高数积分总结

合集下载

高数大一知识点总结重积分

高数大一知识点总结重积分

高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。

本文将对高数大一课程中的重积分进行总结和讲解。

一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。

与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。

重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。

根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。

在计算重积分时,需要注意积分顺序的选择。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。

重积分具有一些重要的性质,例如线性性、划分性和保号性等。

这些性质在具体计算过程中可以灵活运用,简化计算和分析。

二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。

通过逐步积分,最终可以得到准确的结果。

2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。

在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。

3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。

在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。

三、重积分的应用领域重积分在科学和工程领域有广泛的应用。

例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。

大一高数重积分知识点总结

大一高数重积分知识点总结

大一高数重积分知识点总结在大一高数学习中,重积分是一个重要的知识点,它是对多重积分的深入学习和扩展。

在本文中,我们将对大一高数中重积分的相关知识点进行总结和概述。

一、重积分的定义重积分是对二重积分的进一步推广,用于计算曲顶柱体与曲面之间的空间体积。

对于三维空间中的函数f(x,y,z),其在某一立体区域D上的重积分定义为:∬Df(x,y,z)dV其中,dV表示体积元素,满足dV = dxdydz。

二、重积分的计算1. 直角坐标系下的重积分计算在直角坐标系下,计算重积分的方法有两种:先y后x的积分次序和先x后y的积分次序。

根据具体情况选择合适的积分次序进行计算,并利用定积分的性质进行积分计算。

2. 极坐标系下的重积分计算在极坐标系下,计算重积分相对简便。

利用极坐标系的变换关系,将被积函数和积分区域转化为极坐标系下的表示形式,然后按照定积分的性质进行积分计算。

3. 应用:质量、质心和转动惯量重积分在物理学和工程学中有着广泛的应用。

通过计算重积分可以求解三维空间中物体的质量、质心和转动惯量等参数,为实际问题的分析提供了数学工具。

三、重积分的性质1. 重积分的线性性质重积分具有线性性质,即对于任意常数k,函数f(x,y,z)和g(x,y,z),以及积分区域D,有以下等式成立:∬D[kf(x,y,z) + g(x,y,z)]dV = k∬Df(x,y,z)dV + ∬Dg(x,y,z)dV2. 重积分的保号性如果积分区域D上的函数f(x,y,z)始终大于等于0,则重积分的结果也大于等于0。

这一性质在实际问题中常用于判断物体的质量分布或概率密度分布等情况。

3. 重积分的积分域可加性对于积分区域D,若可以分解为两个互不相交的子区域D1和D2,则有以下等式成立:∬Df(x,y,z)dV = ∬D1f(x,y,z)dV + ∬D2f(x,y,z)dV四、常见的重积分问题1. 计算空间几何体的体积通过重积分的计算,可以求解复杂几何体的体积。

高数微积分公式大全(总结的比较好)---精品管理资料

高数微积分公式大全(总结的比较好)---精品管理资料

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可.十一、第二换元积分法中的三角换元公式(1 sin x a t = (2) tan x a t = sec x a t =【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin 32π= (4)sin 12π=) (5)sin 0π=(1)cos01= (2)cos62π=(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π=(3)cot3π=(4)cot 02π=(5)cot π不存在 十二、重要公式(1)0sin lim1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→= (12)0101101lim0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况) 十三、下列常用等价无穷小关系(0x →)sin x x tan x x arcsin x x arctan xx 211cos 2xx - ()ln 1x x + 1x e x - 1ln x a x a - ()11x x ∂+-∂十四、三角函数公式 1.两角和公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-3。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全(总结的比较好)

高数微积分公式大全(总结的比较好)

