音响系统中干扰声和啸叫声产生的原因及排除方法
音响系统中的声反馈(啸叫)的成因和解决

音响系统中的声反馈(啸叫)的成因和解决核心提示:1. 音响系统中的声反馈:当话筒接入音响系统中,在提高音响系统的放声功率的过程中,音箱发出的声音通过直接或间接的方式又进入话筒后,使整个扩声系统形成了正反馈,即声音啸叫。
这种现象对音响扩声极为不利。
1. 音响系统中的声反馈:当话筒接入音响系统中,在提高音响系统的放声功率的过程中,音箱发出的声音通过直接或间接的方式又进入话筒后,使整个扩声系统形成了正反馈,即声音啸叫。
这种现象对音响扩声极为不利,它破坏了整体音响扩声效果,同时这种啸叫声还容易造成音箱的损坏。
此外,扩声系统一旦出现声反馈,系统的扩声功率便无法再提高,声功率受到限制,使得机器效能无法正常发挥。
2. 引起声反馈的主要原因:(1.)建筑声学设计不合理,存在声聚焦问题。
(2.)音箱布局不合理。
(3.)音频设备选配不当,设备之间连接欠佳。
(4.)音响扩声系统调试不好(没有调好平衡)。
3. 声反馈的解决方法:(1.)反馈抑制器是解决话筒(尤其是会议电容鹅颈话筒)啸叫的方法之一。
通过其自身的特性自动检测声反馈信号,当信号被捕捉到后由中央数字处理器立即告知数字信号处理器去设定频率,并在数字滤波器中找到此频率,然后将此频率给予约-40DB的衰减。
从而抑制了啸叫的问题,增加了传声增益(扩声音量)。
(2.)手拉手会议话筒:手拉手会议话筒通过控制主机,可实现一只话筒开启,其余话筒关闭的工作状态(自动)。
这样可以防止因话筒开启过多而产生的啸叫问题。
(3.)会议话筒自动混音台:通过智能电路来实现自动关闭非使用话筒的通道和自动打开或关闭使用中的话筒通道。
这样也可以防止因话筒开启过多而产生的啸叫问题。
(4.)使用扩展器(噪声门):扩展器(噪声门)是通过设定扩展阈值门限,来实现控制话筒开启或关闭的音频设备,当话筒所拾取的信号电平超过此阈值门限的时候,话筒被开启,当话筒所拾取的信号电平没有超过此阈值门限的时候话筒被关闭。
(5.)通过均衡器的衰减和提示来调整音响系统的平衡,可有效的解决啸叫。
3招解决音响系统噪音啸叫

3招解决音响系统噪音啸叫想必做音响工程的人员都会遇到噪音问题和啸叫问题,这两种问题是最常见的。
我先来解释下他们的定义。
啸叫:扬声器在无音源的情况下有杂音,噪音或者电流声;噪音:话筒增益提不上去或者音量提不高,会发生声反馈而产生啸叫.下面针对这两种情况,下面笔者为大家来讲解三点,希望对大家有用处。
第一招,先排除外部因素;引起电流声或者噪声问题,外部原因无非,只有三个,外部音源设备、现场坏境噪声过大和系统供电有问题。
我们一个个去排除,先把外部音源取下来,再把现场打开的麦克风全部关掉,隔断现场环境噪音的拾取,然后再去确认这一路电源有没有跟其他大型的用电系统共用一路电源。
因为如果与其他大型的用电系统共用一路电源,它的使用会大大影响电流的变化,因此产生电流声。
第二招,逐步排除内部系统各种问题;在这个步骤中,我自己整理了一下自己常用的方法:1、替换法。
在很多项目中,系统可能不止一个,同样的设备可能会有两台或者以上,我们把检查出来认为有毛病的设备换一台其他会议室调试好没问题的设备,同样的设置,如果问题解决了,那就是音响设备的问题了。
如果问题还是存在,那就是系统中还存在其他问题你还没有发现,我们需要重新细心地检查.2、最小系统法。
我们一套系统中,通常是由前级设备、周边设备、后级组合而成。
我们先把周边设备统统去掉,例如:调音台接功放,功放接音箱,看还有没有噪声,如果还有,我们把调音台也舍去了,如果还有,那就是功放本底噪声,属于质量问题,只能换了,因为我们毕竟不是修设备的,呵呵。
