1.1.2《集合间的基本关系》同步练习题

合集下载

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

1-2集合间的基本关系 同步训练第I 卷(选择题)一、单选题1.(2018·浙江高一课时练习)设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆BB .B ⊆AC .B ∈AD .A =B2.(2021·全国)下列命题中,正确的有( )①空集是任何集合的真子集;②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集:④如果不属于B 的元素一定不属于A ,则A B ⊆.A .①②B .②③C .②④D .③④ 3.(2018·佛山市第二中学)集合{}{}14,A x x B x x a =-≤≤=>,若A B ⋂≠∅,则a 的取值范围为( )A .4a <B .4a >-C .1a >-D .14a -<≤4.(2019·华东师范大学第一附属中学)已知集合{}2430,A x x x x R =-+<∈,(){}12202750,x B x a x a x x R -=+≤-++≤∈且,若A B ⊆,则实数a 的取值范围_______. A .[]4,0- B .[]4,1-- C .[]1,0- D .14,13⎡⎤--⎢⎥⎣⎦ 5.(2017·浙江)集合{|}A x x a =≤,2{|50}B x x x =-<,若A∩B=B ,则a 的取值范围是( )A .5a ≥B .4a ≥C .5a <D .4a < 6.(2019·太原市第五十三中学校高一月考)已知{}1,2,3A =,{}|,,B x x a b a A b A ==+∈∈,则B 的真子集个数为( )A .31B .32C .63D .64二、多选题7.(2021·江苏)给出下列选项,其中正确的是( )A .{}{}∅∈∅B .{}{}∅⊆∅C .{}∅∈∅D .∅⫋{}∅ 8.(2021·全国高一专题练习)已知集合{12}A xx =<<∣,{232}B x a x a =-<<-∣,下列命题正确的是A .不存在实数a 使得AB =B .存在实数a 使得A B ⊆C .当4a =时,A B ⊆D .当04a 时,B A ⊆E.存在实数a 使得B A ⊆第II 卷(非选择题)三、填空题9.(2020·瓦房店市实验高级中学高一月考)已知集合{}1,2,3,4M =,对它的非空子集A ,可将A 中的每一个元素k 都乘以()1k-再求和,则对M 的所有非空子集执行上述求和操作,则这些和的总和是______.10.(2021·全国)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 11.(2019·全国高一课时练习)某个含有三个实数的集合既可表示为,,0b b a ⎧⎫⎨⎬⎩⎭,也可表示为{a ,a +b ,1},则a 2015+b 2015的值为____.12.(2021·全国)已知{}{}1,21,2,3,4,5,6,7A ≠⊆⊂,满足上述条件的集合A 的个数是______.四、解答题13.(2021·全国高一课时练习)已知全集(){|010},{1,35,7}U U A B x N x A C B =⋃=∈≤≤⋂=,,试求集合B .14.(2017·湖南长沙一中高一期中)已知集合{|013}A x ax =<+≤,集合1{|2}2B x x =-<<. (1)若1a =;求AC B ;(2)若A B A =,求实数a 的取值范围.15.(2020·黑龙江哈九中高三期末(文))已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围; (2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.16.(2019·太原市第五十三中学校高一月考)写出集合P 的所有子集,其中(){},|5,,P x y x y x N y N ++=+=∈∈.参考答案1.C【解析】【分析】首先确定集合A 的特征,据此确定A 与B 的关系即可.【详解】由题意可知集合A 中的元素为集合B 的子集,据此可得:B A ∈.本题选择C 选项.【点睛】本题主要考查集合的表示方法,集合与元素的概念等知识,意在考查学生的转化能力和计算求解能力.2.C【分析】运用空集的性质,即可判断①;运用集合的传递性,即可判断②;由集合的真子集的个数,即可判断③;由韦恩图,即可判断④.【详解】①空集是任何集合的子集,是任何非空集合的真子集,故①错误;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错误;④由韦恩图易知④正确.故选C.【点睛】本题考查集合的概念,主要是空集和子集、真子集的性质,考查判断能力,属于基础题. 3.A【分析】据已知条件知A ,B 有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围.【详解】{}14A x x =-≤≤,{}B x x a =>,∵A B ⋂≠∅,∴对照数轴得4a <,即a 的取值范围为4a <,故选:A.【点睛】本题考查集合关系中的参数取值问题和集合的交集运算,将集合的关系转化为集合端点的不等关系,是解决本题的关键,属于基础题.4.B【分析】首先解出集合A ,若满足A B ⊆,则当()1,3x ∈时,120x a -+≤和()22750x a x -++≤恒成立,求a 的取值范围.【详解】{}13A x x =<<,A B ⊆,即当()1,3x ∈时,120x a -+≤恒成立,即12x a -≤- ,当()1,3x ∈时恒成立,即()1min 2x a -≤- ,()1,3x ∈而12x y -=-是增函数,当1x =时,函数取得最小值1-,1a ∴≤-且当()1,3x ∈时,()22750x a x -++≤恒成立,()()1030f f ⎧≤⎪⎨≤⎪⎩,解得:4a ≥- 综上:41a -≤≤-.故选B【点睛】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.5.A【解析】因为25005x x x -<⇒<<,又A B B B A ⋂=⇒⊆,则由{|}A x x a =≤,可得;5a ≥时满足条件A B B ⋂=.6.A【分析】由题:根据,a b 的取值情况分析集合{2,3,4,5,6}B =一共32个子集,所以31个真子集.【详解】由题:当1a b ==时,集合B 中元素最小为2,当3a b ==时,集合B 中元素最大为6, 又当1,2a b ==时,集合B 中元素为3,当1,3a b ==时,集合B 中元素为4,当2,3a b ==时,集合B 中元素为5,所以集合{2,3,4,5,6}B =,其子集个数为5232=个,所以真子集31个.故选:A【点睛】此题考查元素与集合的关系以及子集个数分析,关键在于熟记集合的子集个数结论,否则只有逐一列举,计算量大且容易出错.7.BCD【分析】利用空集的特征,以及元素和集合,集合与集合之间的关系逐项判断【详解】对于A ,∅不是{}{}∅的元素,故不正确;对于B ,∅是任何集合的子集,所以∅是{}{}∅的子集,故正确;对于C ,∅是{}∅的元素,故正确;对于D ,∅是任何非空集合的真子集,{}∅有一个元素∅,是非空集合,故正确.故答案为:BCD .8.AE【分析】利用集合相等判断A 选项错误,由A B ⊆建立不等式组,根据是否有解判断B 选项; 4a =时求出B ,判断是否A B ⊆可得C 错误,分B 为空集,非空集两种情况讨论可判断D选项,由D 选项判断过程可知E 选项正确.【详解】A 选项由相等集合的概念可得23122a a -=⎧⎨-=⎩解得2a =且4a =,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A B ⊆,得23122a a -≤⎧⎨-≥⎩即24a a ≤⎧⎨≥⎩,此不等式组无解,因此B 错误; C 选项当4a =时,得{52}B xx =<<∣为空集,不满足A B ⊆,因此C 错误; D 选项当232a a -≥-,即1a ≥时,B A =∅⊆,符合B A ⊆;当1a <时,要使B A ⊆,需满足23122a a -≥⎧⎨-≤⎩解得24a ≤≤,不满足1a <,故这样的实数a 不存在,则当04a ≤≤时B A ⊆不正确,因此D 错误;E 选项由D 选项分析可得存在实数a 使得B A ⊆,因此E 正确.综上AE 选项正确.故选:AE.【点睛】本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.9.16【分析】先求出集合M 它非空子集A 的个数,在所有子集中,各个元素出现的次数,即可解答.【详解】因为{}1,2,3,4M =,对它的非空子集A 共有15个, 分别是{}{}{}{}123412{},,,,,, 1,31,42,32,43,41,2,31,2,4{}{}{}{}{}{}{}{}{}{}1,3,42,3,41,2,34,,,,,,,,,,其中数字1,2,3,4都出现了8次. 依题意得:()()()()123481121314116⎡⎤-+-+-+-=⎣⎦. 故答案为:16.【点睛】本题主要考查了集合的非空真子集的概念,理解本题中的新定义的概念是解决本题的关键,属于中档题.10.2≤a ≤4【分析】根据集合A 解出a ﹣1<x <a +1,利用包含关系求解参数范围.【详解】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩ ,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4.故答案为:2≤a ≤411.0【分析】根据所给的一个集合的两种表达形式,看出第一种表达形式中,只有a +b 一定不等式0,重新写出集合的两种形式,把两种形式进行比较,得出a ,b 的值,得到结果.【详解】解:∵集合既可以表示成{b ,b a,0},又可表示成{a ,a +b ,1} ∴a +b 一定等于0在后一种表示的集合中有一个元素是1只能是b .∴b =1,a =-1∴a 2015+b 2015=0.【点睛】本题考查集合的元素的三个特性和集合相等.易错点在于忽略集合中元素的互异性. 12.31【分析】集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集,则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致,求出集合{}3,4,5,6,7的真子集个数,即可得出答案.【详解】由题意可知,集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集 则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致则满足上述条件的集合A 的个数为52131-=故答案为:31【点睛】本题主要考查了集合的包含关系,求集合的真子集个数,属于中档题.13.{0,2,4,6,8,9,10}【分析】计算{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,根据(){1,3,5,7}U A B ⋂=计算得到答案.【详解】{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,(){1,3,5,7}U A B ⋂=,{1,3,5,7}U B ∴=.故(){0,2,4,6,8,9,10}U U B B ==.【点睛】本题考查了交集,全集,补集,意在考查学生的计算能力.14.(1)1{|12A CB x x =-<≤-或2}x =;(2)(,4)[2,)-∞-+∞ 【解析】试题分析:(1)1a =时求出集合A ,根据补集的定义写出A B ;(2)A B A ⋂=得A B ⊆,A 中不等式解集分三种情况讨论:0a =、0a <和0a >时,求出对应集合A ,根据A B ⊆求出a 的取值范围.试题解析:(1)若1a =,则{|12}A x x =-<≤, 故1{|12A CB x x =-<≤-或2}x = (2),A B A A B ⋂=∴⊆,不等式013ax <+≤解集分三种情况讨论:①0a =,则,A R A B =⊆不成立;②0a <,则21{|}A x x a a =≤<-,由A B ⊆得12,12,2a a⎧-≤⎪⎪⎨⎪-<⎪⎩得4a <-;③0a >,则12{|}A x x a a =-≤<,由A B ⊆得11,222,a a⎧-≥-⎪⎪⎨⎪<⎪⎩得2a ≥. 综上所述:a 的取值范围为()[),42,-∞-⋃+∞.点睛:本题主要考查了集合的运算以及含有参数的集合间的关系,属于基础题;对于含有参数的一元一次不等式的解法,主要利用分类讨论的思想,对一次项系数进行讨论,分为0,0,0a a a =><三种情形,利用数轴将区间端点值进行比较,得出不等式组.15.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题. 16.{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【分析】依次写出集合P 中的所有元素,{}(1,4),(2,3),(3,2),(4,1)P =,即可写出其所有子集.【详解】由题(){},|5,,P x y x y x N y N ++=+=∈∈可解得{}(1,4),(2,3),(3,2),(4,1)P =,所有子集分为:没有元素:∅;一个元素:{}(1,4)},{(2,3)},{(3,2)},{(4,1);两个元素:{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)};三个元素:{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1);四个元素:{}(1,4),(2,3),(3,2),(4,1).所以,所有子集为:{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【点睛】此题考查求集合中的元素和写出集合的子集,其中要求根据题目条件准确写出集合中的元素,根据集合中元素个数分别写出子集,做到不重不漏.答案第9页,总9页。

