,证明:21228n S n n <++. 【解析】(1)设{}n a 的公差为d ,则1212()()24n n n n n n a a a a a a d +++++−+=−==,2d =, 又26a =,所以1624a =−=, 所以42(1)22n a n n =+−=+,1022a =. (2)由(1)得11114()44(1)(2)412n b n n n n n n =+=−+++++,所以2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=−+⨯=++−<++++.1.在公差不为0的等差数列{}n a 中,3a ,7a ,m a 是公比为2的等比数列,则m =( ) A .11 B .13C .15D .17【答案】C【解析】设等差数列的公差为d ,则0d ≠, 因为3a ,7a ,m a 是公比为2的等比数列,所以()1111162,226a m d a d a d a d +−+==++,由前者得到12a d =,代入后者可得128m +=, 故15m =, 故选:C.2.记数列{}n a 的前n 项积为n T ,设甲:{}n a 为等比数列,乙:2n n T ⎧⎫⎨⎬⎩⎭为等比数列,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件 【答案】D【解析】若{}n a 为等比数列,设其公比为q ,则11n n a a q −=,(1)12(1)211n n n n n n T a q a q−+++−==,于是(1)12()22n n n n n T a q −=,(1)111211(1)12()222()22n n n n n n n n n n nT a qa q T a q ++++−==⋅,当1q ≠时,12n a q ⋅不是常数, 此时数列2n n T ⎧⎫⎨⎬⎩⎭不是等比数列,则甲不是乙的充分条件;若2n nT ⎧⎫⎨⎬⎩⎭为等比数列,令首项为1b ,公比为p ,则112n n n T b p −=,112(2)n n T b p −=⋅, 于是当2n ≥时,112112(2)22(2)n n n n n T b p a p T b p −−−⋅===⋅,而1112a T b ==, 当1b p ≠时,{}n a 不是等比数列,即甲不是乙的必要条件, 所以甲是乙的既不充分也不必要条件. 故选:D3.已知数列{}n a 为等比数列,且11a =,916a =,设等差数列{}n b 的前n 项和为n S ,若55b a =,则9S =( ) A .-36或36 B .-36C .36D .18【答案】C【解析】数列{}n a 为等比数列,设公比为q ,且11a =,916a =, 则89116a q a ==,则44q =, 则45514b a a q ===,则()199599362b b S b+⨯===,故选:C.4.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n −=≥∈N ,20n S =,则n 的值为( )A .16B .12C .10D .8【答案】B【解析】由36S =,得1236a a a ++=①,因为()*3164,n S n n −=≥∈N ,20n S =,所以34n n S S −−=,即124n n n a a a −−++=②,①②两式相加,得1213210n n n a a a a a a −−+++++=,即()1310n a a +=, 所以1103n a a +=,所以()152023n n n a a n S +===,解得12n =. 故选:B.5.在等比数列{}n a 中,00n a >.则“001n n a a +>”是“0013n n a a ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】设等比数列{}n a 的公比为0q ≠,当001n n a a +>时,即有00n n a q a >⋅,又00n a >,故1q <且0q ≠,当1q <−时,有0002311n n n a q a a +++=>,故不能得到0013n n a a ++>,即“001n n a a +>”不是“0013n n a a ++>”的充分条件;当0013n n a a ++>时,即有0002311n n n a q a a +++=<,即21q <且0q ≠,则001n n a q a +=⋅,当()1,0q ∈−时,由00n a >,故010n a +<,故001n n a a +>, 当()0,1q ∈时,0001n n n a q a a +=⋅<,亦可得001n n a a +>, 故“001n n a a +>”是“0013n n a a ++>”的必要条件;综上所述,“001n n a a +>”是“0013n n a a ++>”的必要不充分条件. 故选:B.6.已知正项数列{}n a 的前n 项和为n S ,且22n n nS a a =+,数列{}n b 的前n 项积为n T 且2n n T S =,下列说法错误的是( )A .2n S nB .{}n b 为递减数列C .202420242023b = D .2(1)n a n n =−【答案】B【解析】当1n =时,11122a a a =+,解得12a = 当2n ≥时,1122n n n n n S S S S S −−=−−+,即2212n n S S −−=,且212S =,所以数列}{2n S 是首项为2,公差为2的等差数列,所以()22212n S n n =+⋅−=,又0n a >,所以2n S n =,故A 正确; 当2n ≥时,有()22121n a n n n n =−=−,取1n =时,121112a =−=1a ,故数列}{n a 的通项公式为21n a n n =−,故D 正确;因为数列{}n b 的前n 项积为n T 且2n n T S =,所以21232n n n T b b b b S n =⋅⋅==,当1n =时,12b =, 当2n ≥时,()12111121111n n n T n n n b T n n n n −−+=====+−−−−, 显然1n =不适用,故数列{}n b 的通项公式为2,111,21n n b n n =⎧⎪=⎨+≥⎪−⎩, 显然122b b ==,所以数列{}n b 不是递减数列,故B 错误, 由当2n ≥时,1n n b n =−,得202420242024202412023b ==−,故C 正确,故选:B.7.