如果没有,那就是调音台的设置不正确或质量问题,看增益是不是调得过大.如果最小系统没有问题,那肯定是舍去的那一堆周边出问题了,这时候,我们要把周边的设备一件一件的往上添加,再详细检查是音响设备设置问题还是质量问题。
譬如降噪器有没有调整好、均衡器增益有没有过大等等。
3、仪表测量法。
通过万用表,电平表等测量仪器,测量音箱阻抗、逐级设备输出电平是否正常.通过以上步骤和方法,我相信很快就把系统中存在的噪声问题解决掉了。
声反馈及消除方法

声反馈及消除方法声音反馈是指在音响系统中,扬声器的输出声音通过麦克风再次输入到扬声器中,形成闭环回音回路,并产生明显的嗡嗡声或尖锐的啸叫声。
这种声音反馈会干扰音乐或对话的正常播放,给用户带来不便。
常见的声音反馈的原因有:声音信号被反馈回麦克风,扬声器的音量过大,麦克风和扬声器之间的距离过近等。
为了有效消除声音反馈,可以采取以下方法:1.调整音量:声音反馈的主要原因之一是扬声器音量设置过高。
降低扬声器音量可以减少反馈的可能性。
此外,也要确保麦克风音量不会过高,以避免过多的声音被反馈。
2.改变麦克风和扬声器的位置:麦克风和扬声器之间的距离越近,声音反馈的可能性就越大。
合理调整麦克风和扬声器的位置,保持一定的距离,可以减少声音反馈发生的可能性。
3.使用消声器:消声器是一种用于减少声音反馈的装置。
它可以吸收周围的声音,减少声音的反馈。
在安装扬声器或麦克风时,可以考虑使用消声器来减少声音反馈。
4.使用数字反馈抑制器:数字反馈抑制器是一种能够检测和抑制声音反馈的设备。
它可以实时监测声音输出和输入,并通过自动降低特定频率下的音量来消除声音反馈。
使用数字反馈抑制器可以有效地减少声音反馈的发生。
5.调整音频增益:通过调整音频增益,可以控制音频信号的增加或减少。
在音响系统中,适当调整音频增益可以减少声音反馈的可能性。
6.使用音频滤波器:音频滤波器可以过滤掉特定频率上的声音,以减少声音反馈的发生。
通过添加合适的音频滤波器,可以屏蔽掉扬声器输出的声音信号,减少声音反馈。
7.使用耳机或耳麦:在一些情况下,可以考虑使用耳机或耳麦来消除声音反馈。
因为耳机或耳麦只向个人发送音频信号,而不会经过麦克风再次输入到扬声器,所以可以有效地消除声音反馈。
为了确保系统的稳定性和正常运行,需要定期检查和维护音响系统。
对于音响系统中出现的任何故障或问题,应及时进行维修和处理。
通过以上方法进行调整和消除声音反馈,可以提高音响系统的音质和使用效果,给用户带来良好的音乐和对话体验。
声反馈(啸叫)的产生及处理

声反馈(啸叫)的产生及处理1 啸叫是扩声系统中经常出现的一种不正常现象,广大专业音响工作者为了消除它,做了大量的工作但仍不可能将声反馈完全消除掉。
笔者认为,消除声反馈应采取综合防治的方法,从研究声反馈发生机理入手,探索消除声反馈方法,只有这样才能逐步提高对声反馈的抑制水平。
2、声反馈产生的原因声反馈是音箱声音能量的一部分通过声传播的方式传到传声器而引起的啸叫现象,在出现啸叫前的临界状态,会出现振铃声(即声音停止后的高频尾声),此时一般也认为是声反馈现象。
将音量衰减6dB后,定义为最高可用增益,声反馈现象发生。
2.1 声反馈产生的条件(1)传声器与音箱同时使用;(2)音箱放送的声音能够通过空间传到传声器;(3)音箱发出的声音能量足够大、传声器的拾音灵敏度足够高。
在扩声系统中,当使用传声器拾音时,由于传声器的拾音区域与音箱的放音区域不可能采取隔离措施时,音箱发出的声音通过空间传到传声器,由于放大电路增益过高而导致声反馈(回授)。
一般来说,只有在扩声系统中才存在啸叫问题,在录音和还音系统中根本不具备产生啸叫条件。