人教版高中数学必修1同步章节训练题及答案全册汇编

人教版高中数学必修1同步章节训练题及答案全册汇编

高中数学必修1全册同步练习题目录1.1.1集合的含义与表示同步练习1.1.2集合间的基本关系同步练习1.1.3集合的基本运算同步练习1.2.1函数的概念同步练习1.3.1单调性与最大(小)值同步练习1.3.2奇偶性同步练习2.0基本初等函数同步练习2.1.1指数与指数幂的运算同步练习2.1.2指数函数及其性质同步练习2.2.1对数与对数的运算同步练习2.3幂函数同步练习3.1.1方程的根与函数的零点同步练习3.1.2用二分法求方程的近似解同步练习3.2.1几类不同增长的函数模型同步练习3.2.2函数模型的应用实例同步练习1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2的实数的全体;3)方程210x x +-= 的实数根4)全国著名的高等院校。

以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( ) A 、{(3,2)},{(2,3)}M N == B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( )A 、x M y M ∈∈且B 、x M y M ∉∈且C 、x M y M ∈∉且D 、x M y M ∉∉且 6、集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12} C={Zk k x x ∈+=,14}又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个 7、下列各式中,正确的是( ) A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Zk k x x ∈+=,13}={Zk k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。

2022-2022年高一必修一第1章 1.1.2 集合的基本关系数学题带答案和解析(人教A版)

2022-2022年高一必修一第1章 1.1.2  集合的基本关系数学题带答案和解析(人教A版)

