(完整)八年级上册第十五章分式知识点总结及练习,推荐文档

合集下载

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

人教版八年级数学上册第十五章 分式考点总结及同步练习(无答案)

人教版八年级数学上册第十五章 分式考点总结及同步练习(无答案)

分式考点总结及同步练习一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +-。

例3.下列各式中,无论x 取何值,分式都有意义的是( )。

A .121x +B .21x x +C .231x x+ D .2221x x +例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

例5.已知1x -1y=3,求5352x xy y x xy y +---的值。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )四、分式的通分和约分:关键先是分解因式。

例6.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• )。

例7.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。

例8.分式434y xa +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )。

例9.约分:(1)22699x x x ++-; (2)2232m m m m-+-C B C A B A ⋅⋅=CB CA B A ÷÷=例10.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -例11.已知x 2+3x+1=0,求x 2+21x 的值.例12.已知x+1x=3,求2421x x x ++的值.五、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

分式知识点总结和题型归纳第一部分分式的运算 (一)分式定义及有关题型题型一:考查分式的定义 :A一般地,如果 A ,B 表示两个整数,并且 B 中含有字母,那么式子 A 叫做分式,A 为分子,BB 为分母。

i-y ,是分式的有: x y题型二:考查分式有意义的条件 分式有意义:分母不为 0( B 0) 分式无意义:分母为 0( B 0) 【例1】当x 有何值时,下列分式有意义(1)—(2)-3^ ( 3)(4)( 5)丄x4x 22 x 21| x| 3x1x题型三:考查分式的值为 0的条件分式值为0:分子为0且分母不为0 ( A 0)B 0【例1】当x 取何值时, 下列分式的值为0.(1)Jx 3(2)|x| 2 x 242(3) x 22x 3x 5x 6【例2】当x 为何值时,下列分式的值为零:题型四:考查分式的值为正、负的条件分式值为正或大于 0:分子分母冋号(A或A 0 )B 0B 0【例1】下列代数式中:(1)5 |x 1 | x 4(2) 2^5 xx 6x 5x 1 -,2x分式值为负或小于0:分子分母异号(A °或八°)B 0 B0【例"(1)当x为何值时,分式为正;(3)当x为何值时,分式工为非负数.【例2】解下列不等式(1)1古 °(2)U题型五:考查分式的值为1,-1的条件分式值为1 :分子分母值相等(A=B)分式值为-1 :分子分母值互为相反数(A+B=°)【例1】若也L上的值为1,-1,则x的取值分别为________________________ x 2思维拓展练习题:a b1、若a>b>0, a2+ b2—6ab=0,则一a b2、一组按规律排列的分式:b2 b5 b8b11,2 , 3, 4 , L L ( ab 0),则第n个分式为a a a a(2)当x为何值时,分式5 x23 (x 1)2为负;A3、已知x23x 1 0,求X2 -2的值。

人教版八年级数学上册第十五章分式知识点总结和典型题型

人教版八年级数学上册第十五章分式知识点总结和典型题型

.
12 xy
( 1) 2 3 1x 1 y 34
0.2a 0.03b (2)
0.04a b
题型二:分数的系数变号
【例 2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号
.
( 1) x y xy
( 2)
a
ab
(3) a b
题型三:化简求值题
【例 3】已知: 1 1 5 ,求 2x 3xy 2 y 的值 .
b
:
c
bc a
0
aa a
2. 异分母加减法则
b
:
d
bc da
bc
da a
0, c
0;
a c ac ac ac
【例 3】当 x 取何值时,下列分式的值为 0.
(1) x 1 x3
|x| 2 ( 2) x2 4
x2 2x 3 ( 3) x2 5x 6
题型四:考查分式的值为正、负的条件
【例 4】( 1)当 x 为何值时,分式 4 为正; 8x
“实际问题 ———
【例 1】下列代数式中:
x1
a b x2
, x y,
,
y2 x ,
y ,是分式的有:
.
2
ab x y x y
分式方程模型 ——— 求解 ——— 解释解的合理性 ”的数学化过程,体会分式方程的模型思想,对
题型二:考查分式有意义的条件
培养通过数学建模思想解决实际问题具有重要意义. 3.类比法
式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程
(一)、分式定义及有关题型
的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.

