成都七中2017年外地生招生考试题解析(标准)

合集下载

成都七中2017年外地生招生考试 数学答案

成都七中2017年外地生招生考试 数学答案

【答案】6 . 4 星
【解】设三种盒子依次有 x, y, z 个. 10x+9y+6z=108 . 注意到 x 应为 3 的倍数, ∴ x=3, 6, 9.
当 x=3 时, 方程化为:3y+2z=26 . 得(y, z)=(8,1), (6,4),(4,7),(2,10) . 共 4 种 .
当 x= 6 时, 方程化为:3y+2z=16 . 得(y, z)=(4,2), (2,5) . 共 2 种 .
【解】有理化或平方去根号得 x 1 1, 原式= (x 1)(x2 1 1 ) 12 2 1 2
x
x
x2
7、已知关于
x
的方程
x

2 x

3

0
的两实数根为
x1,
x2.

1
2 1
__________ .
x1 x2
【答案】 4 . 3
【解】
8、化简 (a2 2a 2)2 (a 1)(a 2)(a 3)(a 4) 25 __________ . (a 3)(a 1)
【解】(1)联立

y

2 x
得 A(1, 2), B(2,1).所以正方形 ABCD 的中心为 (2, 2) .于是 C(3, 2).
y x 3
代入 y m 得 m 6. 6分 x
(2) 因为 AP BP ,所以点 P 落在线段 AB 的垂直平分线 y x 上.
2)
6 3. 2
当 P( 6, 6) 时, MP ( 6 3)2 ( 6 3)2 2 3 3 2 .
2
2

2017年四川省成都七中自主招生考试数学试卷(含详细解析)

2017年四川省成都七中自主招生考试数学试卷(含详细解析)

