初中数学多边形内角和的知识点归纳分析多边形内角和公式
如何计算正多边形的内角和

如何计算正多边形的内角和正多边形是指所有边长相等,所有内角也相等的多边形。
在初中数学中,我们经常会遇到计算正多边形的内角和的问题。
本文将介绍如何计算正多边形的内角和,并举例说明。
一、正多边形的内角公式在计算正多边形的内角和之前,我们首先需要了解正多边形的内角公式。
对于一个n边形(n≥3),其内角和可以通过以下公式计算:内角和 = (n - 2) × 180°其中,n代表多边形的边数。
二、计算正多边形的内角和的步骤计算正多边形的内角和可以按照以下步骤进行:1. 确定正多边形的边数n。
2. 将n代入内角公式,计算出内角和。
举例说明:假设有一个正六边形,我们可以通过以上步骤计算出它的内角和。
1. 正六边形的边数n为6。
2. 将n代入内角公式,计算出内角和:内角和 = (6 - 2) × 180° = 4 × 180° = 720°因此,正六边形的内角和为720°。
三、应用举例1. 问题:一个正五边形的内角和是多少?解答:根据计算步骤,我们可以得知正五边形的边数n为5。
将n代入内角公式,计算出内角和:内角和 = (5 - 2) × 180° = 3 × 180° = 540°因此,正五边形的内角和为540°。
2. 问题:一个正十边形的内角和是多少?解答:根据计算步骤,我们可以得知正十边形的边数n为10。
将n代入内角公式,计算出内角和:内角和 = (10 - 2) × 180° = 8 × 180° = 1440°因此,正十边形的内角和为1440°。
四、总结通过以上的介绍和举例,我们可以看出计算正多边形的内角和是一项简单而重要的数学运算。
只需要记住正多边形的内角公式,并按照计算步骤进行操作,就能轻松求解。
这个知识点在初中数学中经常出现,掌握了计算正多边形的内角和的方法,可以帮助我们更好地理解和解决相关的几何问题。
多边形内角和总结知识点总结

多边形内角和总结知识点总结多边形内角和知识点总结在数学的广阔天地中,多边形内角和是一个重要且基础的概念。
它不仅在几何学习中频繁出现,还在解决实际问题中发挥着关键作用。
接下来,让我们一起深入探索多边形内角和的相关知识。
一、多边形的定义多边形是由在同一平面且不在同一直线上的多条线段首尾顺次连接且不相交所组成的封闭图形。
常见的多边形有三角形、四边形、五边形、六边形等等。
二、多边形内角和的公式多边形内角和的公式为:$(n 2)×180°$,其中$n$为多边形的边数。
这个公式的推导其实很有趣。
我们以三角形为例,三角形的内角和是 180°。
当我们增加一条边,变成四边形时,可以通过连接其中一个顶点和不相邻的顶点,将四边形分成两个三角形,所以四边形的内角和就是 2×180°= 360°。
以此类推,每增加一条边,就多了一个三角形,内角和也就增加 180°。
三、不同边数多边形内角和的计算1、三角形三角形是最基本的多边形,它的内角和是 180°。
2、四边形四边形可以分为矩形、平行四边形、梯形等。
根据内角和公式,$(4 2)×180°= 360°$。
3、五边形五边形的内角和为$(5 2)×180°= 540°$。
4、六边形六边形的内角和是$(6 2)×180°= 720°$。
四、多边形内角和的性质1、多边形的内角和随着边数的增加而增加。
2、任意多边形的外角和都为360°。
这是一个很重要且固定的数值,与多边形的边数无关。
3、多边形的内角中,最多只能有三个锐角。
因为如果锐角过多,内角和就会小于$(n 2)×180°$。
五、应用实例1、已知一个多边形的内角和为 1080°,求它的边数。
我们可以设这个多边形的边数为$n$,则根据内角和公式可得:$(n 2)×180°= 1080°$$n 2 = 6$$n = 8$所以这个多边形是八边形。
计算正多边形的内角和和外角之和