八年级数学上册第十五章分式总结(重点)超详细(带答案)

八年级数学上册第十五章分式总结(重点)超详细(带答案)

八年级数学上册第十五章分式总结(重点)超详细单选题1、已知一个三角形三边的长分别为6,8,a,且关于y的分式方程y+3ay−3+4a3−y=2的解是非负数,则符合条件的所有整数a的和为()A.20B.18C.17D.15答案:D分析:根据三边关系,即可求出a的取值范围,再求出分式方程的解,利用分式方程的解为非负数建立不等式,即可求出a的范围,注意分母不能为0.最后综合比较即可求解.解:∵一个三角形三边的长分别为6,8,a,∴8−6<a<8+6.即:2<a<14,∵y+3ay−3+4a3−y=2,∴y=6−a,∵解是非负数,且y≠3,∴6−a≥0,且6−a≠3,∴a≤6且a≠3,∴2<a≤6且a≠3,∴符合条件的所有整数a为:4或5或6.∴符合条件的所有整数a的和为:4+5+6=15.故选:D.小提示:本题考查了三角形三边关系、求解分式方程、一元一次不等式等知识,关键在于利用分式方程的解为非负数,建立不等式,同时一定要注意分母不为0的条件.属于中考填空或者选择的常考题.2、下列运算正确的是()A.2x2+x2=2x4B.x3⋅x3=2x3C.(x5)2=x7D.2x7÷x5=2x2答案:D分析:根据合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式分别求出每个式子的值,再判断即可.A.2x2+x2=3x2,故本选项不符合题意;B.x3⋅x3=x6,故本选项不符合题意;C.(x5)2=x10,故本选项不符合题意;D.2x7÷x5=2x2,正确.故选:D.小提示:本题考查了合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式等知识点,能正确求出每个式子的值是解答此题的关键.3、已知x=3是分式方程kxx−1−2k−1x=2的解,那么实数k的值为( )A.-1B.0C.1D.2 答案:D解:将x=3代入kxx−1−2k−1x=2,得:3k2−2k−13=2,解得:k=2,故选D.4、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.5、下列运算中,错误的是( )A.ab =acbc(c≠0)B.−a−ba+b=−1C.0.5a+b0.2a−0.3b=5a+10b2a−3bD.x−yx+y=y−xy+x答案:D分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、x−yx+y =−(y−x)y+x,故D错误.故选D.小提示:本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.6、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B分析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.7、某中学“启明文学社”的全体同学租一辆面包车去某景点游览,面包车的租价为180元,出发时又增加了两名其他社团的同学,结果每个同学比原来少摊了3元车费.若设“启明文学社”有x人,则所列方程为()A.180x −180x−2=3B.180x−180x+2=3C .180x+2−180x =3D .180x−2−180x =3答案:B分析:利用总的租价除以人数求得每个同学的车费,再根据增加人数前后每人的均摊车费差列方程即可; 解:由题意得:180x −180x+2=3,故选: B .小提示:本题考查了分式方程的实际应用,找准题中等量关系列方程是解题关键.8、化简1x+1−x +1得( ) A .2−x 2x+1B .−x 2+2x x+1C .2−x 2D .−x 2x+1答案:A分析:异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.解:1x+1-x +1=1x+1-(x -1)=1x+1-x 2−1x+1=2−x 2x+1故选:A .小提示:本题考查了分式的加减运算,熟练通分是解题的关键.9、若a 2=b 3=c 4,则2a 2−3bc+c 2a 2−2ab−c 2的值是( )A .13B .−13C .12D .−12 答案:C∵a 2=b 3=c 4, ∴b =32a ,c =2a ,则原式2a 2−3bc+c 2a 2−2ab−c 2=2a 2−9a 2+4a 2a 2−3a 2−4a 2=−3a 2−6a 2=12. 故选C. 10、解分式方程x 2x−1+21−2x =3时,去分母化为一元一次方程,正确的是( )A .x+2=3B .x ﹣2=3C .x ﹣2=3(2x ﹣1)D .x+2=3(2x ﹣1)答案:C分析:最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程.方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .小提示:本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.填空题11、当x________时,分式x+12x−1有意义.答案:≠12. 分析:分母不为零时,分式有意义.