2017年四川省成都七中自主招生考试数学试卷一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.23.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.24.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S25.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.447.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.48.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6=.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,则k=.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=.17.(6分)函数y=2+的最大值为.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为.三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.2017年四川省成都七中自主招生考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A. B. C.D.【解答】解:过A作AE⊥BC,如图所示:∵菱形ABCD的边长为2,∠ABC═60°,∴∠BAE=30°,∴BE=AB=1,∴AE=BE=,∴内切圆半径为,∴内切圆面积=π•()2=;故选:A.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.2【解答】解:,②×5﹣①得:14y+3z=﹣17④,②×2﹣③得:5y+2z=﹣7⑤④×2﹣⑤×3得:13y=﹣13,解得:y=﹣1,把y=﹣1代入⑤得:z=﹣1,把y=﹣1,z=﹣1代入②得:x=2,则(a,b,c)=(2,﹣1,﹣1),则a+b+c=2﹣1﹣1=0.故选:B.3.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2 D.2【解答】解:∵圆O1与圆O2半径分别为4和1,圆心距为2,∴4﹣1>2,故两圆内含,不妨设截得的弦为AB,切点为C,连接O1A,连接O1O2,O2C,∵半径确定,∴弦心距越小,则弦越长,∵AB是⊙O2的切线,∴O2C⊥AB,∴当O1、O2、C在一条线上时,弦AB最短,由题意可知OC1=2+1=3,AO1=4,在Rt△ACO1中,由勾股定理可得AC==,∴AB=2AC=2,故选:C.4.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S2【解答】解:∵AD∥BC,∴△AOD∽△COB,∴=,∵△AOD与△AOB等高,∴S1:S2=AD:BC=a:b,∴S1=S2,S3=S2,∴S1+S3=(+)S2=S2,∵a≠b,∴a2+b2>2ab,∴>2,∴S1+S3>2S2,故选:D.5.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个 B.2个 C.3个 D.4个【解答】解:方程两边都乘x(x+2)得,(2k﹣4)x(x+2)+(k+1)(x+2)=x(k ﹣5),整理得,(k﹣2)x2+(2k﹣1)x+k+1=0.①当k﹣2≠0时,∵△=(2k﹣1)2﹣4(k﹣2)(k+1)=9>0,∴一元二次方程(k﹣2)x2+(2k﹣1)x+k+1=0有两个不相等的实数根.∵关于x的分式方程2k﹣4+仅有一个实数根,而x(x+2)=0时,x=0或﹣2,∴x=0时,k+1=0,k=﹣1,此时方程﹣3x2﹣3x=0的根为x=0或﹣1,其中x=0是原方程的增根,x=﹣1是原方程的根,符合题意;x=﹣2时,4(k﹣2)﹣2(2k﹣1)+k+1=0,k=5,此时方程3x2+9x+6=0的根为x=﹣2或﹣1,其中x=﹣2是原方程的增根,x=﹣1是原方程的根,符合题意;即k=﹣1或5;②当k﹣2=0,即k=2时,方程为3x+3=0,解得x=﹣1,符合题意;即k=2.综上所述,若关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值为﹣1或5或2,共有3个.故选:C.6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.44【解答】解:设从左向右位置为①,②,③,④,⑤,∵英语书不在最左边,∴最左边①有4种取法,∵同类书不相邻,∴②有3种取法,③有两种取法,④有两种取法,⑤有一种取法,共4×3×2×2×1=48,但是英语书排在第②位置时,只能是语文、英语、数学、语文、数学,或者数学、英语、语文、数学、语文,故英语书排在第②位置时只有8种情况,故种情况为48﹣8=40种,故选:C.7.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.4【解答】解:∵==﹣=﹣=﹣,∴=﹣+﹣+﹣=﹣∵a=,∴==4,0<a27<a3=()3=<,∴<1﹣a27<1,∴1<<2,∴的值的整数部分为2.故选:B.8.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E 作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个 B.10个C.12个D.14个【解答】解:综合三视图,我们可以得出,这个几何模型的底层至少有3个小正方体,第二层至少有3个小正方体,第三层至少有3个小正方体,则这样的小正方体至少应有3+3+3=9个,选项中10是满足条件最小的数字.故选:B.10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A. B.C.2D.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=DA,第三次碰撞点为N,在DC 上,且DN=DC,第四次碰撞点为G,在CB上,且CG=BC,第五次碰撞点为H,在DA上,且AH=AD,第六次碰撞点为Z,在AB上,且AZ=AD,第七次碰撞点为I,在BC上,且BI=AD,第八次碰撞点为D,再反方向可到E,由勾股定理可以得出EF=HZ==,FM=GH=ID=,MN=NG=,ZI=,P所经过的路程为(×2+×3+×2+)×2=.故选:B.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是(﹣2,1).