如录音系统中只有监听用音箱,录音棚中传声器的使用区域与监听音箱的确良放音区域是互相隔离的,不具备声音回授的条件;而在电影还音系统中几乎不使用传声器,即使偶尔使用传声器,也是在放映室中做语言近讲拾音,放映音箱距传声器很远,所以也就不可能发生声反馈。
扩声系统出现啸叫的主要原因是系统中某些频率的声音(信号)过强,当提升传声器通路增益时,由于这些过强的频率率先到达声反馈所需要的强度条件如果该频率的反馈类型恰为正反馈,则必然在此频率上出现自激振荡现象,自激振荡频率的高低,表现为啸叫声音音调的高低。
2.2 声反馈产生的原因(1)房间的形状及声学状况任何一个房间都可以被认为是一个声学共振腔体,共振会使某些频率的声音被除数格外加强。
按建声原理,不同体形和容积的房间其共振频率是不同的,通过房间简正共振公式,可算出一个房间的共振频率;另一方面,吸声材料对不同频率的反向和吸收也是不同的,不同材料对不同频率的吸声系数差异很大,吸声结构的不同也会导致对不同频率的吸收不尽相同。
音响系统“啸叫”的形成原因与消除方法

音 响 系统 “ 啸叫 ” 的形 成原 因与 消 除方 法
广 西公安计算机通讯技 术研 究所来自 黄振益 【 摘要 】对于音响啸 叫问题 ,相信大 多数人都有切身体 验,这是一种尖锐 的,尤为刺耳 的声 音。音响 系统啸叫 问题的存在,不仅会影响到音响的整体 效果 ,严 重的还有可 能威胁 到音响 的设备安全。 园此 ,采取何种方法将音响系统啸叫问题解决便 成为了工作人 员所面 临的一项重大课题 本文首先对音响系统 “ 啸叫”的形成原 因和危害进行 分析 ,并在 此基础上探讨音响 系统 啸叫”的消除方法,以此来为今 后音响 系统的合理设计提供一定的参考依据。 【 关键词 】音响 系统 ;啸 叫;形成原 因;消除方法
高
一
在音 响设 备运 行过 程 中 ,声音 效 果的 整 体 质量 主 要取 决 于传 声器 的频 响特 性 。传 声 器 也 是音 响系 统 的一 项重 要组 成部 分 ,与扬 声器 相 同,传 声 器 同样无 法做 到 频响 曲线 的 绝对 平直 ,或 多 或少 都会 存在 对某 个 频率 的 拾 声 灵敏 度较 高 的现 象 。正 因为 如此 ,在 音 响系 统运 行过 程 中 ,就难 免会 造 成某 些频 率 的声 音输 出过 强 ,从 而导 致 “ 啸 叫 ”的现 象 发生 。通 常情 况 下 , 由于 传声 器对 某 些频 率 的拾 音灵 敏度 过 高而 造成 的 “ 啸 叫 ” ,普 遍 都存在 于高频段 汇总 的某些频 率上 。 2 . 音响 系统 “ 啸 叫” 的危 害 . 音 响系 统 “ 啸 叫 ”是设 备运 行过 程 中普 遍存 在 的一种 现 象 , 由于该 现象 所造 成 的危 害并 不 明显 , 因此 ,很少 受 到人 们 的关注 。 但 是 ,危害 不 明显 并不 代表 危 害不 大 。经专 家人 员研 究,音 响 系统在 运 行过 程 中一 旦 出 现 “ 啸 叫 ”的现 象 ,不仅 会 影 响音 响 的整 体 音 效 ,而且 严 重的 还会 威胁 到 设备 的运 行 安 全 。此 外 , “ 啸叫 ”现 象 的存在 还 会导 致话 筒 的声 音 无 法 调 大 , 一 旦 调 大 ,便 会 出现 “ 啸 叫 ”,或 者是 出现 声 音振 铃现 象 ,这 些 问题都 会对 现场 环 境造 成 极其 恶劣 的影 响 , 使 演 出或 者活 动的 开 展无法 正 常运 行 ,造 成 巨大 的经 济损 失和 名誉 损 失 。就我 国 目前 音 响 系 统使 用 中存在 的诸 多 问题 来看 ,影 响 最 大 的 就是 音响 系统 “ 啸叫 ” ,因此 ,音响 师 要 尽 可能 根据 现场 的 实际 情况 ,采 取 有效 措 施 ,避免 音响 系统 “ 啸 叫 ”的情况 发 生 , 以 此 来保证 扩声 的正常运 行。 