高数微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos ax u e x x =均可。

高数微积分的求解技巧总结

高数微积分的求解技巧总结

高数微积分的求解技巧总结高数微积分是大学数学中的重要课程,涉及到很多重要的概念和方法。

在学习过程中,我们需要具备一些求解技巧和方法,以帮助我们更好地理解和应用微积分知识。

以下是一些高数微积分的求解技巧的总结。

1. 掌握基本公式和定理:在学习微积分的过程中,我们需要熟练掌握常用的基本公式和定理,如导数的基本计算法则、函数的导数公式、积分的基本计算法则等。

熟练掌握这些公式和定理对于解题和计算都有很大帮助。

2. 运用导数和微分的定义:导数和微分的定义是微积分的基础概念,我们需要理解和掌握这两个定义,并灵活运用它们。

例如,对于一些难以使用基本公式求解的函数,可以通过导数的定义或微分的定义来求解。

3. 利用函数的性质进行求解:函数的性质是微积分中重要的求解技巧之一。

我们可以利用函数的对称性、周期性、奇偶性等性质,简化计算和求解过程。

例如,当函数具有对称性或周期性时,可以将函数的积分范围缩小,简化计算。

4. 使用换元积分法:换元积分法是微积分中的重要方法之一。

通过对被积函数中自变量的替换,可以将原来的积分转化成更简单的形式。

在使用换元积分法时,需要灵活选取适当的替换变量,并注意变限积分的处理。

5. 运用分部积分法:分部积分法是微积分中常用的方法之一,在求解一些特殊函数的积分和广义积分时非常有效。

通过将被积函数中各项分别作为导数和微分的乘积,可以将原来的积分转化成更容易求解的形式。

6. 利用定积分的性质:定积分具有很多重要的性质,如可加性、均值定理等。

利用这些性质可以简化计算和求解过程。

例如,利用定积分的可加性,可以将一个复杂的定积分分解成若干个简单的定积分相加。

7. 使用拉格朗日中值定理和柯西中值定理:拉格朗日中值定理和柯西中值定理是微积分中的重要定理,能够帮助我们研究函数的性质和证明一些结论。

在应用这两个定理时,需要注意选择合适的函数和区间,并理解这些定理的几何意义。

8. 运用级数展开和泰勒展开:级数展开和泰勒展开是微积分中的重要工具,可以将一个函数表示成无穷级数的形式。

高数微积分公式大全

高数微积分公式大全

微积分公式D x sin x=cos x cos x = -sin x tan x = sec 2 x cot x = -csc 2 x sec x = sec x tan x csc x = -csc x cot x⎰ sin x dx = -cos x + C ⎰ cos x dx = sin x + C ⎰ tan x dx = ln |sec x | + C ⎰ cot x dx = ln |sin x | + C⎰ sec x dx = ln |sec x + tan x | + C ⎰ csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = π - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = π - cot -1 x sec -1(-x) = π - sec -1 x csc -1(-x) = - csc -1 xD x sin -1 (a x )= 221xa -±cos -1 (a x)=tan -1 (a x )=22x a a +±cot -1 (ax )=sec -1 (a x )=22a x x a-±csc -1 (x/a)= ⎰ sin -1 x dx = x sin -1 x+21x -+C ⎰ cos -1 x dx = x cos -1 x-21x -+C ⎰ tan -1 x dx = x tan -1 x-½ln (1+x 2)+C ⎰ cot -1 x dx = x cot -1 x+½ln (1+x 2)+C ⎰ sec -1 x dx = x sec -1 x- ln |x+12-x |+C⎰ csc -1 x dx = x csc -1 x+ ln |x+12-x |+Csinh -1 (a x)= ln (x+22x a +) x ∈Rcosh -1 (a x)=ln (x+22a x -) x ≧1tanh -1 (a x )=a 21ln (xa xa -+) |x| <1coth -1 (a x )=a 21ln (a x a x -+) |x| >1 sech -1(a x )=ln(x 1-+221xx -)0≦x ≦1 csch -1(a x )=ln(x 1+221xx +) |x| >0 D x sinh x = cosh xcosh x = sinh xtanh x = sech 2 x coth x = -csch 2 x sech x = -sech x tanh x csch x = -csch x coth x ⎰ sinh x dx = cosh x + C ⎰ cosh x dx = sinh x + C⎰ tanh x dx = ln | cosh x |+ C ⎰ coth x dx = ln | sinh x | + C ⎰ sech x dx = -2tan -1 (e -x ) + C ⎰ csch x dx = 2 ln |xxee 211---+| + Cd uv = u d v + v d u⎰ d uv = uv = ⎰ u d v + ⎰ v d u →⎰ u d v = uv - ⎰ v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1cosh 2θ+sinh 2θ=cosh2θD x sinh -1(a x )= 221xa + cosh -1(ax)=221ax - tanh -1(a x )= 22x a a -±coth -1(ax )=sech -1(a x )= 22x a x a --csch -1(x/a)=22xa x a +-⎰ sinh -1 x dx = x sinh -1 x-21x ++ C⎰ cosh -1 x dx = x cosh -1 x-12-x + C ⎰ tanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ C⎰ coth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C⎰ sech -1 x dx = x