【解答】解:∵y=kx+(2k+1)∴y=k(x+2)+1,∴图象恒过一点是(﹣2,1),故答案为(﹣2,1).12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为2.【解答】解:如右图所示,是圆锥侧面展开的一部分,∵圆锥母线长为2,底面半径为,∠AOB=135°,∴,作AD⊥SB于点D,∵SA=SB=2,∴展开的扇形所对的圆心角为,∴在Rt△SAD中,AD=SD=,∴BD=SB﹣SD=2﹣,∴AB==,故答案为:2.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6= 1﹣26.【解答】解:由题意可知a0=(﹣2)6,令x=1,则1=a0+a1+a2+a3+a4+a5+a6,因此a1+a2+a3+a4+a5+a6=1﹣a0=1﹣(﹣2)6=1﹣26.故答案为:1﹣26.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.【解答】解:正五边形ABCDE,∴∠BAE=∠ABC=BCD=∠CDE∠AED=108°,AB=BC=CD=DE=AE,∴△ABC≌△ABE,∴AC=BE,同理:△ABH≌△△BCG≌△AJE,∴AH=CG=JE,∴HJ=HG,同理:FG=FK=JK=HG,∴五边形HGFKJ是正五边形,∴正五边形HGFKJ∽正五边形ACBDE,设HE=CD=a,HJ=x,由题意,△HAB∽△ABE,∴,∴x=∴落在五边形FGHJK区域内的概率为=,故答案为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,【解答】解:∵函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),∴,消去y得x2﹣kx+1=0,∴x1+x2=k,x1x2=1,∴+====18,∴k(k2﹣2)﹣k=18,解答k=3.故答案为3.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=45°.【解答】解:作AF∥CD,DF∥AC,AF交DF于点F,∴四边形ACDF是平行四边形.∵∠C=90°∴四边形ACDF是矩形,∴CD=AF,AC=DF,∠EAF=∠FDB=∠AFD=90°.∵BD=AC,AE=CD∴△BDF和△AEF是等腰直角三角形,∴∠AFE=∠DFB=45°,∴∠DFE=45°,∴∠EFB=90°.∴∠EFB=∠AFD.∴△BDF∽△AEF,∵∠EFB=∠AFD,∴△ADF∽△EBF∴∠PAF=∠PEF∴∠APE=∠AFE∵∠AFE=45°∴∠APE=45°17.(6分)函数y=2+的最大值为.【解答】解:根据题意得:,解得:1≤x≤2,由柯西不等式得:y=2+≤•=×=(当且仅当2=,即x=时,取等号),故函数y=2+的最大值为.故答案为:.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).【解答】解:∵(2x+1),(2y+1),(2z+1)都是奇数,∴x,y,z都是奇数,∵(2x+1)(2y+1)(2z+1)=13xyz,∴(2+)(2+)(2+)=13,∵x≥y≥z,如果z≥3,那么(2+)(2+)(2+)≤(2+)2=<13,∴z=1,∴3(2x+1)(2y+1)=13xy,化简得:xy=6(x+y)+3,则x==6+,∵39的因子有:1,3,12,39,∴y﹣6=1,3,13,39,∴y=7,9,19,45,∴x的对应只有:45,19,9,7,∵x>y,∴正整数解(x,y,z)为:(45,7,1)或(19,9,1).故答案为:(45,7,1)或(19,9,1).三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.【解答】解:(1)由题设可知S=(2﹣)2=,△DEF解得k=1或7(不合题意,舍去),∴k=1;(2)①如图1,当2≤t≤时,因为C点坐标为(t,0),所以E点坐标为(t,),所以DE=2﹣,而F点坐标为(,2),所以DF=t﹣,所以S=DE•DF=(2﹣)(t﹣)=t+﹣1;②如图2,当t>时,此时OB=t﹣2,所以F点的坐标为(t﹣2,),所以AF=2﹣,所以S=•2•(DE+AF)=•2•(2﹣+2﹣)=4﹣﹣;(3)当2≤t≤时,DE和DF随t的增大而增大,S也类似,故当t=时S有最大值为<2,所以S=2只可能发生在t>时,令4﹣﹣=2,解得t=;(4)①如图3,当2≤t≤时,假设位置存在,由对称性知Rt△FDE∽Rt△DCD1,因为DE=D1E,则有=,其中D1C==,整理得:t(t﹣1)=4,解得t=>,与假设矛盾,所以当2≤t≤时,不存在;②如图4,当t>时,假设位置存在,过F作直线FG∥x轴交CD于G,由对称性可知Rt△FGE≌Rt△DCD1,DE=D1E,所以GE=D1C,而GE=﹣,整理可得t(t﹣1)(t﹣2)2=1,设y=t(t﹣1)(t﹣2)2,当t>2时,y随t的增大而增大,取t=2.5,则y=0.9375<1,取t=2.6,则y=1.4976>1,利用试值法可以判断位置存在且唯一,对应的t的取值在2.5和2.6之间.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x的取值.【解答】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x ﹣(n﹣1)|)+…+(|x﹣|+|x﹣(+1)|),由(1)知,当<x<+1时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,∴当<x <+1时,y min=1+3+5+…+(n﹣3)+(n﹣1)=,当n为奇数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x ﹣|+|x ﹣(+1)|)+|x ﹣|,由(1)知,当x=时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x ﹣|+|x ﹣(+1)|有最小值1,|x ﹣|的最小值为0,∴当x=时,ymin=0+2+4+…+(n﹣3)+(n﹣1)=,(4)类似(3)的做法可知,y=|x﹣a1|+|x﹣a2|+…+|x﹣a n|,如果n 为偶数时,当时,y有最小值,如果n为奇数时,当x=时,y有最小值;∵y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|=++…++|x﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x=时,ymin=|﹣1|+|﹣1|+…+|﹣1|+|﹣1|=第21页(共21页)。