当2x ﹣1≠0,即x ≠12时,分式x+12x−1有意义.故答案为≠12.小提示:本题考点:分式有意义.12、计算(12)−2−30=_________. 答案:3分析:分别计算负整数指数幂和零指数幂,再相减即可.解:(12)−2−30=1(12)2−1=4−1=3 ,所以答案是:3.小提示:本题考查实数的混合运算.掌握负整数指数幂和零指数幂的运算法则是解答本题的关键.13、关于x的分式方程2x−2+mxx2−4=3x+2无解,则m的值为_______.答案:1或6或−4分析:方程两边都乘以(x+2)(x−2),把方程化为整式方程,再分两种情况讨论即可得到结论.解:∵2x−2+mxx2−4=3x+2,∴2x−2+mx(x+2)(x−2)=3x+2,∴2(x+2)+mx=3(x−2),∴(m−1)x=−10,当m=1时,显然方程无解,又原方程的增根为:x=±2,当x=2时,m−1=−5,∴m=−4,当x=−2时,m−1=5,∴m=6,综上当m=1或m=−4或m=6时,原方程无解.所以答案是:1或6或−4.小提示:本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.14、若x−3n=6,则x6n=__________.答案:136分析:根据负整数指数幂的逆运算解答即可.∵x-3n=6,∴x6n=1x−6n =1(x−3n)2=162=136.故答案是:136.小提示:考查负整数指数幂问题,解题关键是计算负整数指数幂时,一定要根据负整数指数幂的意义变形.15、若分式2x−3的值为2,则x的值是_______.答案:4分析:根据题意建立分式方程,再解方程即可;解:由题意得:2x−3=2去分母:2=2(x−3)去括号:2=2x−6移项,合并同类项:2x=8系数化为1:x=4经检验,x=4是原方程的解,所以答案是:4;小提示:本题考查了分式方程,掌握解分式方程的步骤是解题关键.解答题16、学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?答案:科普类图书平均每本的价格为20元.分析:设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x-5)元,根据数量=总价÷单价结合用10000元购买科普类图书比用9000元购买文学类图书数量少100本,可得出关于x的分式方程,解之经检验即可得出结论.解:设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x-5)元,根据题意得:10000x =9000x−5−100,化简得x2+5x-500=0,解得:x=20或x=-25(舍去),经检验,x=20是所列分式方程的解,且符合题意.答:科普类图书平均每本的价格为20元.小提示:本题考查了分式方程的应用以及解一元二次方程,找准等量关系,正确列出分式方程是解题的关键.17、计算:(1)a 2a−b +b 2b−a(2)x 2x−1−x −1(3)先化简,再求值:a 2−4b 2a 3−4a 2b+4ab 2,其中a =−3,b =1. 答案:(1)a +b(2)1x−1 (3)a+2b a 2−2ab;−115 分析:(1)先变符号,然后分母不变,分子相加,因式分解后约分即可;(2)先通分,然后利用公式法展开,合并即可;(3)先因式分解,再约分,化为最简分式,代入数值,计算即可.(1)解:a 2a−b +b 2b−a =a 2a−b −b 2a−b =a 2−b 2a−b =(a+b )(a−b )a−b =a +b ;(2)解:x 2x−1−x −1=x 2x−1−(x+1)(x−1)x−1=x 2−x 2+1x−1=1x−1;(3)解:a 2−4b 2a 3−4a 2b+4ab 2=(a+2b )(a−2b )a (a−2b )2=a+2b a (a−2b )=a+2ba 2−2ab , 当a =−3,b =1时,原式=a+2b a 2−2ab =−3+29−2×(−3)×1=−115.小提示:本题考查分式的加减运算,分式化简求值,掌握分式的加减运算法则,分式化简求值方法与步骤,通分,约分,因式分解是解题关键.18、若a >0,M =a+1a+2,N =a+2a+3.(1)当a =3时,计算M 与N 的值;(2)猜想M 与N 的大小关系,并证明你的猜想.答案:(1)M =45,N =56;(2)M <N ;证明见解析.分析:(1)直接将a=3代入原式求出M,N的值即可;(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可.(1)当a=3时,M=3+13+2=45,N=3+23+3=56;(2)方法一:猜想:M<N.理由如下:M﹣N=a+1a+2−a+2a+3=(a+1)(a+3)−(a+2)2(a+2)(a+3)=−1(a+2)(a+3).∵a>0,∴a+2>0,a+3>0,∴−1(a+2)(a+3)<0,∴M﹣N<0,∴M<N;方法二:猜想:M<N.理由如下:M N =a+1a+2⋅a+3a+2=a2+4a+3a2+4a+4.∵a>0,∴M>0,N>0,a2+4a+3>0,∴a2+4a+3a2+4a+4<1,∴MN<1,∴M<N.小提示:本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键.。