sech -1 x- sin -1 x + C⎰ csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ¼ (3sin θ-sin3θ) →cos 3θ=¼(3cos θ+cos3θ)sin x = j e e jxjx 2-- cos x = 2jx jx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a = βsin b =γsin c=2R余弦定理: a 2=b 2+c 2-2bc cos α b 2=a 2+c 2-2ac cos β c 2=a 2+b 2-2ab cos γa b cαβγ Rsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β sin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β)cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β)tan (α±β)=βαβαtan tan tan tan ±, cot (α±β)=βαβαcot cot cot cot ±e x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x nn -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) = ⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x =⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi ΘθthetaΠπpiΩω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;0*∞ =∞1 *∞ = ∞∞ = 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean) nX X X X n+++= (21)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值几何平均数(Geometric mean) n n X X X G ⋅⋅⋅= (21)调和平均数(Harmonic mean))1...11(1121nx x x n H +++=平均差(Average Deviatoin)nX Xni||1-∑变异数(Variance)nX Xni21)(-∑ or1)(21--∑n X Xni标准差(Standard Deviation)nX Xni21)(-∑ or1)(21--∑n X Xni分配 机率函数f (x )期望值E(x )变异数V(x )动差母函数m (t )Discrete Uniform n1 21(n +1) 121(n 2+1) tnt t e e e n --1)1(1Continuous Uniform a b -1 21(a +b ) 121(b -a )2 ta b e e atbt )(--Bernoulli p x q 1-x (x =0, 1)p pq q +pe t Binomial ⎪⎪⎭⎫ ⎝⎛x n p x q n -x npnpq(q+ pe t )nNegative Binomial ⎪⎪⎭⎫ ⎝⎛-+x x k 1p k q x pkq 2p kq k t kqe p )1(-Multinomialf (x 1, x 2, …, x m -1)= m xm x x m p p p x x x n ...!!...!!212121np inp i (1-p i )三项 (p 1e t 1+ p 2e t 2+ p 3)nGeometric pq x-1p1 2p q ttqe pe -1 Hypergeometric⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛n N x n k N x k n ⎪⎭⎫ ⎝⎛N k ⎪⎭⎫ ⎝⎛--1N n N n ⎪⎭⎫ ⎝⎛N kPoissone xλλ- λ λ)1(--t e eλNormal 2)(21 21σμπσ--x eμ σ222 21 t t eσμ+Beta 11)1(),(1---βαβαx x Bβαα+2))(1(βαβααβ+++Gammax e x λαλαλ--Γ1)()( λα 2λα αλλ-⎪⎭⎫ ⎝⎛-t Exponentxeλλ-λ121λ t-λλ Chi-Squared χ2 =f (χ2)=212222)(221χχ--⎪⎭⎫⎝⎛Γen n nE(χ2)=nV(χ2)=2n2)21(n t --Weibullαβα--x e1⎪⎭⎫⎝⎛+Γ+111λαβλ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+Γ-⎪⎭⎫ ⎝⎛+Γ111222λλαλ1 000 000 000 000 000 000 000 000 1024 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z 1 000 000 000 000 000 000 1018 exa E 1 000 000 000 000 000 1015 peta P 1 000 000 000 000 1012 tera T 兆 1 000 000 000 109 giga G 十亿 1 000 000 106 mega M 百万 1 000 103 kilo K 千 100 102 hecto H 百 10 101 deca D 十0.1 10-1 deci d 分,十分之一 0.01 10-2 centi c 厘(或写作「厘」),百分之一 0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一 0.000 000 001 10-9 nano n 奈,十亿分之一 0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一 0.000 000 000 000 000 001 10-18 atto a 阿 0.000 000 000 000 000 000 001 10-21 zepto z 0.000 000 000 000 000 000 000 001 10-24 yocto y。