四川省成都七中2017届高三上学期入学数学试卷(理科) 含解析

四川省成都七中2017届高三上学期入学数学试卷(理科) 含解析

2016—2017学年四川省成都七中高三(上)入学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R,若集合A={x∈N||x﹣2|<3},B={x|y=lg(9﹣x2)},则A∩∁R B()A.{x|﹣1<x<3}B.{x|3≤x<5} C.{0,1,2} D.{3,4}2.已知复数z=x+yi(x,y∈R),且有=1+yi,是z的共轭复数,则的虚部为()A.B.i C.D.i3.已知x,y取值如表:x01456y 1.3m3m5。

67。

4画散点图分析可知,y与x线性相关,且回归直线方程=x+1,则实数m的值为()A.1.426 B.1。

514 C.1。

675 D.1.7324.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f(x)dx的值约为( )A.B.C.D.5.已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的内切圆和外接圆半径之比为()A.B. C.D.6.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=AB=AD=,若∠A1AD=∠A1AB=45°,∠BAD=60°,则点A1到平面ABCD的距离为()A.1 B.C.D.7.在△ABC中,若4(sin2A+sin2B﹣sin2C)=3sinA•sinB,则sin2的值为()A.B. C.D.8.若直线xcosθ+ysinθ﹣1=0与圆(x﹣cosθ)2+(y﹣1)2=相切,且θ为锐角,则这条直线的斜率是()A. B. C.D.9.定义在R上的函数f(x)满足f(x﹣2)=﹣f(x),且在区间[0,1]上是增函数,又函数f(x﹣1)的图象关于点(1,0)对称,若方程f(x)=m在区间[﹣4,4]上有4个不同的根,则这些根之和为()A.﹣3 B.±3 C.4 D.±410.设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则该双曲线的离心率为()A.B.C. D.11.已知函数f(x)=,g(x)=,则函数h(x)=g(f(x))﹣1的零点个数为()个.A.7 B.8 C.9 D.1012.若对任意的x1∈[e﹣1,e],总存在唯一的x2∈[﹣1,1],使得lnx1﹣x1+1+a=x22e x2成立,则实数a的取值范围是()A.[,e+1] B.(e+﹣2,e]C.[e﹣2,) D.(,2e﹣2]二、填空题13.已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin()=,则的x1x2+y1y2值为.14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i(i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x1,x2,x3,x4分别为1,1.5,1.5,3,则输出的结果S为.15.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=的最小值为.16.设x∈R,定义[x]表示不超过x的最大整数,如[]=0,[﹣3。