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

分式方程及其应用(讲义)➢课前预习1.请回顾相关知识,填空:2.回忆并背诵应用题的处理思路,回答下列问题:(1)理解题意,梳理信息.梳理信息的主要手段有_______________________________.(2)建立数学模型.建立数学模型要结合不同特征判断对应模型,如:①共需.同时.刚好.恰好.相同……,考虑___________;②不超过.不多于.少于.至少……,考虑_____________. (3)求解验证,回归实际.主要是看结果是否_________________. ➢ 知识点睛1. 分式方程的定义:__________________的方程叫做分式方程.2. 解分式方程:根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________.3. 列分式方程解应用题,也要进行___________.➢ 精讲精练1. 下列关于x 的方程是分式方程的有__________.(填写序号)①315x -=;②x x π=π;③11123x y -=;④1152x x +=+;⑤11x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________.3. 解分式方程:(1)2115225x x x ++=--; (2)100602020x x=+-; (3)3201(1)x x x x +-=--; (4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.4. 对于分式方程,下列说法一定正确的是( )A .只要是分式方程,一定有增根B .分式方程若有增根,把增根代入最简公分母,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根D .分式方程化成整式方程,整式方程的解都是原分式方程的解5. 若分式方程1322m x x x -=---有增根,则m 的值为( ) A .2 B .3 C .1 D .1-6. 若分式方程11222kx x x-+=--有增根,则k 的值为( ) A .2- B .1- C .1 D .27. 若分式方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-8. 若分式方程342(2)a x x x x =+--有增根,则增根可能为( ) A .0 B .2 C .0或2 D .19. 某校用420元钱到商店购买笔记本,经过还价,每本便宜0.5元,结果多买了20本,则原价每本多少元?设原价每本x 元,则由题意列出的方程为( )A .420420200.5x x -=- B .420420200.5x x -=- C .4204200.520x x -=-D .4204200.520x x-=-10. 已知A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.若水流速度为4千米/时,设该轮船在静水中的速度为x 千米/时,则由题意列出的方程为( ) A .4848944x x +=+-B .4848944x x +=+- C .4849x+=D .9696944x x +=+-11. 为保证某高速公路在2016年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲.乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程为( )A .111104014x x x +=--+ B .111104014x x x +=++- C .111104014x x x -=++- D .111101440x x x +=-+- 12. 某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?13.公交快速通道开通后,小王上班由骑电动车改为乘坐公交车.已知小王家距上班地点9千米,他用乘公交车的方式平均每小时行驶的路程比他用骑电动车的方式平均每小时行驶的路程的1.5倍还多5千米,他从家出发到达上班地点,乘公交车方式所用时间是骑电动车方式所用时间的4.小王用骑电动车方式上班平均每7小时行驶多少千米?【参考答案】➢课前预习1.等式,消元不等号,不等式2.(1)列表,画线段图或示意图(2)①方程模型;②不等式模型(3)符合实际情况➢知识点睛1.分母中含有未知数2.等式的基本性质,整式方程,检验,增根使分母为零的整式3.检验➢精讲精练1.②④2.-13.(1)4x=3(2)5x=(3)无解(4)无解(5)无解(6)x=14.B5.C6.C7.B8.A9.B10. A11. B12. (1)第一次每支铅笔的进价是4元(2)每支售价至少是6元13.小王用骑电动车方式上班平均每小时行驶20千米分式方程及其应用(习题)➢ 例题示范 例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h , 由题意得,1201200.51.2x x =-解得,x =40经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h . ➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a ba x a++= B .xa b x b a +=-11 C .bx a a x 1-=+ D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++= C .解这个整式方程,得1x = D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( ) A .1515112x x -=+ B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A,B两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2)43x = (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装8. 商厦共盈利90260元分式方程及其应用(随堂测试)1. 下列关于x 的方程:①2103x -=;②x x 3=π-1;③31πy x -=;④13+4x=; ⑤11x a b =-;⑥2153x x x -=--. 其中属于分式方程的是________________.(填序号) 2. 解方程:214111x x x +-=--.3. 如果解关于x 的分式方程1132x k x x+-=--出现了增根,那么增根是_________,k 的值是________.【参考答案】 1. ②④⑥2. x =1是原方程的增根,原分式方程无解3.2x =,4. 1。