高数积分总结

高数积分总结

高数积分总结一、不定积分1、不定积分的概念也性质定义1:如果在区间I 上,可导函数F (x )的导函数为f(x ),即对任一I x ∈,都有F`(x)=f (x)或dF(x)=f(x)dx,那么函数F(x)就称为f (x )(或f(x)dx)在区间I 上的原函数。

定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f(x )(或者f (x )dx)在区间I 上的不定积分,记作⎰dx x f )(.性质1:设函数f (x)及g (x )的原函数存在,则⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([。

性质2:设函数f (x )的原函数存在,k 为非零常数,则⎰⎰=dx x f k dx x kf )()(。

2、换元积分法 (1)第一类换元法:定理1:设f (u )具有原函数,)(x ϕμ=可导,则有换元公式)(])([)(')]([x d f dx x x f ϕμμμϕϕ=⎰⎰=。

例:求⎰xdx 2cos 2解 ⎰⎰⎰⎰=•=•=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得⎰+=C x xdx 2sin 2cos 2(2)第二类换元法:定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设)(')]([t t f ψψ具有原函数,则有换元公式,])(')]([[)()(1x t dt t t f dx x f -=⎰⎰=ψψψ其中)(1x -ψ是)(t x ψ=的反函数。

例:求⎰>+)0(22a ax dx解 ∵t t 22sec tan 1=+,设⎪⎭⎫ ⎝⎛<<-=22tan ππαt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+,于是⎰⎰⎰==+tdt dt t a ta a x dx sec sec sec 222 ∴C t t ax dx ++=+⎰tan sec ln 22∵aa x t 22sec +=,且0tan sec >+t t ∴1222222)ln(ln C a x x C aa x a xa x dx+++=+⎪⎪⎭⎫⎝⎛++=+⎰,a C C ln 1-=3、分部积分法定义:设函数)(x μμ=及)(x υυ=具有连续导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数积分总结
一、不定积分
1、不定积分的概念也性质
定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有
F`(x)=f(x)或dF(x)=f(x)dx,
那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。

定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作
⎰dx x f )(。

性质1:设函数f(x)及g(x)的原函数存在,则
⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([。

性质2:设函数f(x)的原函数存在,k 为非零常数,则
⎰⎰=dx x f k dx x kf )()(。

2、换元积分法 (1)第一类换元法:
定理1:设f(u)具有原函数,)(x ϕμ=可导,则有换元公式
)
(])([)(')]([x d f dx x x f ϕ
μμμϕϕ=⎰⎰=。

例:求⎰xdx 2cos 2
解 ⎰⎰⎰⎰=•=•=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得
⎰+=C x xdx 2sin 2cos 2
(2)第二类换元法:
定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设
)(')]([t t f ψψ具有原函数,则有换元公式
,]
)(')]([[)()
(1
x t dt t t f dx x f -=⎰⎰=ψ
ψψ
其中)(1
x -ψ是)(t x ψ=的反函数。

例:求⎰
>+)0(2
2
a a
x dx
解 ∵t t 2
2sec tan 1=+,

⎪⎭⎫ ⎝⎛<<-=22
tan ππ
αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+,
于是

⎰⎰==+tdt dt t a t
a a x dx sec sec sec 222 ∴C t t a
x dx ++=+⎰tan sec ln 2
2
∵a
a x t 2
2sec +=
,且0tan sec >+t t ∴1222222)ln(ln C a x x C a
a x a x a x dx
+++=+⎪⎪⎭


⎛++
=+⎰

a C C ln 1-=
3、分部积分法
定义:设函数)(x μμ=及)(x υυ=具有连续导数。

那么,两个函数乘积的导数公式为
()'''μυυμμυ+=
移项得 υμμυμυ')'('-= 对这个等式两边求不定积分,得
⎰⎰-=dx dx υμμυμυ''
此公式为分部积分公式。

例:求⎰
xdx x cos
解 ⎰⎰-=xdx x x xdx x sin sin cos
∴⎰
++=C x x x xdx x cos sin cos 分部积分的顺序:反对幂三指。

4、有理函数的积分
例:求⎰+-+dx x x x 6
51
2
解 ∵)2)(3(652
--=+-x x x x ,故设
2
36512-+-=+-+x B
x A x x x
其中A,B 为待定系数。