2022-2022年高一必修一第1章1.1.2 集合的基本关系数学题带答案和解析(人教A版)填空题已知集合M={x|2m<x<m+1},且M=∅,则实数m的取值范围是____.【答案】m≥1【解析】∵M=∅,∴2m≥m+1,∴m≥1.故答案为m≥1解答题判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤xB(2) B A.【解析】试题分析:(1)利用一元一次不等式的解法分别求出集合A和集合B,由此能得到集合A是集合B的真子集.(2)A={x∈Z|-1≤x},∴利用数轴判断A、B的关系.如图所示,A B.(2)∵A={x∈Z|-1≤xA.选择题如果集合A={x|x≤},a=,那么()A. a∉AB. {a}AC. {a}∈AD. a⊆A【答案】B【解析】a=,∴a∈A,A错误.由元素与集合之间的关系及集合与集合之间的关系可知,C、D错,B正确.故选B点睛:本题考查了元素与集合,集合与集合的关系,元素与集合之间用属于∈,不属于∉的符号;集合与集合之间用包含于⊆,真包含,不包含相等=,的符号表示.解答题已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P ={x|x=+,p∈Z},试确定M,N,P之间的关系.【答案】M P=N.【解析】试题分析:M={x|x=m+,m∈Z}={x|x=,m ∈Z}={x|x=,m∈Z}M表示3的偶数倍加1除以6的数;N ={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},N表示3的整数倍加1除以6的数;P={x|x=+,p∈Z}={x|x=,p∈Z},P表示3的整数倍加1除以6的数即可得出结论.试题解析:∵M={x|x=m+,m∈Z}={x|x=,m∈Z}={x|x=,m∈Z},N={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},P={x|x=+,p∈Z}={x|x=,p∈Z},比较3×2m+1,3(n-1)+1与3p+1可知,3(n-1)+1与3p+1表示的数完全相同,∴N=P,3×2m+1只相当于3p+1中当p为偶数时的情形,∴M P=N.综上可知M P=N.解答题设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,求实数a、b的值.【答案】a=-1,b=1, a=b=1, a=0,b=-1【解析】试题分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1},分情况进行讨论即可.试题解析:∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1}.当B={-1}时,Δ=4a2-4b=0且1+2a+b=0,解得a=-1,b=1.当B={1}时,Δ=4a2-4b=0且1-2a+b=0,解得a=b=1.当B={-1,1}时,有(-1)+1=2a,(-1)×1=b,解得a=0,b=-1.综上:a=-1,b=1;或a=b=1;或a=0,b=-1选择题集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A. 7B. 12C. 32D. 64【答案】D【解析】集合P*Q的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P*Q的子集个数为26=64.故选D选择题若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A 有()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.故选D选择题设A={x|-1a},若A B,则a的取值范围是()A. {a|a≥3}B. {a|a≤-1}C. {a|a>3}D. {a|aB,画出数轴如图可求得a≤-1,注意端点能取否得-1是正确求解的关键.故选B填空题集合⊆{(x,y)|y=3x+b},则b=____.【答案】2【解析】得,代入y=3x+b得b=2.故答案为2选择题已知集合M={(x,y)|x+y0}和P={(x,y)|xM B. M P C. M=P D. M P【答案】C【解析】∴M=P.故选C填空题已知集合A={1,2,m3},B={1,m},B⊆A,则m=____.【答案】0或2或-1【解析】由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m =0或2或-1.故答案为0或2或-1填空题已知集合{2x,x+y}={7,4},则整数x=___,y=____.【答案】25【解析】由集合相等的定义可知或解得或,又x,y∈Z.故x=2,y=5.故答案为2,5选择题已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x 是等腰直角三角形},D={x|x是等边三角形},则()A. A⊆BB. C⊆BC. D⊆CD. A⊆D【答案】B【解析】∵等腰直角三角形必是等腰三角形,∴C⊆B.故选B选择题下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A. ①②B. ②③C. ②④D. ③④【答案】C【解析】空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.选择题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由B={x|ax﹣2=0},且B⊆A,故讨论B的可能性,从而求a.解:∵B={x|ax﹣2=0},且B⊆A,∴若B=∅,即a=0时,成立;若B={1},则a=2,成立;若B={2},则a=1,成立;故a的值有0,1,2;故不可能是3;故选D.选择题若{1,2}={x|x2+bx+c=0},则()A. b=-3,c=2B. b=3,c=-2C. b=-2,c=3D. b=2,c=-3【答案】A【解析】由条件知,1,2是方程x2+bx+c=0的两根,由韦达定理得b=-3,c=2.故选A选择题集合A={(x,y)|y=x}和B=,则下列结论中正确的是()A. 1∈AB. B⊆AC. (1,1)⊆BD. ∅∈A【答案】B【解析】B=={(1,1)},而A={(x,y)|y=x},B 中的元素在A中,所以B⊆A故选B.选择题下列四个集合中,是空集的是()A. {0}B. {x|x>8,且x<5}C. {x∈N|x2-1=0}D. {x|x>4}【答案】B【解析】选项A、C、D都含有元素.而选项B无元素,故选B.填空题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为____.【答案】{0,1,2}【解析】∵B⊆A,∴B=∅,{1}或{2}.当B=∅时,a=0;当B={1}时,a=2,当B={2}时,a=1.∴a∈{0,1,2}.故答案为{0,1,2}11。

高中数学必修一1.2 集合间的基本关系同步检测(人教A版,含解析)(23)

高中数学必修一1.2 集合间的基本关系同步检测(人教A版,含解析)(23)