(多选题)数列{}n a 满足:()111,32n n a S a n −==≥,则下列结论中正确的是( )A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n −−⎛⎫=≥ ⎪⎝⎭【答案】AC【解析】由13(2)n n S a n −=≥, 当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n −+−=−≥,所以133(2)n n n a a a n +=−≥, 即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确; 因22112311413341,24313n n n n Sa a a a n −−−−⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭−,故D 错误. 故选:AC.8.(多选题)设{}n a 是等差数列,n S 是其前n 项的和.且56S S <,678S S S =>,则下面结论正确的是( )A .0d ≤B .70a =C .6S 与7S 均为n S 的最大值D .满足0n S <的n 的最小值为14【答案】BCD【解析】A :因为678S S S =>,所以7678780,0S S a S S a −==−=<, 所以870d a a =−<,故A 错误; B :由A 的解析可得B 正确;C :因为56S S <,678S S S =>,所以6S 与7S 均为n S 的最大值,故C 正确;D :因为71132a a a =+,由()113131302a a S +==,()()114147814702a a S a a +==+<,故D 正确; 故选:BCD.9.(多选题)已知数列{}n a 满足:212n n n a a a λ+=++*()N n ∈,其中R λ∈,下列说法正确的有( )A .当152,4a λ==时,1n a n ≥+ B .当1,4λ∞⎡⎫∈+⎪⎢⎣⎭时,数列{}n a 是递增数列C .当2λ=−时,若数列{}n a 是递增数列,则()()1,31,a ∞∞∈−−⋃+D .当13,0a λ==时,1211112223n a a a +++<+++【答案】ACD【解析】对于A ,当54λ=时,2215111042n n n n n a a a a a +⎛⎫−=++=++≥> ⎪⎝⎭,又12a =,故11n n a a +>+,所以1211211n n n a a a a n n −−>+>+>>+−+=,故A 项正确.对于B ,因为22111()24n n n n n a a a a a λλ+−=++=++−且1,4λ∞⎡⎫∈+⎪⎢⎣⎭,所以10n n a a +−≥, 当14λ=,112a =-时,22211111,,()2220n n n n n a a a a a a a ++⇒⇒−=+==-==-,此时数列{}n a 是常数列,故B 项错误;对于C, 由于数列{}n a 是递增数列, 当2n ≥时,故10n n a a −−>,2211111(22)(22)()(2)0n n n n n n n n n n a a a a a a a a a a +−−−−−=+−−+−=−++>,故120n n a a −++>, 所以2121020a a a a −>⎧⎨++>⎩,即()()211121112202220a a a a a a ⎧+−−>⎪⎨+−++>⎪⎩,解得11a >或13a <−,故C 项正确;对于D,当0λ=时,2212(1)1n nn n a a a a +=+=+−,结合13a =,可知2214111a a =−=>, 232133a a =−>,⋯,结合111()(2)n n n n n n a a a a a a +−−−=−++,可知{}n a 是递增数列,13n a a ≥=,则12(2)3(2)n n n n a a a a ++=+≥+, 即1232n n a a ++≥+,所以1121212223(2)222n nn n n a a a n a a a −−−−+++⨯⨯⨯≥≥+++, 即11523(2)3(2)3n nn a a n −+≥+=⨯≥,所以131(2)253n n n a ≤⨯≥+,当1n =时,1111312553a =≤⨯+,所以*131(N )253n n n a ≤⨯∈+, 可得2111(1)1311133133()125333510313nn n i i a =−≤+++=⨯<<+−∑,故D 项正确; 故选:ACD .10.(多选题)已知数列{}n a 满足2122n n n a a a +=−+,则下列说法正确的是( )A .当112a =时,()5124n a n <≤≥ B .若数列{}n a 为常数列,则2n a = C .若数列{}n a 为递增数列,则12a > D .当13a =时,1221n n a −=+【答案】AD【解析】对于A ,当112a =时,254a =,令1n nb a =−,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =−+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =−,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +−=−>,解得0n b <或1n b >.