除此之外 ,由于音响系统 “ 啸 叫 ” 而 导致 的 音 响 高 音 头 烧 毁 也 是 音 响系 统 “ 啸 叫 ”的危 害之 一 。 究其原 因 ,主要 是 因为 在 “ 啸 叫 ”作用 下 ,信 号会 在一 定程 度 上有 所 加 强 ,从 而 导致释 放 出来 的 削波 失真 。 削波 旦 失真 ,那 么 就很 容 易导致 大 量 的高频 谐 波产 生 , 当这 些 高频 谐波 送入 到 音 响高音 单 元 之 后 ,高 音单元 无 法承 受这 种 强大 的高 频 信 号 ,从而 造成 音 圈 电流 过 大烧 毁 的情况 发 生 。此 外 ,在 “ 啸 叫 ”作 用 下 ,功放 会 因为 输 出过大 而 导致 过载 的情 况 发生 ,在 这种 情 况 下 ,很有 可 能威胁 到 功率 放 大器 的正 常使
音响噪音来源和详细排除方法

音响噪音来源和详细排除方法应付噪音的对策一般对付噪音使用的零件,有汽车电容器或同轴汽车电容器(应付高频噪音特别有效),厄流圈(电感),LC滤波器,接地线,二极管等。
1、对付点火系统所产生的噪音检查点火线圈正极对地的电容器是否安装,如安装检查容量是否减小,如果容量减小白金触点容易烧蚀,产生干扰火花,需要更换电容量为0,5UF /400V 无极性电容。
检查点火高压线是否使用碳精线,如果使用金属丝式的容易产生干扰,由其是收音部分干扰严重,所以必须更换。
可以用加大阻尼电阻的方法,抑制火花噪音,方法是用1兆欧电阻串接在点火线圈输出主高压线之中,减小干扰。
2、马达噪音的排除首先将音响的器材和信号线远离马达及马达线,可用1只无极性电容并联在马达两端,也可先用2只电感分别串联在马达正负极线中,再用2只无极性电容分别接在马达正负极线中,另一端接地形成滤波电路,作用是吸收马达碳刷的火花使噪音减少。
3、对没有继电器电喇叭产生的噪音,排除方法主要有以下几种:在其中一个喇叭的端子对地并接一个电容器。
在其中一个喇叭的端子先串联一个电感,再对地并接一个电容器。
在两个喇叭的端子上分别使用方法。
在方向盘的喇叭按钮触点之间并联一个电容器。
4、对有继电器电喇叭产生的噪音,排除方法主要有以下几种:电喇叭支架与车身应接触良好。
在继电器触点两端,并联一个电容器,或在触点两端分别对地并联一个电容器。
5、接地不良会产生噪音。
如果车头盖未能牢固接地,整个车头盖会变成一个天线,把汽车各部产生的噪音辐射到周围空间,并从天线和各电路引入音响系统。
车头盖与车身加装连接线时,必需把接点上的油漆、油迹、污垢等完全消除。
发动机(引擎)与车身,或前轮悬挂、车身之间,排气管与车身之间都应有很好连接。
6.电源线噪音抑制:为有效地消除电源线产生的噪音,应把厄流圈*近功率放大器安装。
如有多部功率放大器,应在每部功率放大器附近都安装一个厄流圈,因为噪音能从一部功率放大器传至另外一部,令单个的厄流圈失效。
音响系统无声音输出及有杂音的处理方法

音响系统无声音输出及有杂音的处理方法专业音响扩声系统调试常见技术问题解决方法音响系统有杂音的处理方法音响系统无声检修程序音响系统有杂音处理方法音响系统在使用过程中经常会出现不同频率,不同程度的杂音,出现这种现象,可根据音箱发出的不同频率段的声音,用不同的方法进行处理,具体如下:1.如果音响发出的是低频嗡嗡哼声,则有可能是由于交流电不干净引起的交流声,先关闭其他设备只打开功放,看是否还有交流哼声,如果还有再切换功放后面板的接地方式,依然还有哼声,再断开系统供电的接地,以及检查设备附近有无大型电磁设备的干扰,按此方法一般来说便可以消除交流哼声。