1.2 集合间的基本关系一、单选题1.满足{}{}232006x x x M x N x -+=⊆⊆∈<<的集合M 的个数为( )A .2B .4C .6D .8答案:D 解析:由题意可得:{}{}2|3201,2x x x -+==,{}{}|061,2,3,4,5x N x ∈<<=,由{}{}1,21,2,3,4,5M ⊆⊆,则满足条件的集合M 中必定有元素1,2,可能含有3,4,5, 即可求解. 详解:因为{}{}2|3201,2x x x -+==,{}{}|061,2,3,4,5x N x ∈<<=,又因为{}{}1,21,2,3,4,5M ⊆⊆,所以满足条件的集合M 有{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5 {}1,2,4,5,{}1,2,3,4,5共8个故选:D点睛:本题主要考查了集合的包含关系的应用,属于基础题.2.若{1,2}{0M ⊆⊆,1,2,3,4},则满足条件的集合M 的个数为( )A .7B .8C .31D .32答案:B解析:根据集合间的关系以及子集的概念和子集和数的计算,即可求解.详解:由题意,因为{1,2}{0,1,2,3,4}M ⊆⊆,所以集合M 中至少含有1,2两个元素,至多含有0,1,2,3,4这5个元素,因此集合M 的个数即为集合{0,3,4}的子集个数,即为328=个.故选:B .点睛:根据两个集合间的关系求参数时,一是将两个集合的关系转化为元素间的关系,进而转化为参数满足的关系;二是当题目中有条件B A ⊆时,不要忽视B φ=,导致丢解.3.若集合A=x|x=5k-1,k∈Z},B=x|x=5k+4,k∈Z},C=x|x=10k-1,k∈Z}.则A ,B ,C 的关系是( )A .A ⊆C ⊆BB .A=B ⊆C C .B ⊆A ⊆CD .C ⊆A=B答案:D 解析:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩,对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,即可判断选项.详解:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩, 对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,则C A B ⊆=.故选:D.点睛:本题主要考查了集合的包含关系.属于较易题.4.设A 为非空的数集,{}3,6,7A ⊆,且A 中至少含有一个奇数元素,则这样的集合A 共有A .6个B .5个C .4个D .3个答案:A解析:可采用列举法(分类的标准为A 中只含3不含7,A 中只含7不含3,A 中即含3又含7)逐一列出符合题意的集合A.详解:解:∵A 为非空集合,{}3,6,7A ⊆,且A 中至少含有一个奇数∴当A 中只含3不含7时A =3,6},3}当A 中只含7不含3时A =7,6},7}当A 中即含3又含7时A =3,6,7},3,7}故符合题意的集合A 共有6个故选A点睛:本题主要考查了子集的概念,属中档题,较易.解题的关键是理解子集的概念和A 中至少含有一个奇数分三种情况:只含3不含7,A 中只含7不含3,A 中即含3又含7.5.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是A .11B .12C .15D .16答案:A 解析:可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 详解:由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个,且2,4不能同时出现,同时出现共有4个,所以满足题意的集合M 的个数为11个,故选A.点睛:本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.6.已知集合|,44k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,集合|,84k N x x k Z ππ⎧⎫==-∈⎨⎬⎩⎭,则( ) A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M N M ⋃=答案:B 解析:对两个集合中的元素x 所具有的性质P 分别化简,使其都是含有4π-的表达式. 详解: 由题意可知,(24)|,84k M x x k Z ππ+⎧⎫==-∈⎨⎬⎩⎭2|,84n x x n Z ππ⎧⎫==-∈⎨⎬⎩⎭ 2(21)|,8484k k N x x x k Z ππππ-⎧⎫==-=-∈⎨⎬⎩⎭或 所以M N ⊆,故选B.点睛:本题考查两个集合之间的基本关系,要求对集合中的元素所具有的性质能进行化简.7.{}{}2|60,|10A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是A .11,32⎧⎫-⎨⎬⎩⎭B .110,,32⎧⎫--⎨⎬⎩⎭C .110,,32⎧⎫-⎨⎬⎩⎭D .11,32⎧⎫⎨⎬⎩⎭答案:C详解:由题意{}3,2,A A B A B A =-⋃=∴⊆ 当11,0,,3,,3B m B m m φφ==≠-=-=时当时由得由112,.2m m -==-得所以,m 的取值范围为110,,32⎧⎫⎨⎬⎩⎭8.已知集合{|21,},{|14}A x x k k Z B x x ==+∈=-<≤,则集合A B 的真子集的个数是( )A .3B .4C .7D .8答案:A解析:根据题意由A 的意义,再结合交集的定义可得集合A∩B,分析可得答案.详解:由题意知,A 为奇数集,又由集合{|14}B x x =-<≤,则A∩B=1,3},共2个元素,其子集有22=4个,所以真子集有3个;故选A .点睛:本题考查集合的子集与真子集,关键是正确理解集合A ,求出集合A∩B.9.已知集合{}20A mx =-=有两个非空真子集,则实数m 的取值范围为( ) A .{}4m m >B .{}04m m m <或>C .{}4m m ≥D .{}04m m m ≤≥或答案:A 解析:n 元集合非空真子集的个数为22n -,由题意可得集合A 为二元集合,即关于x 的方程有两不等实根,由0m >及0>运算即可.详解:由已知集合{}20A mx =-=有两个非空真子集即关于x 的方程有两个不等实数根,即0m ≠0m >,则240m =-,∴240m m ->又0m >,∴4m >,故选A .点睛:本题考查了集合的子集的概念,同时考查了分类讨论的思想.10.下列集合与3,4}是同一集合的是( )A .3},4}}B .(3,4)}C .(4,3)}D .4,3}答案:D解析:分别对A ,B ,C ,D 进行分析,从而得出答案.详解:对于A 中元素是集合,而不是实数,所以不是同一个集合;而B 、C 选项的集合是点集,不是数集,所以不是同一个集合;对于D :由集合的互异性得:4,3}与3,4}是同一个集合,故选:D .点睛:本题考查了集合的相等问题,注意看清集合中的元素,属于基础题.二、填空题1.下列四个结论:①∅⊆∅;②0∈∅;③{}0∅;④{}0=∅.其中正确结论的序号为______.答案:①③解析:根据集合元素与集合属于关系的定义,可判断②;根据空集的定义,可判断①③④. 详解:①空集是自身的子集,①正确;0不是空集中的元素,②错误;空集是任何非空集合的真子集,③正确;{}0是含一个元素0的集合,不是空集,④错误.故正确结论的序号为①③. 点睛:集合与集合之间的关系,元素与集合之间的关系是用不同的符号表示的,特别注意空集是不含有任何元素的集合,且规定∅⊆∅.2.已知集合{}0,1A =,{}1,0,3B a =-+且A B ⊆,则a =__________.答案:2-解析:∵A B ⊆,∴31a +=,2a =-,故2a =-,经检验满足题意,故答案为2-.3.若集合{}224A x N x =∈<,{}B a =,B A ⊆,则a 的最大值为________.答案:4解析:利用列举法表示集合A ,根据a A ∈可得答案.详解:因为自然数集中只有0,1,2,3,4x =满足224x <, 所以{}{}2240,1,2,3,4A x N x =∈<=,又因为{}B A a =⊆,所以{}0,1,2,3,4a ∈,a 的最大值为4.故答案为:44.已知集合2{2,3,1}B a a =-+,且{1,2}A a =+,A B ⊆,则实数a =___________答案:0解析:根据子集关系,建立关于字母的方程,解完后注意检验.详解:解:∵A B ⊆,集合2{2,3,1}B a a =-+,且{1,2}A a =+,∴1a B +∈且12a +≠,∴13a +=,或211a a a +=-+,解得:2a =,或0a =,经检验:0a =适合题意,故答案为:0点睛:本题考查子集的关系,注意元素互异性的检验,属于易错题.5.已知集合2|230Ax x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.答案:-1或3解析:解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 详解:集合2|230{1,3}A x x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a=-1或3 故答案为:-1或3点睛:本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.三、解答题1.已知集合()15A =,,集合{|3243}B x a x a =-<<-,若B A ⊆,求实数a 的取值范围.答案:(,2]a ∈-∞解析:根据集合的包含关系,直接进行计算,可得结果.详解:当3243a a -≥-时,即1a ≤,集合B φ= ,满足B A ⊆;当3243a a -<-时,即1a >,由B A ⊆,得1321435a a a >⎧⎪-≥⎨⎪-≤⎩,解得12a <≤ 综上,(]2a ∈-∞,. 点睛:本题考查集合的包含关系求参数,审清题意,细心计算,属基础题.2.记关于x 的不等式01x a x -≤+的解集为P ,不等式|1|1x -≤的解集为Q . (1)若3a =,求P ;(2)若Q P ⊆,求a 的取值范围.答案:(1){}13P x x =-<≤;(2)[2,)+∞.解析:(1)结合分式不等式的求解求出P ,(2)结合绝对值不等式的求解求出Q ,然后结合集合之间的包含关系即可求解.详解:解:(1)当3a =时,原不等式可转化为(3)(1)010x x x -+⎧⎨+≠⎩,解得13x -<≤, {}13P x x ∴=-<≤.(2)由11x -≤可得02x ≤≤,即解集为{}02Q x x =≤≤,当1a =-时,P =∅,不满足题意;当1a >-时,{}1P x x a =-<≤,Q P ⊆,2a ∴≥;当1a <-时,{}1P x a x =≤<-,此时不满足题意,综上,a 的范围[2,)+∞.点睛:本题考查分式不等式和含绝对值不等式的求解,考查根据集合的包含关系求参数,属于基础题.3.设集合{}13A x x =-<<,{}B x x m => .(1)若1m =- ,求集合A 在B 中的补集;(2)若A B B ⋃= ,求实数m 的取值范围.答案:(1){}3x x ≥ ;(2)1m ≤-解析:(1)根据补集定义,可求得补集。

人教A版必修1同步精练:1.1.2集合间的基本关系(含答案)

人教A版必修1同步精练:1.1.2集合间的基本关系(含答案)