当11b <−时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b −≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <−或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =−,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列, 12log 2n n b −∴=,即11222,21n n n n b a −−=∴=+,D 正确.故选:AD.11.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = . 【答案】3【解析】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3.12.某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为 .【答案】134【解析】设第一层有m 根,共有n 层,则(1)20242n n n S nm −=+=, 4(21)404821123n m n +−==⨯⨯,显然n 和21m n +−中一个奇数一个偶数,则1121368n m n =⎧⎨+−=⎩或1621253n m n =⎧⎨+−=⎩或23176n m =⎧⎨=⎩,即11179n m =⎧⎨=⎩或16119n m =⎧⎨=⎩或2377n m =⎧⎨=⎩,显然每增加一层高度增加53当11179n m =⎧⎨=⎩时,10531096.6h =⨯≈厘米150<厘米,此时最下层有189根; 当16119n m =⎧⎨=⎩时,155310139.9h =⨯≈厘米150<厘米,此时最下层有134根;当2377n m =⎧⎨=⎩时,22310200.52150h =⨯≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根. 故答案为:13413.已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m nS S −{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00mn −的值为 .【答案】21【解析】不妨设数列{}n a 的公差大于零, 由于9100a a <,得9100,0a a <>, 且9n ≤时,0n a <,10n ≥时,0n a >, 不妨取m n >,则1mm n ii n S S a=+−=∑,设3030910i i k S S a ==−=∑,若9,30n m >=,则030301n ii n S S ak =+−≤<∑,此时式子取不了最大值;若9,30n m <=,则09301n ii n S S a k =+−≤+∑,又9i ≤时,0i a <, 因为09301n ii n S S a k k =+−≤+<∑,此时式子取不了最大值;因此这就说明09n n ==必成立. 若30m <,则0910m m i i S S a k =−≤<∑,这也就说明030m <不成立,因此030m =, 所以0021m n −=. 故答案为:21.14.已知数列 {}n a 是各项均为正数的等比数列, n S 为其前 n 项和, 1331614a a S ==,, 则2a = ; 记 ()1212n n T a a a n ==,,, 若存在 *0n ∈N 使得 n T 最大, 则 0n 的值为 .【答案】 4 3或4【解析】等比数列{}n a 中,公比0q >;由213216a a a ⋅==,所以24a =,又314S =,所以13131610a a a a ⋅=⎧⎨+=⎩解得1328a a =⎧⎨=⎩或1382a a =⎧⎨=⎩;若1328a a =⎧⎨=⎩时,可得2q,则21224a a q ==⨯=,且012,,,n a a a ⋯的值为2,4,8,16⋯,,可知数列{}n a 单调递增,且各项均大于1, 所以不会存在0n 使得012,,,n a a a ⋯的乘积最大(舍去);若1382a a =⎧⎨=⎩时,可得12q =,则211842a a q ==⨯=,且012,,,n a a a ⋯的值为118,4,2,1,,24,…,可知数列{}n a 单调递减,从第5项起各项小于1且为正数, 前4项均为正数且大于等于1,所以存在03n =或04n =,使得8421⨯⨯⨯的乘积最大, 综上,可得0n 的一个可能值是3或4. 故答案为:4;3或415.在数列{}n a 中,122,3a a ==−.数列{}n b 满足()*1n n n b a a n +=−∈N .若{}n b 是公差为1的等差数列,则{}n b 的通项公式为nb= ,n a 的最小值为 .【答案】 6n − 13−【解析】由题意1215b a a =−=−,又等差数列{}n b 的公差为1,所以()5116n b n n =−+−⋅=−; 故16n n a a n +−=−,所以当6n ≤时,10n n a a +−≤,当6n >时,10n n a a +−>, 所以123456789a a a a a a a a a >>>>>=<<<⋅⋅⋅,显然n a 的最小值是6a .又16n n a a n +−=−,所以()()()()()612132435465a a a a a a a a a a a a =+−+−+−+−+−()()()()()25432113=+−+−+−+−+−=−,即n a 的最小值是13−. 故答案为:6n −,13−16.第24届北京冬奥会开幕式由一朵朵六角雪花贯穿全场,为不少人留下深刻印象.六角雪花曲线是由正三角形的三边生成的三条1级Koch 曲线组成,再将六角雪花曲线每一边生成一条1级Koch 曲线得到2级十八角雪花曲线(如图3)……依次得到n 级*()n K n ∈N 角雪花曲线.若正三角形边长为1,我们称∧为一个开三角(夹角为60︒),则n 级n K 角雪花曲线的开三角个数为 ,n 级n K 角雪花曲线的内角和为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江高考数列经典例题汇总1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b ba +==(Ⅰ)求na 与nb ;(Ⅱ)设()*∈-=N n b a c nn n 11。