上式两端去分母后,得
)3()2(1-+-=+x B x A x
即 B
A x
B A x 32)(1--+=+
比较上式两端同次幂的系数,既有


⎧-=+=+1321
B A B A 从而解得 3,4-==B A 于是
C x x dx x x dx x x x +---=⎪⎭

⎝⎛---=+-+⎰⎰2ln 33ln 42334
6512 其他有些函数可以化做有理函数。

5、积分表的查询 二、定积分
1、定积分的定义和性质
(1)定义:设函数)(x f 在[]b a ,上有界,在[]b a ,中任意插入若干个分点
b x x x x x a n n =<<<<<=-1210
把区间[]b a ,分成n 个小区间
[][][]n n x x x x x x ,,,,,,12110-
各个小区间的长度依次为
1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x
在每个小区间[]i i x x ,1-上任取一点()i i i i x x ≤≤-ξξ1,作函数值)(i f ξ与小区间长度i x ∆的乘积()n i x f i i ,,2,1)( =∆ξ,并作出和
∑=∆=n
i i i x f S 1
)(ξ
记{}n x x x ∆∆∆=,,,m ax 21 λ,如果不论对[]b a ,怎么划分,也不论在小
区间
[]i i x x ,1-上点i ξ怎么选取,只要当0→λ时,和S 总趋于确定的极限I ,那么称这个极限I 为函数)(x f 在区间[]b a ,上的定积分(简称
积分),记作

b
a
dx x f )(,即
∑⎰
=→∆==n
i i i b
a
x f I dx x f 1
)(lim )(ξλ
其中)(x f 叫做被积函数,dx x f )(叫做被积表达式,x 叫做积分
变量,
a 叫做积分下限,
b 叫做积分上限,[]b a ,叫做积分区间。

定理1:设)(x f 在区间[]b a ,上连续,则)(x f 在[]b a ,上可积。

定理2:设
)(x f 在区间[]b a ,上有界,且只有有限个间断点,则)
(x f 在[]b a ,上可积。

(2)性质1:[]⎰⎰
⎰±=±b
a
b
a
b a
dx x g dx x f dx x g x f )()()()(
性质2:
⎰⎰
=b
a
b
a
dx x f k dx x kf )()( (k 是常数)
性质3:设b c a <<,则
⎰⎰⎰
+=b
c
c a
b
a
dx x f dx x f dx x f )()()(
性质4:如果在区间[]b a ,上1)(≡x f ,则
a b dx dx b
a
b a
-==⎰
⎰1
性质5:如果在区间[]b a ,上,0)(≥x f ,则
()b a dx x f b
a
<≥⎰
0)(
推论1:如果在区间[]b a ,上,)()(x g x f ≤,则
()b a dx x g dx x f b
a
b
a
<≤⎰⎰
)()(
推论2:
)()()(b a dx x f dx x f b
a
b
a
<≤⎰⎰
性质6:设M 及m 分别是函数)(x f 在区间[]b a ,上的最大值和
最小值,则
))(()()(b a a b M dx x f a b m b
a
<-≤≤-⎰
性质7(定积分中值定理):如果函数)(x f 在积分区间[]b a ,上连续,则在[]b a ,上至少存在一个点ξ,使下式成立
))()(()(b a a b f dx x f b
a
≤≤-=⎰
ξξ
2、微积分基本公式 (1)积分上限函数及其导数
定理1:如果函数)(x f 在区间[]b a ,上连续,则积分上限的函数
()⎰=Φx
a
dt t f x )(
在[]b a ,上可导,并且它的导数
))(()()('b x a x f dt t f dx d x x
a
≤≤==Φ⎰
定理2:如果函数)(x f 在区间[]b a ,上连续,则函数
⎰=Φx
a
dt t f x )()(
就是
)(x f 在区间[]b a ,上的一个原函数。

(2)牛顿-莱布尼茨公式
定理3:如果函数)(x F 是连续函数)(x f 在区间[]b a ,上的一个原函
数,则
)()()(a F b F dx x f b
a
-=⎰
3、定积分的换元法和分部积分法
(1)定积分的换元法 定理:
三、多元函数微分 四、重积分
五、曲面和曲线积分
六、
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档