1.1.2集合间的基本关系1. 集合123{,,,,}n A a a a a =L ,则A 的子集有 个,真子集有 个。

2.(1)满足条件{2,3}{1,2,3,4,5}M ⊆⊆的集合M 有 个。

(2){2,3,7}A ⊂≠,且A 中至多有一个奇数,则这样的集合A 有 A .3个 B .4个 C .5个 D .6个3.(1)设集合2{|,}P y y x x R ==∈,2{(,)|,}Q x y y x x R ==∈,则P 与Q 的关系是A .P Q ⊆B .P Q ⊇C .P Q =D .以上都不对(2)已知集合},61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, },612|{Z p p x x P ∈+==试确定P N M ,,之间的关系.4.已知集合{(,)|2,,}A x y x y x y N =+=∈,写出A 的所有子集。

5.已知集合{|13}A x x =≤≤,{|(1)()0}B x x x a =--=。

(1)若A B ⊆,求实数a 的取值范围;(2)是否存在实数a ,使得A B =成立?6.已知集合{2,4,6,8,9}A =,{1,2,3,5,8}B =,又非空集合C 是这样的一个集合:若各元素都加上2后就变成了A 的一个子集;若各元素都减去2就变成了B 的一个子集,求集合C 。

7.(1)已知集合{1,3,21}A m =--,集合2{3,}B m =,若A B ⊆,则实数m 的取之集合为 。

(2)已知集合}1|{},1|{2====ax x B x x A .若A B ⊆,求实数a 的值;(3)集合{}02},1,1{2=+-=-=b ax x x B A ,若B ≠∅,且B A ⊆,求a 和b 的值.(4)已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求实数m 的范围。

8.设{}042=+=x x x A ,函数{}01)1(222=-+++=a x a x x B . (1)若B A ⊆,求实数a 的取值范围;(2)若A B ⊆,求实数a 的值.。

高中数学必修一1.2 集合间的基本关系同步检测(人教A版,含解析)(30)

高中数学必修一1.2 集合间的基本关系同步检测(人教A版,含解析)(30)