成都七中2017年外地生招生考试数学答案

成都七中2017年外地生招生考试数学答案

一、填空题(1-6每题5分,7-12每题7分,13-18每题8分,共120分)1、102、153、84、315、236、27、34-8、159、5410、111、19812、2113、-114、-715.616、617、1318、17二、解答题(第19题12分,第2题18分)19.解(1)联立⎪⎩⎪⎨⎧+-==3x 2x y y 得()()1221,,,B A .所以正方形ABCD 的中心为()2,2.于是()2,3。

带入6==m x m y 得。

...........6分(2)因为BP AP =,所以点P 落在线段AB 的垂直平分线x y =上。

联立⎪⎩⎪⎨⎧==xy y 6解得)6,6()66(--p P 或,AB 的中点22323(=AB M ,当=MP P 时,,)66(2233223623622-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-2362233222121-=⎪⎭⎫ ⎝⎛-⨯⨯=⋅⋅=∆MP AB S ABP 当=--MP P 时,,)66(2233223623622+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+2362233222121+=⎪⎭⎫ ⎝⎛+⨯⨯=⋅⋅=∆MP AB S ABP 所以ABP ∆的面积236±……12分(掉一解扣2分)20.解(1)若0=q 。

方程为053222=+-+p px x 。

()()020*********>-=+--=∆p p p 452>p 。

p x x 221-=+,53221+-=p x x 53211712212121+--=+=+=p p x x x x x x 即⎪⎩⎪⎨⎧≠+-=--0530514322p p p 解得5=p 或31-因为452>p ,所以5=p ……6分(多一解扣2分)(2)显然0>q 。

方程可写成q p px x ±=+-+53222。

因为方程有三个不同的实数根,结合()53222+-+=p px x x f 与q y ±=的图像知()54,54,223-=+-=-=--=p q p p f q p x 21,x x 是q q px x =+-+53222的两根。

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)

四川省成都七中2016-2017学年高一上学期入学考试语文试题(含答案)XXX高2016级语文试题(2016.9.1)考试时间:120分钟总分:150分命题人:高2016级语文备课组审题人:XXX第Ⅰ卷一、(40分,每小题4分)1.下列词语中,加点字的读音全都正确的一组是A.秩序(chì)踉跄(liàng)尸骸(hái)...B.弄堂(lòng)鞭挞(tà)..C.精悍(hàn)执拗(niù)..莘莘学子(shēn).惩创(chãnɡ)不屑一顾(xuâ)..长篙(gāo)长歌当哭(dàng)..D.浸渍(jìn)作揖(yī)解剖(pōu)叱咤风云(chà)....2.下列各组词语中,没有错别字的一组是A.籍贯伎俩绿草如荫黯然失色B.和睦光牒阴谋诡计殚精竭虑C.浮躁通缉敝帚自珍震耳欲聋D.桀骜惆怅难以起齿瞠目结舌3.下列加点词语使用正确的一项是A.儒家学说由XXX创立,颠末冗长的岁月,得以延续和发展,推许它的声音一直滚滚不...绝。