2.如果音响发出的是中频的“滋滋“声,则有可能是系统设备之间的信号连接线异常引起的,因从功放开始往前端设备逐级排查,先关闭所有设备电源,断开功放与前端设备的连接线,看看有无”滋滋“声了,如果还有,关闭功放电源,插好功放信号线,断开周边设备与前一级的信号线,再开启功放与周边的电源,看看有无”滋滋“声,如还有,则继续按此方法往前端设备排查,直到问题解决。
3.如果音响发出的“丝丝”声,则有可能是某个前端设备的增益开的异常而引起的,需检查调音台上所有推子和增益旋钮,以及效果器类的输出等部分有无异常。
音响无声的检修程序音响系统在使用过程中经常会出现放不出声音的现象,一般来说这种现象都是由于系统中某一个设备未能正常工作,或者某个设备的信号连接线出现异常。
具体检修程序如下:1.首先按顺序打开所有设备电源,检查是否有设备没有通电。
若有设备没有通电,检查电源插头是否脱落,设备上电源连接插是否接触良好。
2.检查音源(播放器,电脑,话筒等)设备,是否有信号输入到混音设备(调音台,前级,音频矩阵等),看下电平指示灯有无闪烁。
如指示灯不闪烁,则因检查音源到调音台之间连接线是否完好,和确认音源设备是否在正常工作。
3.检查周边设备(音频处理器,均衡器,反馈抑制器等)有无信号输入,也是看电平指示灯。
音响系统中干扰声和啸叫声产生的原因及排除方法

音响系统中干扰声和啸叫声产生的原因及排除方法干扰声产生原理:电磁干扰的传输途径主要通过空间辐射和导线传导。
空间辐射是电场和磁场在设备闭合环路中产生电磁感应,环面积越大感应电压越高,感应电压随磁通密度矢量或电场作用方向与环平面法线的角度不同而变化,同时频率越高产生的感应电平越高,即高频信号更容易对环路产生干扰。
导线传导是电磁场耦合到音响设备连线而进入的干扰信号,传导方式是经过电路(包括杂散电容和互感等可以用集总参数表示的电路元件)传到受影响设备上,如脉冲干扰、交流声干扰。
干扰信号的电平高于音频放大器的敏感门限电平时,对音响系统产生干扰。
1.中低频干扰音响系统的噪声干扰除设备和传输线路本身的热噪声和叠加在其上的连续性“白噪声”外,干扰源主要可分为脉冲干扰和交流噪声干扰两大类。
脉冲干扰是由于脉冲器件产生的强电磁场耦合进人信道所致,电机、空调、汽车发动机火花塞、开关电源和控制灯光的可控硅均会产生60Hz~2MHz的干扰,这些干扰的谐波分量会落入音频频带内(2Hz~20kHz)。
交流噪声干扰主要是由于地线系统不同,接地点间存在电位差使地电流形成回路造成的,其典型表现为50Hz的工频交流噪声和由之引来的100Hz、160Hz段低频连续嗡声。
2.中高频干扰手机和其它的高频无线电发射设备发出的电磁能量以及从某些设备辐射出较强的杂散高频电磁能量都能对音频放大器形成干扰。
尤其手机高频辐射干扰最为严重,由手机(以GSM方式为例)发出的900MHz/l800MHz电磁能量作用在音频放大器的输入环路上,会产生间歇的或周期的干扰信号,这些干扰信号中含有丰富的谐波分量;其中一部分谐波分量落在300Hz~3400Hz范围内。
这里还须提到GSM手机采用时分复用的发射机理,GSM手机是通过发射脉宽为577us射频脉冲,周期为4.615ms,频率为216.7Hz向基站传递信息。
GSM手机除了高频辐射干扰外,还存在216.7Hz开关频率引起的低频干扰,造成喇叭发出216.7Hz谐波的“咔咔”干扰声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音响系统中干扰声和啸叫声产生的原因及排除方法
专业音响系统中,稍不注意,就会出现“杂音”。
这些杂音有些是外部环境引起的干扰声,有些是设备内部运作的噪音。
其中,干扰声是指由外界电磁场干扰音响设备后产生的噪声,啸叫声是指由声反馈引起音频放大电路自激震荡产生的噪音。
那么,遇到这些“杂音”应该怎么解决呢?