1.2 集合间的基本关系一、单选题1.下列符号表述正确的是( ) A .*0N ∈ B .1.732Q ∉ C .{}0∅∈ D .{}2x x ∅⊆≤答案:D解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.2.已知集合{}2,1,0,1,2A =--,{}1,B y y x x A ==-∈,则下列关系正确的是( ) A .A B = B .A B ⊆ C .B A ⊆ D .A B =∅ 答案:C解析:求出B 后可判断,A B 的关系. 详解:由集合{}2,1,0,1,2A =--,{}1,B y y x x A ==-∈, 得{}1,0,1B =-.又因为集合{}2,1,0,1,2A =--,所以B A ⊆.故选C . 点睛:判断两个集合是否具有包含关系,只需根据子集的定义检验即可,此类问题为容易题. 3.下列关系中正确的个数为( )(1){}00∈;(2){}0∅⊆;(3){}(){}0,10,1⊆; (4)(){}(){},,a b b a =;(5){}{},,a b b a =. A .1B .2C .3D .4答案:C解析:利用元素与集合的关系符号表示、集合与集合之间的关系符号表示即可判断. 详解:对于(1),0是集合{}0中的元素,即{}00∈,故正确; 对于(2),空集是任何集合的子集,故{}0∅⊆,故正确;对于(3),集合{}0,1中的元素为0,1,集合(){}0,1中的元素为()0,1,故错误; 对于(4),集合(){},a b 中的元素为(),a b ,集合(){},b a 中的元素为(),b a ,故错误. 对于(5),{},a b 中的元素为,a b ,{},b a 中的元素为,a b ,故正确. 故选:C4.下列四个集合中,是空集的是( ) A .{|33}x x B .2{|0}x x ≤C .2{|10,}x x x x R -+=∈D .22{(,)|,,}x y y x x y R =-∈答案:C解析:利用空集的定义直接判断选项是否是空集,即可. 详解: 解:33x +=,0x ∴=,所以{|33}{0}x x +==,A不是空集.20x ,0x ∴=,所以2}{|0}{0x x ≤=,B 不是空集.210x x -+=,x ∈R ,()2141130∆=--⨯⨯=-<,2{|10,}x x x x R ∴-+=∈=∅;即C 是空集.22y x =-,x ,y R ∈,即220y x +=0x y =⎧∴⎨=⎩,所以{}22){(,)|,,(0,0}x y y x x y R ==-∈;D 不是空集. 故选:C .5.已知集合{}2320A x x x =-+=,{}06B x x =∈<<N ,则满足条件A C B ⊆的集合C 的个数为( ) A .7 B .8C .15D .16答案:A解析:先求出集A ,B ,再由件A C B ⊆,确定集合C 即可 详解:解:由题意得{}{}1,2,1,2,3,4,5A B ==, 因为A C B ⊆所以{}1,2 {}1,2,3,4,5C ⊆,所以集合C 的个数为集合{}3,4,5的非空子集的个数为3217-=, 故选:A.6.已知集合{}21,2,2A a =+,{}1,3B a =,若B A ⊆,则a =( )A .1或2B .2C .3D .1或2或23答案:D解析:利用子集的定义讨论即可. 详解:因为B A ⊆,集合{}21,2,2A a =+,{}1,3B a =,若32a =,则23a =,符合;若223+=a a ,则1a =或2,经检验均符合. 故选:D. 7.若1,2,3} A ⊆1,2,3,4,5},则集合A 的个数为 A .2 B .3C .4D .5答案:B 详解:集合1,2,3}是集合A 的真子集,同时集合A 又是集合1,2,3,4,5}的子集,所以集合A 只能取集合1,2,3,4},1,2,3,5}和1,2,3,4,5}. 考点:集合间的基本关系.8.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( ) A .2 B .1 C .-1 D .-2答案:A解析:首先化简集合B ,再根据两个集合相等,里面的元素相等即可求出a 的值. 详解:由题意得()(){}{}|10,1,B x x x a a R a =--=∈=,因为A B =,所以2a =. 故选:A 点睛:本题主要考查了集合的相等,属于基础题.9.设集合A={x|1<x<2},B={x|x<a }满足A ⊆B ,则实数a 的取值范围是( ) A .[2,+∞) B .(-∞,1]C .(2,+∞)D .(-∞,2]答案:A解析:根据子集的定义、以及A 、B 两个集合的范围,建立实数a 的不等式,求解即可得到a 的取值范围. 详解:由于 集合A =x|1<x <2},B =x|x <a},且满足A ⊆B , ∴a≥2, 故选:A . 点睛:本题主要考查集合间的关系,子集的定义,属于基础题.10.已知P 2{|1,x x n n ==+∈}N ,Q 2{|41,y y m m m ==-+∈}N ,则P 与Q 关系是( ) A .P Q = B .P QC .P QD .以上都不对答案:D解析:根据2P ∈,但2Q ∉,以及2Q -∈但2P -∉可得. 详解:当1n =时,2x =,所以2P ∈,令2412m m -+=,即2410m m --=,解得2m =N ∉, 所以2Q ∉,当1m =时,1412y =-+=-Q ∈,所以2Q -∈,而2P -∉, 故选D . 点睛:本题考查了集合之间的基本关系,属于基础题. 二、填空题1.设集合{1,2,3,4,5,6},{4,5,6,7,8}A B ==,则满足S A ⊆且S B φ⋂≠的集合S 的个数是__________个答案:56解析:正难则反,S B φ⋂≠,从这个条件出发,可先求S B φ⋂=的个数,再用全部子集的个数减去S B φ⋂=的个数即可 详解:集合A 的子集有:{1},{2},{3},{4},{5},{6} ,{1,2},{1,3},{1,4},{1,5},{1,2,3,4,5,6},∅,共64个; 又,{4,5,6,7,8}S B B ⋂≠∅=,所以S 不能为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅共8个,则满足S A ⊆且S B ⋂≠∅的集合S 的个数是64856-=. 点睛:集合中元素个数若为n 个,则子集个数为2n 个2.设集合P 满足{}{}1,20,1,2,3,4P ≠⊆⊂,满足条件的P 的个数为 ______________ .答案:7个解析:由{}1,2P ⊆可知P 中必含有1,2;由{}0,1,2,3,4P ≠⊂,可知0,3,4不全为P 中元素,以此可得P 集合,进而得到结果.详解:{}1,2P ⊆ P ∴中必含有元素1,2,又{}0,1,2,3,4P ≠⊂ {}1,2P ∴=,{}0,1,2,{}1,2,3,{}1,2,4,{}1,2,0,3,{}1,2,0,4,{}1,2,3,4 ∴满足条件的P 共有7个故答案为:7个 点睛:本题考查根据集合的包含关系确定集合个数的问题,关键是能够根据包含关系确定所求集合中所包含的元素情况.3.设集合{}1A =-,{}1B x ax ==,若B A ⊆,则a =___________.答案:0或1-解析:方程1ax =的根为1-或无实解. 详解:0a =时,1ax =无解,满足题意,0a ≠时,由1ax =得11x a==-,1a =-. 综上a 的值为0或1-. 故答案为:0或1-. 点睛:本题考查集合的包含关系,解题时要注意空集是任何集合的子集. 4.已知集合,集合,若,则实数=_________.答案:1解析:试题分析:由条件B A ⊆可知集合B 是集合A 的子集,所以有221m m =-或21m =-(舍),解得:1m =. 考点:集合间的关系.5.已知数列{}n a 是公差为()0d d ≠的等差数列,数列{}n b 是公比为()1q q ≠的等比数列,记集合{},n n M n a b n N *==∈,则集合M 的子集最多有________个.答案:4解析:分类讨论1q ≠-和1q =-两种情况,推导出集合(){},n A n a n N *=∈与集合(){},n B n b n N*=∈中的点不可能有三个公共点,得出集合M 至多只有两个元素,再利用集合子集个数公式可得出所求结果. 详解:1q ≠,当1q ≠-时,集合(){},nB n b n N *=∈中的点不可能出现三点共线,而集合(){},nA n a n N *=∈所有的点都在同一条直线上,此时,集合M 至多只有两个元素;当1q =-时,假设集合(){},nA n a n N *=∈与集合(){},nB n b n N *=∈有三个公共点(),k k b 、(),ss b 、()(),,,,t t b k s t k s t N *<<∈,则k b 、s b 、t b 中至少有两个相等,则ka 、s a 、t a 中至少有两个相等,这与0d ≠矛盾,此时,集合M 至多只有两个元素. 因此,集合M 的子集个数最多是224=个. 故答案为4. 三、解答题1.已知集合{|12},{|||1}A x ax B x x =<<=<,是否存在实数a ,使得A B ⊆.若存在,求出实数a 的取值范围;若不存在,请说明理由.答案:存在;0a =或2a ≥或2a ≤-.解析:先确定集合B 中的元素,然后求集合A ,根据a 分类:0,0,0a a a =><分类解不等式求得集合A ,然后再由包含关系得关于a 的不等关系,从而得出结论. 详解:∵{}|11B x x =-<<,而集合A 与a 的取值范围有关. ①当0a =时,A =∅,显然A B ⊆. ②当0a >时,12A xx aa ⎧⎫=<<⎨⎬⎩⎭,∵A B ⊆,如图1所示,∴11,21,aa⎧-⎪⎪⎨⎪⎪⎩∴2a ≥.③当0a <时,21A xx aa ⎧⎫=<<⎨⎬⎩⎭,∵A B ⊆,如图2所示,∴11,21,aa⎧⎪⎪⎨⎪-⎪⎩∴2a -.综上可知,所求实数a 的取值范围为0a =或2a ≥或2a ≤-. 点睛:本题考查集合的包含关系,掌握子集的定义是解题关键.解不等式时要注意对未知数的系数分类讨论.2.已知集合A =x|1-a<x≤1+a},集合B =122xx ⎧⎫-<≤⎨⎬⎩⎭∣. (1)若A ⊆B ,求实数a 的取值范围; (2)若B ⊆A ,求实数a 的取值范围;(3)是否存在实数a 使A ,B 相等?若存在,求出a ;若不存在,请说明理由.答案:(1)a≤1;(2)a≥32;(3)不存在,答案见解析. 解析:(1)根据集合的包含关系,即可列出不等式组,求解即可; (2)根据集合的包含关系,即可列出不等式组,求解即可; (3)根据(1)(2)所求,即可判断. 详解:(1)∵A ⊆B ,∴a≤0或112120a a a ⎧-≥-⎪⎪+≤⎨⎪>⎪⎩解得a≤1.(2)∵B ⊆A ,∴11212a a ⎧-≤-⎪⎨⎪+≥⎩解得a≥32. (3)不存在.理由:若A B =,需满足A ⊆B ,且B ⊆A ,即a≤1且a≥32,显然不存在这样的a.故不存在a使得A B.点睛:本题考查根据集合的包含关系,以及集合相等求参数范围,属综合基础题.3.已知二次函数满足条件,(为已知实数).(1)求函数的解析式;(2)设,,当时,求实数的取值范围.答案:(1);(2).解析:(1)先由题意,设二次函数,根据,得到,即可求出结果;(2)先化简集合,解方程,分别讨论,,三种情况,即可得出结果.详解:(1)因为二次函数满足条件,设二次函数,又,所以,因此,所以,所以;(2)因为,解方程得或,当时,满足;当时,,由得,解得,所以;当时,,由得,解得,所以, 综上,实数的取值范围是.点睛:本题主要考查求二次函数的解析式,以及由集合的包含关系求参数的问题,熟记待定系数法求函数解析,熟记集合间的基本关系即可,属于常考题型. 4.已知集合U =R ,集合()(){}230A x x x =--<,函数()22lg x a y a x-+=-的定义域为集合B .(1)若12a =,求集合()UA B ;(2)若A B ⊆,求实数a 的取值范围.答案:(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(][]1]1,2-∞-⋃,. 解析:(1)根据不等式求出集合A ,求出函数的定义域B ,即可求解补集和交集; (2)根据集合的包含关系比较端点的大小列不等式求解即可. 详解:(1)集合{}|23A x x =<<,因为12a =.所以函数()2924lglg12x x a y a xx --+==--,由94012x x->-,可得集合1924B x x ⎧⎫=<<⎨⎬⎩⎭.{1|2UB x x =≤或94x ⎫≥⎬⎭,故()934U A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭. (2)因为A B ⊆,由{}23A x x =<<,而集合B 应满足()220x a a x-+>-,因为22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,故{}22B x a x a =<<+,依题意:2223a a ≤⎧⎨+≥⎩,即1a ≤-或12a ≤≤, 所以实数a 的取值范围是(][]1]1,2-∞-⋃,. 点睛:此题考查集合的基本运算,根据集合的包含关系求解参数的取值范围,在第二问需要考虑解集端点的大小关系.5.下列集合间是否有包含关系? (1){}1,2,3A =,{}1,2,3,4B =,{}2,3,4C = (2)N ,Z ,Q ,R(3){}13A x x =<≤,{}|14B x x =≤≤答案:(1)A B ⊆,C B ⊆,A 与C 无包含关系(2)N Z Q R ⊆⊆⊆(3)A B ⊆解析:(1)由题意可知,集合A 中的元素都属于集合B ,集合C 中的元素都属于集合B ,1C ∉,4A ∉,根据包含关系的定义,求解即可.(2)由题意可知,N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,根据包含关系的定义,求解即可.(3)由题意可知,集合A 中的元素都属于集合B .根据包含关系的定义,求解即可. 详解:(1)因为集合A 中的元素都属于集合B ,集合C 中的元素都属于集合B ,1C ∉,4A ∉,所以A B ⊆,C B ⊆,A 与C 无包含关系.(2)因为N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,所以N Z Q R ⊆⊆⊆. (3)因为A={}|13x x <≤,B={}|14x x ≤≤,所以集合A 中的元素都属于集合B ,则A B ⊆. 点睛:本题考查集合之间的关系,属于较易题.。