记数列{}n c 的前n 项和为n S .(i )求nS ;(ii )求正整数k ,使得对任意*∈N n ,均有nk S S ≥.2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列(Ⅰ)求数列{}n a 的通项公式及nS(Ⅱ)记1231111...n n A S S S S =++++,212221111...n n B a a a a =++++,当2n ≥时,试比较nA 与nB 的大小.3. 【2008年.浙江卷.理22】(本题14分)已知数列{}n a ,0≥n a ,01=a ,22111()n n n a a a n N •+++-=∈.nn a a a S +++=Λ21)1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++=ΛΛ.求证:当•∈N n 时,(Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T 。

4. 【2007年.浙江卷.理21】(本题15分)已知数列{}n a 中的相邻两项21,2k ka a -是关于x的方程的两个根,且212(1,2,3,)k k a a k -≤=L(Ⅰ)求1,357,,a a a a ;(Ⅱ)求数列{}n a 的前2n 项的和2nS ;(Ⅲ)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++L 求证:*15()624n T n N ≤≤∈5. 【2005年.浙江卷.理20】设点n A (nx ,0),1(,2)n n n P x -和抛物线nC :y =x2+an x +bn(n∈N*),其中an =-2-4n -112n -,nx 由以下方法得到: x1=1,点P2(x2,2)在抛物线C1:y =x2+a1x +b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点11(,2)n n n P x ++在抛物线nC :y =x2+an x +bn 上,点n A (nx ,0)到1n P +的距离是nA 到nC 上点的最短距离.(Ⅰ)求x2及C1的方程.(Ⅱ)证明{nx }是等差数列.6. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N )7.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N .(I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .例1.(浙江省新高考研究联盟2017届高三下学期期初联考)已知数列{}n a 满足a 1=3,a n+1=a n 2+2a n ,n ∈N* , 设b n =log 2(a n +1).(I )求{a n }的通项公式;(II )求证:1+<n(n≥2);(III )若2n c=b n ,求证:2≤1()nn nc c +<3.例2.(浙江省温州中学2017届高三3月高考模拟)正项数列{}n a 满足221132n n n n a a a a +++=+,11a =.(Ⅰ)求2a 的值;(Ⅱ)证明:对任意的n N *∈,12nn a a +≤;(Ⅲ)记数列{}n a 的前n 项和为n S ,证明:对任意的n N *∈,11232n n S --≤<.例3.(浙江省温州市十校联合体2017届高三上学期期末)已知数列{}n a 满足21111,8n n a a a m +==+,(1)若数列{}n a 是常数列,求m 的值; (2)当1m >时,求证:1n n a a +<;(3)求最大的正数m ,使得4n a <对一切整数n 恒成立,并证明你的结论。

