风荷载βz及wk(新规范)
PKPM新、旧规范版本之间的变化

返回列表查看: 2420|回复: 6PKPM新、旧规范版本之间的变化[复制链接][论坛转帖][博客转帖]petty-sun26主题听众40积分技术员土木币56•收听TA•发消息电梯直达主贴发表于 2006-4-6 12:50:35 |只看该作者|倒序浏览本文介绍pkpm计算软件TAT,SATWE和PMSAP的新、旧规范版本之间的变化,这同时也是新旧规范(抗震规范、高层规程、荷载规范、混凝土规范〉的条文变化。
1,.风荷载风压标准值计算公式为:WK=βzμsμZ W。
其中:βz=1+ξυφz/μz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。
所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。
具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。
C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。
3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。
新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。
新增加的D类对应脉动增大系数比89规范小,约小5%到10%。
与结构的材料和形式有关。
5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。
在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。
如C类、高度为5Om、高宽D类,则小37%。
6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。
计算风荷载标准值Wk[2]
![计算风荷载标准值Wk[2]](https://img.taocdn.com/s3/m/842d7fe5172ded630b1cb6fc.png)
计算风荷载标准值Wk=βzμsμz w0
式中:Wk——风载荷标准值(KN/m2);
βz ——高度z处的风振系数;鉴于在田野树丛中,此值取1.0;
μs——风载荷体型系数;鉴于在田野树丛中,此值取1.0;
μz ————风压高度变化系数;鉴于在田野树丛中,此值取1.0;
w0 ————基本风压(KN/m2);查北京市50年不遇大风(大于8级)的气象和最大风速资料,风载荷值取0.45 KN/m2 ;
为便于简化计算,将杀虫灯分为4个部分,即太阳能板、杀虫灯、灯杆和基础。
其中太阳能板、杀虫灯、灯杆为承风部位,基础为平衡部分。
1.太阳能板:承风面积S1=0.81m*0.51m*COS40º=0.316m2;
承风阻力P1=0.316m2*0.45 KN/m2 =0.14212KN;
倾翻力矩M1=H1P1=2.65m*0.1422KN=0.37712KN.m;
同理可算:2.杀虫灯部位M2= H2P2=2.2m*0.036KN=0.08KN.m ;
3.灯杆部位M3= H3P3=1.0m*0.144KN=0.144KN.m ;
综上所述,50年不遇的大风产生最大的倾翻力矩为
∑M=M1+M2+M3=0.6 KN.m ;
而杀虫灯底盘用3-M12地脚螺栓固定在混凝土基础上。
混凝土基础的几何尺寸为0.53m*0.53m,高0.6m;混凝土的密度为1.8-2.45;(式中取2.1)即混凝土基础的重量为G=3.54KN;其倾翻阻力矩为
M阻=G*B/2=3.54KN*0.265m=0.938KN.m
经计算,M阻>∑M,故满足要求。
即该基础能够在50年不遇的强风时,不倾翻。
风荷载标准值的计算

风荷载标准值的计算中国建筑标准设计研究所刘达民1.概况建筑结构荷载规范GB50009-2001是最新版本代替了GBJ9-87,从2002年3月1日起施行。
风荷载属于基础性标准,只有50年的实测数据。
风荷载计算,第7.1.1与7.1.2黑体字属强制性条文,必须执行。
风荷载对门、窗、幕墙而言是主要荷载,其破坏作用较大,属矛盾的主要方面。
建筑结构荷载规范中风荷载虽公式未变,但参数、取值有所变化。
修改后的规范更合理,计算简化,与国际上的做法接近。
门、窗、幕墙产品测试中的P3与Wk是对应关系。
2.新老规范差异风荷载部分主要差异有:a)把主体结构与围护结构区别对待。
其中阵风系数与体型系数在取值上有区别。
b)基本风压的调整由原来30年一遇改为50年一遇,提高10%左右,但地点不同,有所区别;起点由原来0.25kPa改为0.30kPa,内陆地区变化不大,但沿海地区较大;c)规范中同时提供667个城市地区的参数可直接选用,个别仍有例外d)围护结构可仍按50年选取,专业规范另有规定的除外,例JGJ113要加大10%等。
e)高度系数作了调整由原来A、B、C三类调为A、B、C、D四类,与国际上划分一致。
A、B类与原来一样,但C类稍有降低,D类为新增加。
将A、B、C、D四类数据化:即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。
取该地区主导风和最大风向为准。
以建筑物平均高度?来划分地面粗糙度。
当?≥18M为D类;9M<?≤18M为C类;?<9M为B类;对山坡、山峰给出了计算公式。
f)体型系数作了调整增加了灵活性:即①可借鉴有关资料②宜作风洞③应作风洞④可直接采用。
g)第7.3.3条专对围护结构而言的(1)外表面正压区:按表7.3.1采用负压区:对墙面,取-1.0;对墙角边,取-1.8;对坡度>10°的屋脊部位,取-2.2;对檐口、雨棚、遮阳板,取-2.0。
注:屋面、墙角边的划分:作用宽度0.1,作用高度0.4,起点应大于1.5m。
垂直于建筑物表面上的风荷载标准值