计算正多边形的内角和和外角之和正多边形是指所有边相等、所有角相等的多边形。
在这篇文章中,我们将探讨如何计算正多边形的内角和和外角之和。
一、正多边形的内角和为了计算正多边形的内角和,我们首先需要了解一个公式:正多边形的内角和公式,也被称为欧拉公式。
根据欧拉公式,正多边形的内角和等于(边数-2)×180度。
例如,一个正三角形的内角和为(3-2)×180度=180度;一个正四边形的内角和为(4-2)×180度=360度;一个正五边形的内角和为(5-2)×180度=540度,以此类推。
二、正多边形的外角和正多边形的外角是指每个角与其相邻的内角的补角。
一般情况下,我们求解外角和时候会用到以下公式:正多边形的外角和等于360度。
根据这个公式,不论正多边形的边数是多少,其外角和都等于360度。
三、计算示例让我们通过一些示例来计算正多边形的内角和和外角和。
1. 计算一个正七边形的内角和:根据欧拉公式,正七边形的内角和为(7-2)×180度=900度。
2. 计算一个正六边形的内角和:根据欧拉公式,正六边形的内角和为(6-2)×180度=720度。
3. 计算一个正五边形的内角和和外角和:根据欧拉公式,正五边形的内角和为(5-2)×180度=540度。
根据正多边形的外角和公式,正五边形的外角和为360度。
四、总结在本文中,我们探讨了如何计算正多边形的内角和和外角和。
根据欧拉公式,我们可以通过正多边形的边数来计算其内角和。
而根据外角和公式,不论正多边形的边数是多少,其外角和都等于360度。
这个知识点在几何学中具有重要的意义,可用于解决各种涉及正多边形的问题。
理解正多边形的内角和和外角和的计算方法,将为我们在学术和实际应用中提供帮助。
专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。
外角:多边形的边与它邻边的延长线组成的角叫做外角。
对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形概念:各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。
多边形内角和外角和的公式

多边形内角和外角和的公式
多边形的内角和公式是:n边形的内角和等于(n-2)×180°。
其中,n是多边形的边数。
而多边形的外角和总是等于360°,它与边数的多少无关。
对于内角和,随着多边形边数的增加,内角和也会增加;反之,边数减少,内角和也会减少。
每增加一条边,内角的和就增加180°,且多边形的内角和必须是180°的整数倍。
另外,一个多边形最多有三个内角为锐角,最少可以没有锐角(如矩形);而多边形的外角中最多有三个钝角,最少可以没有钝角。
以上内容仅供参考,如需更全面准确的信息,可查阅数学相关书籍或请教数学专业人士。
正多边形的内角和外角

正多边形的内角和外角正多边形是初中数学中的一个重要概念,它具有许多有趣的特性。
其中之一就是正多边形的内角和外角的关系。
在本文中,我将为大家详细介绍正多边形的内角和外角的性质和计算方法。
一、正多边形是指所有边相等、所有内角相等的多边形。
在正多边形中,每个内角都相等,记为α,每个外角也相等,记为β。
我们可以通过以下公式计算正多边形的内角和外角:内角和:S = (n - 2) × 180°外角和:T = n × 180° - S其中,n代表正多边形的边数。
根据这两个公式,我们可以得出以下结论:1. 内角和:正多边形的内角和等于(n - 2) × 180°。
这个公式的推导可以通过将正多边形分割成n个三角形,然后计算每个三角形的内角和得到。
例如,一个正五边形的内角和为(5 - 2) × 180° = 540°。
2. 外角和:正多边形的外角和等于n × 180° - 内角和。
这个公式的推导可以通过将正多边形的内角和与每个内角的补角相加得到。
例如,一个正五边形的外角和为5 × 180° - 540° = 900°。
二、内角和和外角和的性质正多边形的内角和和外角和具有一些重要的性质,我们可以通过以下例子来说明:例子1:考虑一个正六边形,每个内角为120°。
根据内角和的公式,我们可以计算出内角和为(6 - 2) × 180° = 720°。
根据外角和的公式,我们可以计算出外角和为6 × 180° - 720° = 720°。
可以看出,正六边形的内角和和外角和相等。
例子2:考虑一个正四边形,每个内角为90°。
根据内角和的公式,我们可以计算出内角和为(4 - 2) × 180° = 360°。
初中数学:多边形的内角和与外角和题型总结