八年级数学人教版(上册)第15章小结与复习

八年级数学人教版(上册)第15章小结与复习

侵权必究
考点4 分式方程的应用
【例5】 从广州到某市,可乘坐普通列车或高铁, 已知高铁的行驶路程是400千米,普通列车的行驶 路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程; 解析:(1)根据高铁的行驶路程是400千米和普通列 车的行驶路程是高铁的行驶路程的1.3倍,两数相 乘即可;
解:(1)根据题意得400×1.3=520(千米). 答:普通列车的行驶路程是520千米;
1 x2
4
,
其中x 3 ”.小玲做题时把x 3 错抄成 x 3 ,
但她的பைடு நூலகம்算结果也是正确的,请你解释这是怎么回
事?
解:
(x2 x2
x
4x 2
4
)
1 x2 4
(
x
2)2 x2
4
4
x
(
x
2
4)
x2
4x 4 x2 4
4x
(x2
4)
x2
4
( 3)2 ( 3)2 3, ∴结果与x的符号无关.
得x=±1.当x=-1时,x+1=0;当x=1时,x+1 ≠0.
侵权必究
考点2 分式的性质及有关计算
x 【例2 】 如果把分式 x y 中的x和y的值都扩大为原 来的3倍,则分式的值( B )
A.扩大为原来的3倍
C.缩小为原来的
1 3
B.不变
D.缩小为原来的
1 6
侵权必究
【例3】已知x= 1
2 ,y=1
第十五章 分式
小结与复习
侵权必究
目录页
要点梳理
考点精讲
课堂小结
当堂练习
侵权必究
要点梳理

人教版八年级上册数学 第十五章 分式方程 知识点及考点

人教版八年级上册数学 第十五章 分式方程 知识点及考点

第十五章分式方程知识点及考点一、知识点1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.二、考试方向(一)解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根. 例题:1、解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2,解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2、方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-,解得1x =,检验:1x =时,20x -≠,所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.(二)分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解.(3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.例题:3、 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6 B .0 C .1 D .9【答案】D【解析】分式方程去分母得:ax -1-x =3,解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去),则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.4、若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠. (三)分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.例题:5、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+ B .2010154x x -=+ C .201015x x += D .201015x x -= 【答案】A 【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+. 故选A . 6、元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400 解得 2.5x =元.故选B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档