垂直于建筑物表面上的风荷载标准值,应按下列公式计算:1、当计算主要承重结构时:Wk =βz·μs·μz·W0式中:Wk ----风荷载标准值(KN/m2)βz ---高度Z 处的风振系数;μs---风荷载体型系数:μz ---风压高度变化系数;W0----基本风压(KN/m2)风压高度变化系数μZA 类指近海面、海岛、海岸、湖岸以及沙漠B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区C 类指密集建筑裙的城市市区D 类指有密集建筑物裙且房屋较高的城市市中心βz ---高度Z 处的风振系数高度大于30米且高宽比大于1.5考虑。
否则βz =1与结构的自振特性有关,(包括自振周期、振型等,也与结构的高度有关)。
结构在 z 高度处的风振系数βz 可按下式:式中:ξ ----脉动增大系数;ν ----脉动影响系数;φz-- 振型系数;μz---风压高度变化系数。
重要说明: 风振系数:不满足 “ 高度大于30m 且高宽比大于1.5的高柔房屋 ” =1.0.“三水准”抗震设防目标当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用。
当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用。
当遭受高于本地区抗震设防烈度的预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
第一阶段:对绝大多数结构进行小震作用下的结构和构件承载力验算;在此基础上对各类结构按规定要求采取抗震措施。
第二阶段:对一些规范规定的结构进行大震作用下的弹塑性变形验算。
有特殊要求的建筑、地震易倒塌的建筑、有明显薄弱层的建筑,不规则的建筑等Z。
最新规范-风荷载计算

局部体型系数μ s1
面板 构件μ s1=μ s1(1)+[μ s1(25)μ s1(1)]log(A)/1.4+0.2
风压高度变化系数 μ z
μ z=1.284(z/10)0.24
风荷载标准值Wk (kN/m )
2
Wk=β gzμ s1μ zW0 构件
墙面区 墙角区 墙面区
备注:风荷载标准值小于1kN/m2时,取为1kN/m2
D(30m以下按30m计算) 30 0.4 β gz=1+2gI10(z/10)-0.30 面积 面板 构件μ s1=μ s1(1)+[μ s1(25)μ s1(1)]log(A)/1.4+0.5 μ z=0.262(z/10)0.60 m2 — 5 2.40 墙角区 墙面区 1.6 1.2
1.460 1.100 0.51 墙角区 0.779
值计算 C(15m以下按15m计算) 15 0.4 β gz=1+2gI10(z/10)-0.22 面积 面板 构件μ s1=μ s1(1)+[μ s1(25)μ s1(1)]log(A)/1.4+0.4 μ z=0.544(z/10)0.44 m2 — 5 2.05 墙角区 墙面区 1.6 1.460 0.65 墙角区 0.854 面板 Wk=β gzμ s1μ zW0 构件 墙面区 0.587 墙面区 0.640 墙角区 0.779 1.2 1.100
面板 Wk=β gzμ s1μ zW0 构件 墙面区 0.535 墙面区 0.584 墙角区 0.711
地面粗糙度 计算标高(m) 基本风压W0 3.9 0.45 β gz=1+2gI10(z/10)-0.12 面积 m2 — 1 1.58 墙角区 1.6 1.600 1.39 墙角区 面板 1.578 1.183 1.578 1.183 墙面区 1.2 1.200
PKPM新旧规范版本之间的变化

PKPM新、旧规范版本之间的变化本文介绍PKPM计算软件TA T,SATWE和PMSAP的新、旧规范版本之间的变化,这同时也是新旧规范(抗震规范、高层规程、荷载规范、混凝土规范〉的条文变化。
一、风荷载风压标准值计算公式为:WK=βzμsμZ W。
其中:βz=1+ξυφz/μz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。
所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。
具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇: 新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。
C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。
3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。
新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。
新增加的D类对应脉动增大系数比89规范小,约小5%到10%。
与结构的材料和形式有关。
5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。
在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。
如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。
6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。
结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。
风荷载标准值计算方法

按老版本规范风荷载标准值计算方法:1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算:wk =βgzμzμs1w…… 2006年版]上式中:wk:作用在幕墙上的风荷载标准值(MPa);Z:计算点标高:;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m按5m计算):βgz =K(1+2μf)其中K为地面粗糙度调整系数,μf为脉动系数A类场地:βgz =×(1+2μf) 其中:μf=×(Z/10)B类场地:βgz =×(1+2μf) 其中:μf=(Z/10)C类场地:βgz =×(1+2μf) 其中:μf=(Z/10)D类场地:βgz =×(1+2μf) 其中:μf=(Z/10)对于B类地形,高度处瞬时风压的阵风系数:βgz=×(1+2×(Z/10))=μz:风压高度变化系数;根据不同场地类型,按以下公式计算:A类场地:μz=×(Z/10)当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地:μz=(Z/10)当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;C类场地:μz=×(Z/10)当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;D类场地:μz=×(Z/10)当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于B类地形,高度处风压高度变化系数:μz=×(Z/10)=μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表采用;2. 负压区-对墙面,取-对墙角边,取二、内表面对封闭式建筑物,按表面风压的正负情况取或。
世界各地风荷载标准值

世界各地风荷载标准值
风荷载也称风的动压力,是空气流动对工程结构所产生的压力。
风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。
中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。
台风造成的风灾事故较多,影响范围也较大。
雷暴大风可能引起小范围内的风灾事故。
垂直于建筑物表面上的风荷载标准值,应按下述公式计算:
1 当计算主要承重结构时,按式:wk=βzμsμzWo[1]
式中wk—风荷载标准值(kN/m2);
βz—高度z 处的风振系数;
μs—风荷载体型系数;
μz—风压高度变化系数;
Wo—基本风压(kN/㎡)。
2 当计算围护结构时,按式:wk=βgzμslμzWo 式中βgz—高度z 处的阵风系数;
μsl--风荷载局部体型系数。