1、多边形的内角和等于(n-2)180˚,n是多边形的边数。
2、多边形的外角和等于360˚。
这两个结论的证明也比较简单,在这里简单说明一下。
1、一个多边形,边数为n,将一个顶点与其它顶点相连,可以把这个多边形分割成(n-2)个三角形,每个三角形的内角和是360˚,所以多边形的内角和就是(n-2)180˚。
2、一个多边形,边数为n,每一个内角和它相邻的外角构成一个平角,n条边就构成n 个平角。
外角和就等于n个平角减去多边形的内角和,也就是360˚。
这两个知识在考查时,主要有四种类型,我们来看一下。
1、考查多边形边数和内角和的关系。
这类型题主要是知道边数求出内角和,或者知道内角和求出边数。
第(1)题,知道边数,求内角和。
第(2)题,知道内角和,求边数。
第(3)题,稍微复杂,两个多边形,知道边数之比和内角和之比,列方程求出边数。
第(4)、(5)、(6)题,稍为复杂,知道边数,先求出内角和,再去求多边形中的某个内角。
这些题型都比较简单。
这里还有一道题比较复杂一点,同学们可以尝试做一下。
2、外角和与内角和相结合这类型的关键点是,要知道多边形的内角和是隐藏的已知量,它等于360˚。
这类题型都是根据多边形内角和与外角和的关系,列一个方程,求出边数。
3、多边形,少一个角,其余内角和是一定值。
这种题型,运用到了不等式,是一个难点和重点。
它的运用的知识是,多边形的一个内角,它的取值范围是大于0,小于180。
除去的这个角的度数等于内角和减去其余内角和,据此,可以列一个不等式组,进行求解。
下面有练习,大家可以试一下。
4、正多数形正多边形的内角相等,边相等。
考查类型,1、知道边数,求内角;2、知道内角,求边数;3、知道外角,求边数。
在考试中,经常考察的方式是这样的。
多边形的内角和定理

多边形的内角和定理多边形是几何学中的基本概念之一,它是由若干条边和对应的顶点所构成的图形。
在研究多边形的性质时,内角和定理是一个重要的定理,它可以帮助我们计算多边形内角的和。
本文将详细介绍多边形的内角和定理,以及其应用示例。
一、多边形的内角和定理又称为多边形内角和公式,它是指在任意$n$边多边形中,内角和$S$可以通过以下公式来计算:$$S = (n-2) \times 180^\circ$$其中,$S$表示多边形的内角和,$n$表示多边形的边数。
我们可以通过这个公式,快速求解多边形内角的和,而无需逐个角度相加。
二、应用示例为了更好地理解多边形的内角和定理的应用,让我们以一个三角形和一个四边形为例,进行具体计算。
1. 三角形三角形是最简单的多边形之一,它由三条边和三个顶点组成。
根据多边形的内角和定理,三角形的内角和$S$可以通过以下公式计算:$$S = (3-2) \times 180^\circ = 180^\circ$$这说明任意三角形的内角和等于180度。
这个结论符合我们以往对三角形角度的认知。
2. 四边形四边形是由四条边和四个顶点构成的多边形。
根据多边形的内角和定理,四边形的内角和$S$可以通过以下公式计算:$$S = (4-2) \times 180^\circ = 360^\circ$$这说明任意四边形的内角和等于360度。
我们可以通过这个结论来验证正方形、矩形和平行四边形等四边形的内角和为360度。
三、总结多边形的内角和定理是一个重要的几何学定理,它可以帮助我们计算多边形内角的和。
通过该定理,我们可以更快速地求解多边形内角和,而无需逐个角度相加。
在三角形和四边形中的应用示例中,我们验证了多边形的内角和定理的准确性。
为了更好地理解和应用多边形的内角和定理,我们可以通过实际题目和练习来巩固这一知识点。
在解题过程中,我们可以先计算多边形的边数,然后利用内角和定理来求解内角和。
这样,我们就可以更高效地解决与多边形内角和相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学多边形内角和的知识点归纳分析多边
形内角和公式
组成多边形的线段至少有3条,三角形是最简单的多边形。
多边形内角和n边形的内角和等于180°×(n-2)。
可逆用:
n边形的边=(内角和÷180°)+
2 过n边形一个顶点有(n-3)条对角线
· n边形共有n×(n-3)÷2个对角线
· n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
推论:
1.任意凸形多边形的外角和都等于360°。
2.多边形对角线的计算公式:
n边形的对角线条数等于1/2·n(n-3) 3.在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
多边形外角和定理:
n边形外角和等于n·180°-(n-2)·180°=360°
多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
1、先从三角形这一简单图形介绍外角定义。
多边形的内角的一边与另一边的反向延长线所组成的角,叫这个多边形的外角,(这样的产生外角有两个,由于他们相等,但我们通常只取其中一个),
一个保安员拿着一手电筒,直照前方,巡视一个三角形街道,走完一圈回到出发点,他的身体一共转动了多少度?
(1)
保安每从一条街道转入下一街道时,手电筒的光柱
转动的角是哪个?在图中标出它们。
(2)问它们的度数之和是多少?
第一种方法:射线平移法,如教材介绍。
(个人认为:要理解为什么能用平移法,可以先用两条相交线作说明,两线平移后不改变他们的相交角大小。
)
第二种方法:推导法。
利用一个外角与它相邻的内角是邻补角的关系,以及多边形内角和公式。
(这种方法应该是重点,难点,这种方法详细介绍)
其实多边形还可以分为正多边形和非正多边形。
正多边形各边相等且各内角相等。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X 轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。
因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若
题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。