数学必修1 1.1.2《集合间的基本关系》同步讲练

数学必修1 1.1.2《集合间的基本关系》同步讲练

高中数学必修1 编辑:鼎吉教育高中数学必修一《集合间的基本关系》导学导练【知识要点】1. Venn 图与数轴法表示集合 2. 子集的概念 3. 两个集合相等的条件 4. 真子集的概念 5. 空集及其有关的问题【范例析考点】考点一.判断集合间的关系例1:已知M={}x y R y =∈ N={}2m x R x =∈,则下列关系中正确的是 ( ) A .MN B. N M = C.N M ≠ D. NM【针对练习】1、已知集合}0,0|),{(><+=xy y x y x M 和}0,0|),{(<<=y x y x P ,那么( )A.PM B.M P C.P M = D.MP2、集合A={x|x=2n +1,n ∈Z}, B={y|y=4k ±1,k ∈Z},则A 与B 的关系为( )A .A ≠⊂B B .A ≠⊃B C .A=B D .A ≠B3、集合{}Z k k x x A ∈==,2,{}Z k k x x B ∈+==,24,则有( ) (A)B A = (B) B A ⊆ (C)A B ⊆ (D) 以上都不是 4、设集合}1|),{(}|),{(====xyy x B x y y x A 则集合B A ,之间的关系是( )A 、B A ⊆ B 、B A ⊇C 、B A =D 、以上都不是 5、已知集合A={}1,0 B={}A x x ∈,则A 与B 的关系正确的是 ( )A .B A ⊆ B. AB C. B A ⊇ D. B A ∈6、设集合A={0,1},集合B={x|x A ⊆},则A 与B 的关系如何?7、已知},|{}|{},1,0{*∈∈=⊆==N x A x x C A x x B A ,试确定A ,B ,C 之间的关系考点二:确定集合的个数问题例2:满足关系式{}{}5,4,3,2,12,1⊆⊆A 的集合A 的个数为( )(A) 4 (B)6 (C) 7 (D) 8 【针对练习】1、集合},,{c b a 的子集有( )个 (A) 5 (B)6 (C) 7 (D) 82、满足{}M a ⊆{a,b,c,d}的集合M 共有( )A .6个 B. 7个 C. 8个 D. 15个3、若}8,4,2,0{},3,2,1,0{,,==⊆⊆C B C A B A 则满足上述条件的集合A 有 个 4、设P 、Q 为两个非空实数集合,定义集合},|{Q b P a b a Q P ∈∈+=+,若},5,2,0{=P }6,2,1{=Q ,则P +Q 中元素的个数是________考点三:利用集合间的关系求字母参数问题 例3:已知集合}52|{≤<-=x x A ,}121|{-≤≤+-=m x m x B ,且A B ⊆,求实数m 的取值范围。

2021-2022学年度人教版高一数学必修一课后作业同步练习题(含答案)

2021-2022学年度人教版高一数学必修一课后作业同步练习题(含答案)