.B.最令我回味的是同学们说得最火热的时候,吹胡子瞪眼、撅鼻子翘嘴的模样,真是富有嫡亲之乐。

....C.您刚刚乔迁新居,房间宽敞明亮,只是摆设略显单调,建议您挂幅油画,一定会使居室蓬荜生辉。

....D.在人行道上卖菜的那些小贩们,远远地看见城管法律人员走来,立刻七手八脚地摒挡....摊子准备撤退。

4.以下各句中,加点的成语利用适合的一句是A.《汉字英雄》《中国汉字听写大会》播出后,引发社会强烈回响,人们对其内容和方式评头论足,赞美有加。

....B.在XXX的诗歌中,我们可以真切地感受到,历时七八年、祸及半个中国的安史之乱,造成了人民的生灵涂炭。

....C.峨眉山是闻名中外的旅游胜地,其巍峨磅礴,重峦叠嶂,山山有奇景,十里不同天,真是秀色可餐。

....D.《瑰宝,瑰宝》讲述的是XXX的妹妹——啾啾的故事,读着读着,我就被这位父亲对1女儿的深情打动,时不时拍案而起,连连叫好。

2017成都七中高三数学(文)入学试题答案

2017成都七中高三数学(文)入学试题答案

高2017届2016~2017学年度下期入学考试数学(文科)参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的. ACBDCDCBDDAC二、填空题:本大题共4小题,每小题5分.13、⎩⎨⎧⎭⎬⎫-1,2,2214、415、94三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(Ⅰ)由茎叶图知,极差为98-52=46.……………………2分 平均值52+65+72788686868787889098=12X +++++++++=81.25.……………………6分(Ⅱ)设得分为优秀的班级为12,A A ,得分为良好的班级为123456B ,B ,B ,B ,B ,B 从中任选2个班级,不同的选法有:1211121314151621222324(A ,A ),(A ,B ),(A ,B ),(A ,B ),(A ,B ),(A ,B )(A ,B ),(A ,B ),(A ,B ),(A ,B )(A ,B ),,, 2526121314151623242526(A ,B ),(A ,B )(B ,B ),(B ,B ),(B ,B ),(B ,B )(B ,B ),(B ,B ),(B ,B ),(B ,B )(B ,B ),,,, 343536454656(B ,B ),(B ,B ),(B ,B ),(B ,B ),(B ,B ),(B ,B )共28种.……………………10分选出两人不在同一年龄段的选法有13种,故所求概率13P =18、(Ⅰ)证明:由11A B A D =,O 为BD 的中点,则1A O ⊥又因为ABCD 是菱形,所以CO BD ⊥.因为1AO CO = 所以BD ⊥平面1ACO .因为BD ⊂平面11BB D D , 所以平面11BB D D ⊥平面1ACO . ……………………5分(Ⅱ)由60BAD ∠=,ABCD 是菱形,可得1BO =,AO = 由1A B =11A O =.在1AOA 中,由12AA =,可得1AO AO ⊥.AO BO O = ,1AO ABCD ∴⊥底面. 由11//AA BB ,故1A 到平面1BCB 的距离等于A 到平面1BCB 的距离h . 又111112,2,BCB BC BB AA B C A D ===== 解得:S 由11111133A BCB BCB B ABC ABC V S h V S A O h --=⨯⨯===⨯⨯=⇒= ……………12分19、(Ⅰ)当11, 1.n a ==当22112312,222(2)21n n n n a a a a n ---≥++++=-⋅+ ,相减可得:112(1)2(2)2.n n n n n a n n a n --=-⋅--⋅⇒=由11,1n a ==满足故n a n =.……………6分(Ⅱ)1tan tan tan tan(1)n n n b a a n n +=⋅=⋅+tan(1)tan tan(1)tan tan1tan(1)tan(1)tan 1.1tan(1)tan tan1n n n nn n n n n n +-+-=+-=⇒+=-++故12tan 2tan1tan3tan 2tan(1)tan tan1tan1tan1n n n nT b b b n --+-=+++=+++- ,tan(1)tan1tan1n n T n +-∴=-. ……………12分20、..........................4分 (Ⅱ)由题意设()()1122,,,A x y B x y ,直线AB 方程为:y x n =-+.,消y 整理可得:2234220x nx n -+-=, 由()()222412222480n n n ∆=---=->,解得................5分................6分设直线AB 之中点为 由点P 在直线AB上得:又点P 在直线l 上,........................7分1211(5)(5)22QABS n x x n =⨯--=⨯-= ........................9分记22()(5)(3),f n n n =--'()2(5)(3)(21)f n n n n =--+ ,故()f nQAB ∆,............11分 此时直线l..........12分 21、(Ⅰ)由题意224144()ln 4,'()(0)x f x x f x x xxx x-=+-=-=>.'()0(4,),f x x >⇒∈+∞ ∴()f x 的单调递增区间为(4,)+∞,()f x 的单调递减区间为(0,4)..................3分 (Ⅱ)由题意,221'()(0)a x af x x x x x-=-=>. ①0a ≤时,()f x 在(0,)+∞单增,(1)0,(0,1),()0f x f x =∴∈< ,不合题意; ②0a >时,()f x 在(0,)a 单减,在(,)a +∞单增,min ()()ln 10.f x f a a a ∴==-+≥ 记11()ln 1,'()1,ag a a a g a a a-=-+=-= ∴()g x 在(0,1)单增,在(1,)+∞单减, ()g(1)0, 1.g a a ∴≤=∴= 综上{1}.a ∈....................8分(Ⅲ)由(Ⅱ),当1a =时,1ln (*)x x x-≥,当且仅当1x =时等号成立. 要证13211113e <(),只需证明:21313()11e <,两边同时取对数,可以转化为证明: 13132213ln ln 111113<⇔> .由(*)式,13113211ln .13111311->=13211113e ∴<().............12分 22、(Ⅰ)直线l 的普通方程为的普通方程为221x y +=.联立方程组解得l 与1C 的交点为分 (Ⅱ)曲线2C 为cos (3sin x y θθθ=⎧⎨=⎩为参数),故点P 的坐标是()cos ,3sin θθ (6)分从而点P 到直线l 的距离是分 ,d 取得最大值,分。

2017成都七中外地生自主招生考试物理测试题及解析

2017成都七中外地生自主招生考试物理测试题及解析

2017成都七中外地生自主招生考试物理测试题一、单项选择题1.以下说法中正确的是A. 某同学走路上学的速度大约25m/sB. 光在水中传播的速度大约25m/sC. 高速路上汽车行驶的速度大约25m/sD. 高空中飞机飞行的速度大约25m/s2.以下现象中属于凝固现象的是A. 水结成冰B. 洒在地面上的水逐渐变干C. 水蒸气凝结成冰D. 卫生球日久变小3.如图所示,用吸管吸饮料,让饮料进入口中的力是A. 玻璃杯的重力B. 饮料对吸管的浮力C. 手握玻璃杯的力D. 大气压力4.一个小石块,从空中的某一高度,由静止开始下落,若不计空气阻力,从开始下落到刚到达地面的过程中,小石块的重力势能E随着时间t的变化图像可能是A. B.C. D.5.如图所示,A在水面上方,B在水面下方,AC、BD垂直于水面,垂足分别是C和D,AB 连线与水面相交与E点,若从A处射出一束激光,要使激光能够照射到B点,则射出的激光在水面上的入射位置是A. E点B. D点C. D与E之间的某一个点D. C与E之间的某一个点6.如图所示,金属块A通过轻绳系于木块C的下方,静止在水中;金属块B平放在木块D 的上表面,静止在水面上。