干扰声
产生原理:电磁干扰的传输途径主要通过空间辐射和导线传导。
空间辐射是电场和磁场在设备闭合环路中产生电磁感应,环面积越大感应电压越高,感应电压随磁通密度矢量或电场作用方向与环平面法线的角度不同而变化,同时频率越高产生的感应电平越高,即高频信号更容易对环路产生干扰。
导线传导是电磁场耦合到音响设备连线而进入的干扰信号,传导方式是经过电路(包括杂散电容和互感等可以用集总参数表示的电路元件)传到受影响设备上,如脉冲干扰、交流声干扰。
干扰信号的电平高于音频放大器的敏感门限电平时,对音响系统产生干扰。
1
中低频干扰
音响系统的噪声干扰除设备和传输线路本身的热噪声和叠加在其上的连续性“白噪声”外,干扰源主要可分为脉冲干扰和交流噪声干扰两大类。
脉冲干扰是由于脉冲器件产生的强电磁场耦合进人信道所致,电机、空调、汽车发动机火花塞、开关电源和控制灯光的可控硅均会产生60Hz~2MHz的干扰,这些干扰的谐波分量会落入音频频带内(2Hz~20kHz)。
交流噪声干扰主要是由于地线系统不同,接地点间存在电位差使地电流形成回路造成的,其典型表现为50Hz的工频交流噪声和由之引来的100Hz、160Hz段低频连续嗡声。
2
中高频干扰
手机和其它的高频无线电发射设备发出的电磁能量以及从某些设备辐射出较强的杂散高频电磁能量都能对音频放大器形成干扰。
尤其手机高频辐射干扰最为严重,由手机(以GSM方式为例)发出的900MHz/l800MHz电磁能量作用在音频放大器的输入环路上,会产生间歇的或周期的干扰信号,这些干扰信号中含有丰富的谐波分量,其中一部分谐波分量落在300Hz~3400Hz范围内。
这里还须提到GSM手机采用时分复用的发射机理,GSM手机是通过发射脉宽为577us射频脉冲,周期为4.615ms,频率为216.7Hz向基站传递信息。
GSM手机除了高频辐射干扰外,还存在216.7Hz开关频率引起的低频干扰,造成喇叭发出216.7Hz谐波的“咔咔”干扰声。
排除方法及解决方式:针对干扰声的类型和被干扰的传输途径,判断出属于哪一种干扰方式,然后采取相应的解决办法。
1
合理接地
把两个“地”电位不同的设备间的信号地线分离,避免设各直接连通形成地线环路。
如平衡式连接外屏蔽线只在—端接地,或两端都不接地等。
2
使用悬浮接地
就是该点电位与地相同,为零电位,但是该点又不是直接和地相连,是设备电路对地电位为零的点。
这个“地”与实际的地之间存在阻抗,而且是高阻抗,这样可以克服共模干扰。
3
弱与强(信号设备电源)分组连接
弱信号音源设备如CD、卡座、效果器、调音台、压缩限幅器和均衡器等同一组电源连接,强信号功率放大器与另一组电源连接,可以避免传导方式的电源交流噪声干扰。
4
电源干扰很严重,设备分相连接
把小信号的设备和监听设备电源连在一起,选择三相电源中交流声干扰最小的一相接入,其余两相接大信号功率放大器,可以降低来自电源的交流噪声干扰。
5
连接干净的电源供电
接入交流电源时,应采用隔离电源变压器,无条件时可使用独立一组电源供电,与空调、灯光等设备分开供电,避免灯光压降带来的交流低频干扰。
6
连接方式
超过2米的信号线全部采用平衡式接法或平衡隔离变压器的方式连接。
啸叫声
产生原理:扩声系统出现啸叫的主要原因是系统中某些频率的声音过强,当提升话筒音量时,由于这些过强的频率先达到啸叫所需要的强度条件,形成正反馈,在此频率上出现自激振荡现象。
自激振荡频率的高低,表现为啸叫声高低不同。