例4.(浙江省温州市2017届高三下学期返校联考)设数列均为正项数列,其中,且满足:成等比数列,成等差数列。

(Ⅰ)(1)证明数列是等差数列;(2)求通项公式,。

(Ⅱ)设,数列的前项和记为,证明:。

例5.(浙江省台州市2017届高三上学期期末质量评估)已知数列{}n a 满足112a =,,212016n n n a a a a +=+,n N *∈ (1) 求证1n na a +>(2) 求证20171a <(3) 若证1k a >,求证整数k 的最小值。

例6.(浙江省杭州高级中学2017届高三2月高考模拟考试)数列{}n a 定义为10a >,11a a =,2112n n n a a a +=+,n N *∈(1)若1(0)12aa a a=>+,求1210111222a a a ++⋅⋅⋅++++的值; (2)当0a >时,定义数列{}n b ,1(12)k b a k =≥,11n b +=-数,()i j i j ≤,使得2112i j b b a a +=++。

如果存在,求出一组(,)i j ,如果不存在,说明理由。

例7.(2017年浙江名校高三下学期协作体)已知函数4()415f x x =+,(Ⅰ)求方程()0f x x -=的实数解;(Ⅱ)如果数列{}n a 满足11a =,1()n n a f a +=(n N *∈),是否存在实数c ,使得221n n a c a -<<对所有的n N *∈都成立?证明你的结论.(Ⅲ)在(Ⅱ)的条件下,设数列{}n a 的前n 项的和为n S ,证明:114nS n<≤.例8.(2017年4月湖州、衢州、丽水三地教学质量检测)数列{}n a 满足112a =,2121n n n n a a a a +=-+n +∈N () (1)证明:n n a a <+1;(2)设}{n a 的前n 项的和为n S ,证明:1n S <.例9.(2017年4月浙江金华十校联考)数列{}n a 满足112a =,11n n a a n+=g n +∈N () (1) 求证:21n n a an n +<+; (2)求证:3421111....23(1)n n a a n a +-≤+++≤+例10.(2017年4月杭州高三年级教学质量检测)已知数列数列{}n a 的各项均为非负数,其中前n 项和为n S ,且对任意N n +∈,都有212n n n a a a +++≤(1) 若11a =,5052017a =,求6a 的最大值(2) 对任意N n +∈,都有1Sn ≤,求证120(1)n n a a n n +≤-≤+1设数列{}n a 满足()2*11n n n a a a n +=-+∈N ,n S 为{}n a 的前n 项和.证明:对任意*n ∈N , (Ⅰ)当101a ≤≤时,01n a ≤≤;(Ⅱ)当11a >时,()1111n n a a a ->-;(Ⅲ)当112a =时,n n S n -<.2.已知数列{}n a 满足2111()2n n n a a a ba n *+==+∈N 且 (1) ,1-=b 求证:211≤≤+n n a a (2) ,2=b 数列⎭⎬⎫⎩⎨⎧+n a 211的前n S n 项和为,求证:1321<<-n n S3.已知各项均为正数的数列{}n a ,11=a ,前n 项和为n S ,且122-=-n n n S a a . (1) 求证:4212++<n n n a a S (2)求证:212121-<+⋯⋯++<+n n n S S S S S4.设()())(,,)(,2211x f x B x f x A 是函数xx x f -+=1log 21)(2的图象上的任意两点. (1)当121=+x x 时,求)()(21x f x f +的值;(2)设⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=1111211n n f n n f n f n f S n Λ,其中*n ∈N ,求n S ; (3)对于(2)中的n S ,已知211⎪⎪⎭⎫ ⎝⎛+=n n S a ,其中*n ∈N ,设n T 为数列{}n a 的前n 项的和,求证:3594<≤n T .5.给定正整数n 和正数M .对于满足条件2211n a a M ++≤的所有等差数列123,,,a a a …, 1221=n n n S a a a +++++…+,(1)求证:2251S Mn ⎛⎫≤ ⎪+⎝⎭6.已知数列}{n a 满足31=a ,n n n a a a 221+=+,*,2n n ∈≥N ,设)1(log 2+=n n a b . (Ⅰ)求}{n b 的前n 项和n S 及}{n a 的通项公式; (Ⅱ)求证:)2(1131211≥<-+⋅⋅⋅+++n n b n;(III )若n c b n =2,求证:3)(21<≤+nnn c c .7.已知数列满足, (1)若数列是常数列,求m 的值;(2)当时,求证:;(3)求最大的正数,使得对一切整数n 恒成立,并证明你的结论.8.已知数列{}n a 的前n 项和为,n S 且32,2n n nS a =- *∈n N . {}n a 21111,8n n a a a m +==+{}n a 1m >1n n a a +<m 4n a <(1)求证1{}2n n a -为等比数列,并求出数列{}n a 的通项公式; (2)设数列1{}nS 的前n 项和为n T ,是否存在正整数λ,对任意*m n ,,-0∈<m n T S λN 不等式恒成立?若存在,求出λ的最小值,若不存在,请说明理由9.已知数列{}n a 满足:()()21121,1n n n a a a a n n *+==+∈+N . (Ⅰ)证明:()12111n n a a n +≥++; (Ⅱ)证明:()12113n n a n n ++<<++.10.已知数列{}n a 满足:11=a ,221)1(++=+n a a a n n n .(*n ∈N ), 证明:当*n ∈N 时, (Ⅰ) 21)1(11++≥+n a a n n ; (Ⅱ) 13)1(21+<<+++n a n n n .11.已知数列}{n a 满足521=a ,n n n a a a -=+321,n *∈N . (1)求2a ,并求数列}1{na 的通项公式; (2)设}{n a 的前n 项的和为n S ,求证:1321))32(1(56<≤-n n S .12.数列{}n a 满足11=a ,1221+=+n a n a n n n +∈N ()(1)证明:n n a a <+1;(2)证明:nn a a a a a a n n 1213221-+≤+⋯⋯+++; (3)证明:41>n a .13.对任意正整数n ,设n a 是关于x 的方程31x nx -=的最大实数根(11n n a a +<<<(2)当4n ≥时,对任意的正整数m ,2n m n a a +<-<(3)设数列21{}n a 的前n 项和为n S ,求证:ln(1)13n n S +<<+。

相关文档
最新文档