已知长方体木块C和D密度、体积、形状均完全相同,密度是水密度的一半,它们的上表面均正好与水面相平;金属块A和B的体积、形状完全相同,它们各自的体积是单个木块体积的一半,则A、B的密度之比为A. 3:1B. 2:1C. 6:1D. 4:17.如图所示,一块长3cm、宽4cm的质量不计的矩形薄板ABCD可绕过A点的固定轴在纸面内无摩擦地自由转动,现过B点沿CB方向对板施加T=9N的拉力作用,为使板保持静止,需要在板上的某一处施加另一个在纸面内的拉力F(未画出),其大小由F的作用位置和方向决定,在所有可能情况中,F的最小值为A. 4.5NB. 7.5NC. 7.2ND. 9.0N8.如图所示,圆心为0的光滑半圆面放置于水平桌面上,圆面上静止放置一条匀质、柔软、不可伸长的细棉线。

四川省成都市第七中学2017届高三下学期入学考试英语试题英语答案

四川省成都市第七中学2017届高三下学期入学考试英语试题英语答案

成都七中高2017届高三下入学考试试题参考答案一、听力:1-5 CBACA 6-10CBACB 11-15CBBCC 16-20ACABB二、阅读: 21-24 BDAB 25-27 CAD 28-31 ADCB 32-35 ACDB三、七选五:36-40 BACEG四、完形:41-45 ACDBA 46-50 DADBD51-55 CABBA 56-60 CCDAC五. 语法填空:61. surveyed 62. aged 63. while / and 64. which 65. as66. an 67. dependence 68. are going 69. about 70. constantly六.短文改错:1. and改成but2. anything改成something3. reason改成reasons4.去掉it5. noise that ∧they trouble6. where改成which7. it改成they 8.mostly改成most 9. Take改成Taking10. do前加to/can/should七.书面表达:As is vividly shown in the picture, a tiny man living in the city is standing there wearing a mask, terrified by the heavy smog, which looks like a huge frightening monster.What the picture mirrors is clearly heavy smog and severe air pollution. Confronted with potential risk of sickness, people are always forced to wear masks in order to avoid breathing poisonous air.With smog getting increasingly serious, environmental protection has become an urgent issue for human beings. As a saying goes, great things may be done by mass effort. For one thing, our government should develop more green and energy-saving ways to lower the amount of polluted air. For another, every single person should raise their awareness of environmental protection and use more public transport. Only if we spare no effort to protect our environment can we enjoy a greener and better life.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中外地生招生考试数学试题考试时间:120分钟 满分:150分一、填空题(1-6题每题5分,7-12题每题7分,13-18题每题8分,共120分) 1、若0732=-+-b a ,则b a += .难度:★ 原理:“非负数和为零,则各加数均为零” 答案:73± 2、设b a ≠,且43322=+=+b b a a ,则b a ab 22+= . 难度:★★ 原理:一元二次方程根与系数的关系解析:由题意,b a 、为方程0432=-+x x 的两相异实根,则.43-=-=+ab b a , 进而得.12)3()4()(22=-⨯-=+=+a b ab b a ab3、如图,在长方体1111D C B A ABCD -中,已知4=AB ,,3=AD 21=AA ,则三棱锥DB A C 11的体积为 . 难度:★★★ 原理:棱锥的体积公式Sh V 31=方法:间接法 解析:观察图可得,三棱锥DB A C 11的体积为长方体1111D C B A ABCD -的体积减去4个三棱锥ABD A 1的体积.即8)2342131(4234=⨯⨯⨯⨯⨯-⨯⨯ 4、将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是 .难度:★ 原理:机会均等事件发生的概率 答案:31 5、抛物线224,2bx y ax y -=-=与坐标轴恰好有4个交点,这4个交点组成的筝形面积为12,则b a += .难度:★★ 原理:抛物线的轴对称性及筝形面积公式 解析:由题意作图.根据筝形面积为12,可得两抛物线 与横轴交点为(-2,0)和(2,0).联立两抛物线解析式得2242bx ax -=-,即6)(2=+x b a .故.23=+b a6、设251-=x ,则331x x -= .难度:★★ 原理:二次根式的化简及立方差、完全平方公式的应用 解析:由251-=x 得2511+-=x ,则12512511=++-=-x x故243)1()11)(1(122233==+-=++-=-xx x x x x x xxyOD 1 C 1 A BA 1B 1D C7、已知关于x 的方程032=--x x 的两实数根为1x 、2x ,则21112x x += . 难度:★★ 原理:一元二次方程根与系数的关系及方程、代数式的变形 解析:由方程032=--xx 变形得0232=--x x ,由韦达定理得,,232121-=⋅=+x x x x 故21112x x +=.343)2(222121-=-⨯=+x x x x8、化简)1)(3(25)4)(3)(2)(1()22(22+----++-+-a a a a a a a a = .难度:★★★ 原理:代数式的恒等变形及整体思想解析:原式)1)(3(25)]4)(2[()]3)(1[()22(22+---+⋅-+-+-=a a a a a a a a)1)(3(25)]82()32[()22(2222+----⋅---+-=a a a a a a a a)1)(3(25]24)2(11)2[(4)2(4)2(222222+--+----+-+-=a a a a a a a a a a )1)(3(45)2(152+---=a a a a )1)(3()32(152+---=a a a a15=9、已知n m 、为正整数,若424n m =,则m 的最小值为 .难度:★★ 原理:数的整除性,分解质因数解析:由322224⨯⨯⨯=,则n 能被6整除,所以n 最小为6,故m 的最小值为54. 10、如图,在边长为3的正△ABC 中,E D 、分别在边AB AC 、上,且AC AD 31=, AB AE 32=,CE BD 、相交于点F ,则F D A 、、所在圆的半径为 . 难度:★★★ 原理:圆的有关性质,三角形的全等 解析:由已知易证△ABD ≌△BCE ,则∠ADF=∠BEF ,从而得A 、E 、F 、D 四点共圆. 连结DE ,易得∠ADE=90○, 故AE 是圆的直径,半径为1.11、若y x ≠,且12,1222+=+=y y x x ,则66y x += .难度:★★ 原理:一元二次方程根与系数的关系及配方法DAB CE F解析:由题意,y x 、为方程0122=--m m 的两相异实根,则.1,2-==+xy y x 故1982)]32(2[2)])([(2)(222223323366=++⨯=++-+=-+=+y xy x y x y x y x y x 12、在△ABC 中,边BC 上的高为1,点D 为AC 的中点,则BD 的最小值为 . 