在扩声系统中当使用话筒拾音时,由于话筒的拾音区域与音箱的放音区域不可能采取声隔离措施,音箱发出的声音很容易通过空间传到话筒中而导致反馈啸叫。
一般来说,只有在扩声系统中才存在啸叫问题,在录音和还原系统中不具备产生啸叫的条件。
啸叫频率产生的途径
1
共振和声反射造成的啸叫
任何一个房间都可形成一个声学共振腔体,共振会使某些频率的声音被格外加强,同时经过房间反射面多次反射叠加形成不同强度不同啸叫点的反射频率,这些频点的频率信号反复被话筒拾取后产生自激震荡,出现不同音调的啸叫声。
2
音箱频率响应的起伏与振铃模态
音箱的发音单元为喇叭,由于材料和结构原因,任何—个喇叭都不可能保证频率响应曲线绝对平直,肯定会有某些频率峰值过高的情况。
音箱放音时,喇叭发出的声音就会出现某些频率声音过强的现象,这个过强频率的声音就可能造成啸叫。
喇叭安装在音箱中,音箱腔体的机械共振和腔体的声学共振会产生一种振铃模态RM,音箱存在的振铃模态会导致声染色的发生,也就是音箱发出的声音某些频率成分过强,在这些频率上也会产生啸叫。
3
话筒对某些频率的拾音灵敏度过高
话筒的频率响应是决定话筒声音风格和适用范围的重要条件。
与喇叭一样,话筒的频率响应曲线也不可能保证绝对平直,对某些频率的拾音灵敏度过高的情况再所难免,造成对某些频率的声音输出过强导致啸叫现象。
排除方法
1
对房间的反射面做适当处理
室内存在的弧度凹面会使声波反射引起声聚焦现象,而声聚焦会导致声场内局部音量过强,当话筒在位于声聚焦的区域拾音时,由于声音能量的回授量很大,极有可能发生啸叫。
采用吸音材料对弧度凹面做适当处理形成漫反射结构,抑制声波反射。
2
正确摆放音箱的位置
尽可能地避免话筒与音箱相对或距离很近,让音箱处于话筒拾音区域以外。
如果话筒的使用位置不在音箱声音的辐射区域,音箱的声音就不容易传到话筒中,也不容易形成自激震荡。
3
话筒音量调节合适
最终结果以不出现啸叫为宜。
4
合理选用高品质的话筒和音箱
话筒和音箱的频率响应曲线出现峰凸也会引起啸叫,应当选用频率响应曲线平坦的话筒和音箱。
演唱和拾音应选用动圈式话筒,开会可选用方向性强、灵敏度高的电容式话筒。
5
有条件的可使用声处理设备
使用声处理设备能有效提高音量而不会产生啸叫,不同的声处理设备,各功能特点有所不同。
目前,能抑制啸叫声的设备各有压限器、均衡器、反馈抑制器和移频器。
压限器是一种根据输入信号的强弱自动改变输出信号放大量(增益)的设备,用于抑制啸叫时可以将压缩比调到∞:1(此时它为限制器),将阈值调到反馈临界点。
但是采用压限器抑制啸叫会带来声音动态损失,故应尽量少用这种方法。
均衡器和反馈抑制器都可以有效地衰减反馈频率点的增益(拉馈点),衰减这些过强的频率就能抑制住啸叫。
不同之处在于,均衡器需要音响师根据啸叫的频率手工将馈点拉下来,而反馈抑制器则可以自动发现啸叫频率并将其衰减,衰减的频带宽度和衰减量由反馈器根据实际情况自动决定,几乎不会对音乐造成影响。
频移器是—种可以改变声音频率的设备,工作原理类似变调器,它能够将声音信号增加5Hz,破坏了产生声反馈的条件,从而抑制了啸叫。
该设备的使用有局限性,在语言扩声时使用起来效果很好,对声音破坏很小,但是在演唱和乐器中就会有很明显的声音变调感。
这是因为语言的频率范围是在130Hz~350Hz之间,仅仅5Hz频率的变化不会使人有明显的音调变高感觉,但是在声乐和器乐扩声时就会有变调的感觉了,因为声乐和器乐的下限频率20Hz左右,5Hz的音调变化人耳已经明显的感觉出来了。
故,扩声效果好的方法是会议话筒接入移频器,演唱和拾音话筒接入均衡器或反馈器。