难度:★★ 原理:平行线的有关性质提示:由作图发现不确定点A 的轨迹,从而得到AC 中点D 的轨迹. 答案:21. 13、方程3232222=++++x x x x 的所有实数解的和为 .难度:★★ 原理:换元法解根式方程 解析:由方程变形得0623)23(222=-+++++x x x x ,令m x x =++232,则原方程 为0622=-+m m ,即0)2)(32(=+-m m ,解得2,2321-==m m (舍去).则 49232=++x x ,即0432=-+x x .根据韦达定理,得该方程的实数根之和为-1. 14、若方程0122=--x x 的根都满足方程023=+++c bx ax x ,则c b a ++3= . 难度:★★★ 原理:方程的同解原理及高次方程降次求解解析:由0122=--x x 得122+=x x ,带入三次方程得0)1()2(2=++++c x b x a ,再由两方程同解得12112-=-+=+cb a ,得122-=--=c b c a ,,代入 3a +2b +c=3(-c -2)+(2c -1)+c=-3c -6+2c -1+c=-7方法二:根据方程的同解原理得x 3+ax 2+bx+c=(x 2-2x -1)(x -c ),展开对比系数得. 15、将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 .难度:★★★ 原理:不定方程讨论求解解析:由设三种盒子的个数分别为a 、b 、c ,则由题意得10a +9b +6c =108.显然a 为3的整数倍,则a 可取值为3、6、9. 当a=3时,9b +6c =78,即3b +2c =26,此时b 为偶数,共有4种组合装法;当a=6时,9b +6c =48,即3b +2c =16,同理可得共有2种组合装法;当a=9时,9b +6c =18,即3b +2c =6,此时无整数解.综上所述,共有6种装法.16、如图,在圆心为O 的圆中,点C 、D 分别位于圆O 的直径AB 两侧,若△OCD 的面积是△BCD 的面积的两倍,又CD=CA ,则OCB ∠cos = .难度:★★★★ 原理:圆的有关知识综合应用解析:设CD 、OB 的交点为G ,则由△OCD 和△BCD 的面积关系 得GO =2GB . 延长CO 交AD 于点E ,易得CE ⊥AD ,则∠AEC = ∠ADB =90°,进而得EC ∥DB ,可得CO=2DB=4EO . 在Rt △OEA 中,令EO=1,则AE=15.在Rt △CEA 中,AC=102.又∠CAD =∠ABC =∠OCB ,故cos ∠OCB=cos ∠CAD=46. B CDA O BA C D17、设1≤n ≤100,若8n +1为完全平方数,则整数n 的个数为 . 难度:★★★ 原理:完全平方数、数的整除性及不等式性质解析:由题意,设8n +1=m 2(m 为正整数),则812-=m n .由1≤n ≤100,得9≤m 2≤801.显然m 为奇数,则奇数3≤m ≤27.故对应的整数n 的个数为13.18、从1,2,3,...,2017中任选k 个数,使得所选的k 个数中一定能找到能构成三角形边长的三个数(要求互不相等),则满足条件的k 的最小值是 .难度:★★★★★ 原理:三角形三边长关系及数论的知识 答案:17 解析:根据三角形三边长关系,从1,2,3,...,2017中找出下面的数:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597.一共有16个.上述数中任选三个不能构成三角形,从剩下的数中任找一个数,一定能和上述16个数中某两个构成三角形. 二、解答题:19、已知曲线x y 2=与直线3+-=x y 相交于A 、B 两点,C 、D 两点在曲线xmy =(m >2)上,四边形ABCD 是正方形.(1)求m 的值;(2)若点P 在函数xmy =的图象上,且AP =BP ,求△ABP 的面积.难度:★★★★★ 原理:以函数为主体的综合知识应用详解:(1)联立⎪⎩⎪⎨⎧+-==32x y xy 得A (1,2)、B (2,1),如图. 设正方形ABCD 对角线的交点为G ,易得G (2,2), 则C (3,2),代入xmy =得m=6. (2)∵AP =BP ,∴点P 在线段AB 的垂直平分线y=x 上.联立⎪⎩⎪⎨⎧==xy x y 6得)6,6(P 或)6,6(--P .易得2=AB ,AB 的中点Q 坐标为)2323(,.当)6,6(P 时,22332)236(2)236()236(22-=-⋅=-+-=PQ .此时236)22332(22121-=-⋅⋅=⋅=∆PQ AB S ABP ; 当)6,6(--P 时,22332)236(2)236()236(22+=+⋅=+++=PQ .此时236)22332(22121+=+⋅⋅=⋅=∆PQ AB S ABP . 综上得△ABP 的面积为236±.PyABCD OxP Q20、已知关于x 的方程053222=-+-+q p px x ,其中p 、q 都是实数. (1) 若q =0时,方程有两个不同的实数根、x 12x ,且711121=+x x ,求实数p 的值. (2) 若方程有三个不同的实数根1x 、2x 、3x ,且0111321=++x x x ,求实数p 和q 的值. (3) 是否同时存在质数p 和整数q ,使得方程有四个不同的实数根1x 、2x 、3x 、4x ,且443214321)4(3x x x x x x x x +++=⋅⋅⋅若存在,求出所有满足条件的p 、q ;若不存在,请说明理由.难度:★★★★★★ 原理:以方程为主体的综合知识应用详解:(1)若q =0,则方程为053222=+-+p px x .因该方程有两个不同的实数根、x 12x , 可得2016)53(4)2(222-=+--=∆p p p >0,解得2p >45;p x x 221-=+,22135p x x -= 由711121=+x x ,得71352112211221=--=+=+p p x x x x x x ,解得p =5或31-.(注意0352≠-p ) 因为2p >45,所以p =5. (2)显然q >0.方程可写成q p px x ±=+-+53222.因该方程有三个不同的实数根, 即函数532221+-+=p px x y 与q y ±=2的图象有三个不同的交点,如图.由图可得,22234544)35(4p p p q p x -=--=--=,,即542-=p q .21x x 、是方程q p px x =+-+53222的两根,即0107222=+-+p px x .则p x x 221-=+,221710p x x -=,p x -=3.4032)107(4)2(222-=+--=∆p p p >0,解得2p >45. 由0111321=++x x x ,得0)107(51017102122232112=--=-+--=++pp p p p p x x x x x ,得22=p >45, 所以2±=p ,3542=-=p q .(3)存在,方程有四个不同的实数根1x 、2x 、3x 、4x ,由(2)知0<q <542-p . 设1x 、2x 是方程053222=-+-+q p px x 的两根,3x 、4x 是053222=++-+q p px x 的两根,则p x x 221-=+,q p x x -+-=53221;p x x 243-=+,q p x x ++-=53243.x 1Oy=q yxy=-qx 2x 3得p x x x x 44321-=+++,=4321x x x x )53)(53(22q p q p ++--+-)53)(53(22q p q p --+-= 所以4223)53)(53(p q p q p =--+-.由于p 是质数,则p ≥2. 因为q p +-532>q p --532>0,所以q p +-532>23p >2p . 分解22334443333133p p p p p p p p p ⨯=⨯=⨯=⨯=⨯=.分四种情况讨论:⎪⎩⎪⎨⎧=--=+-153353)1(242q p pq p 得0116324=+-p p ,此方程无解;⎪⎩⎪⎨⎧=--=+-35353)2(242q p pq p 得013624=+-p p ,此方程无解; ⎪⎩⎪⎨⎧=--=+-pq p p q p 35353)3(232得0103623=++-p p p , 即0)5)(2)(1(=--+p p p ,得521,,-=p ;⎪⎩⎪⎨⎧=--=+-222253353)4(pq p p q p 得52=p ,得5±=p .又p ≥2,则52,=p .所以存在满足条件的q p 、,当2=p 时,1=q ;当5=p 时,55=q .。

相关文档
最新文档