2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合A中只含一个元素1,则下列格式正确的是A.1=AB.0∈AC.1∉AD.1∈A2.集合{x∈N∗|x−2<3}的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合{x∈N|x3=x},用列举法表示为{−1,0,l};②实数集可以表示为{x|x为所有实数}或{R};③方程组{x+y=3,x−y=−1的解集为{x=1,y=2}.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.{(x,y)|x=0,y≠0,或x≠0,y=0}B. {(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为0}5.若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a=____.6.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a为 .7.设方程ax2+2x+1=0(a∈R)的根组成的集合为A,若A只含有一个元素,求a 的值.8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程x=|x|的所有x的值构成的集合B.【能力提升】集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b∈M,设c= a+b,则c与集合M有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又x∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.±√2【解析】由于P,Q相等,故a2=2,从而a=±√2.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组{y=2x+1,y=x+3,的解,解方程组,得{x=2,y=5,∴a为(2,5).7.A中只含有一个元素,即方程ax2+2x+1=0(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为x=-12;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为x1=x2=-1.∴a的值为0或1.【备注】误区警示:初学者易自然认为ax2+2x+1=0(a∈R)是一元二次方程,而漏掉对a的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是A.a≤2 B.a≤1 C.a≥1 D.a≥22.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则A.M =NB.M⊆NC.M⫌ND. M⫋N3.已知集合A={1,−2,x2−1},B={1,x2−3x,0},若A=B,求实数x的值. 4.满足条件{1,2,3}⫋M⫋{1,2,3,4,5,6}的集合M的个数是A.8B.7C.6D.55.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y>0},那么M与P的关系为 .6.含有三个实数的集合,既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2015+b2016= .7.设集合A={(x,y)|y=2x−1},B={(x,y)|y=x+3},求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N⫋M,求a的取值范围.【能力提升】已知A={x||x−a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵A⊆B,∴a≥22.D【解析】本题考查集合间的基本关系. M={x|x=2k+14,k∈Z}, N={x|x=k+24,k∈Z}={x|x=m4,m∈Z};而{x|x=2k+14,k∈Z}⫋{x|x=m4,m∈Z};即M⫋N.选D.3.由A=B,可得{x2-1=0x2-3x=-2,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C.5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得{a,ba,1}={a2,a+b,0},所以ba=0,即b=0;此时{a,0,1}={a2,a,0},所以a2=1,a=a,且a≠1,解得a=−1.所以a2015+ b2016=−1+0=−1.7.{y=2x−1y=x+3,解得{x=4y=7;所以A∩B={(4,7)}.【解析】本题考查集合的基本运算. 8.解:M={x | x2-2x-3=0}={3,-1};∵N ⫋M,当N=时,N ⫋M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠时,∵N ⫋M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -,N={3,},不满足N ⫋M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N ⫋M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又∵A ={a -4,a +4},∴{a -4=1,a +4=2或{a +4=1,a -4=2.这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 的个数为 A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A ∪BB.A ∩BC.(∁U A )∩(∁U B )D.(∁U A )∪(∁U B )∅∅310313.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P ∩Q={0,2}. 4.B【解析】∁U M={x|-1≤x ≤1},结合数轴可得N ∩(∁U M )={x|0<x ≤1}. 5.12【解析】设两项运动都喜爱的人数为x ,依据题意画出Venn 图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A ∩B={(x ,y )|{x +y =0x −y =2}={(1,-1)}.7.因为A ={x |0<x -m <3},所以A ={x |m <x <m +3}. (1)当A ∩B =⌀时,需{m ≥0m +3≤3,故m =0.即满足A ∩B =⌀时,m 的值为0.(2)当A ∪B =B 时,A ⊆B ,需m ≥3,或m +3≤0,得m ≥3,或m ≤-3.即满足A ∪B =B 时,m 的取值范围为{m |m ≥3,或m ≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A ∪B={x|2≤x<10}. 因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}. (2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2. 【能力提升】A={1,2}.(1)因为A ∪B=A ,所以B ⊆A ,故集合B 中至多有两个元素1,2.而方程x 2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有 ①当a-1=2,即a=3时,B={1,2},满足题意; ②当a-1=1,即a=2时,B={1},满足题意. 综上可知,a=2或a=3. (2)因为A ∩C=C ,所以C ⊆A.①当C=⌀时,方程x 2-x+2m=0无实数解,因此其根的判别式Δ=1-8m <0,即 m >18.②当C={1}(或C={2})时,方程x 2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=18,代入方程x 2-x+2m=0,解得x=12,显然m=18不符合要求.③当C={1,2}时,方程x 2-x+2m=0有两个不相等的实数解x 1=1,x 2=2,因此x 1+x 2=1+2≠1,x 1x 2=2=2m ,显然不符合要求.综上,m >18.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=√xB.y=√xC.y=1xD.y=x 2+12.下列式子中不能表示函数y =f (x )的是 A.x =y 2+1B.y =2x 2+1C.x −2y =6D.x =√y3.函数y=√1−x2+√x2−1的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若f(x)满足f(a∙b)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)等于A.p+q B.3p+2q C.2p+3q D.p3+q25.若[a,3a−1]为一确定区间,则 a 的取值范围是 .6.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于 .7.求下列函数的定义域.(1)y=√2x+1+√3−4x;(2)y=1|x+2|−1.8.已知f(x)=x1+x.(1)求f(2)+f(12),f(3)+f(13)的值;(2)求f(2)+f(3)+f(4)+⋯+f(2013)+f(12)+f(13)+f(14)+⋯+f(12013)的值.【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】 1.B【解析】y=√x 的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x 2+1的值域为[1,+∞).故选B. 2.A【解析】一个x 对应的y 值不唯一. 3.D【解析】要使函数式有意义,需满足{1−x 2≥0x 2−1≥0,解得x=±1,故选D.4.B【解析】f (72)=f (8×9)=f (8)+f (9)=3f (2)+2f (3)=3p +2q . 5.(12,+∞)【解析】由题意3a -1>a ,则a >12.【备注】误区警示:本题易忽略区间概念而得出3a -1≥a ,则a ≥12的错误.6.2【解析】由图可知f (3)=1,∴f [f (3)]=f (1)=2.【备注】误区警示:本题在求解过程中会因不理解f [f (3)]的含义而出错. 7.(1)由已知得{2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为[−12,34].(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1, 得x ≠-3,x ≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞). 8.(1)f (2)+f (12)=21+2+121+12=23+13=1,f (3)+f (13)=31+3+131+13=34+14=1.(2)∵f(x)+f (1x)=x 1+x+1x1+1x=x 1+x+1x +1=1,∴f (2)+f (3)+f (4)+⋯+f(2013)+f (12)+f (13)+f (14)+⋯+f (12013)=f (2)+f (12)+f (3)+f (13)+f (4)+f (14)+⋯+f (2013)+ f (12013)=1+1+1+⋯+1(共2012个1相加) =2012. 【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p, 令a=b=3,得f(9)=f(3)+f(3)=2q, 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知y =f (x )是反比例函数,当x =2 时,y =1,则y =f (x ) 的函数关系式为 A.f (x )=1xB.f (x )=−1xC.f (x )=2xD.f (x )=−2x2.已知函数f (x )={2,x ∈[−1,1],x,x ∉[−1,1],若f [f (x )]=2,则x 的取值范围是A.∅B.[−1,1]C.(−∞,−1)∪(1.+∞)D.{2}∪[−1,1]3.已知函数f(x)={x +1,x ∈[−1,0]x 2+1,x ∈(0,1],则函数f(x)的图象是( )A. B. C. D.4.已知f (x )={3x +1,x ≥0,|x |,x <0,则f[f(−√2)]=A.2B.-2C.3√2+1D.−3√2+15.已知函数f (2x +1)=3x +2,且f (a )=4,则a = . 6.已知函数f (x )对于任意实数x 满足条件f (x+2)=1f(x),若f (1)=-5,则f[f (5)]= .7.已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (x )=0,方程f (x )=x 有两个相等的实数根.求函数f (x )的解析式.8.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0) 左侧的图形的面积为f (t ),试求函数f (t ) 的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设f(x)=kx(k≠0),∵当x=2时,y=1,∴1=k2,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵f(-√2)=|-√2|=√2>0,∴f[f(-√2)]=f(√2)=3√2+1.【备注】无5.7 3【解析】f(2x+1)=3x+2=32(2x+1)+12,∴f(x)=32x+12,∴f(a)=32a+12=4,解得a=73 .6.-15【解析】由已知条件f (x+2)=1f(x)可得f (x+4)=1f(x+2)=f (x ),所以f (5)=f (1)=-5,所以f[f (5)]=f (-5)=f (-1)=1f(−1+2)=1f(1)=-15.7.∵f(x)=ax 2+bx ,且方程f (x )=x 有两个相等的实数根,∴∆=(b -1)2=0,∴b =1,又∵f (2)=0,∴4a +2=0,∴a =-12,∴f(x)=-12x 2+x .8.OB 所在的直线方程为y =√3x .当t ∈(0,1]时,由x =t ,求得y =√3t ,所以f (t )=√32t 2; 当t ∈(1,2]时,f (t )=√3-√32(2−t)2;当t ∈(2,+∞)时,f (t )=√3,所以{√32t 2,t ∈(0,1], √3-√32(2−t)2,t ∈(1,2],√3,t ∈(2,+∞).【能力提升】(1)由题意知y={(x +2)2,x ≥1x 2+2,x <1.(2)f (-3)=(-3)2+2=11, f (1)=(1+2)2=9.(3)若x ≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x 2+2=16,解得x=√14(舍去)或x=-√14.综上可得,x=2或x=-√14.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数f(x)在区间(a,b)上是增函数,在区间(c,d)上也是增函数,则函数f(x)在区间(a,b)∪(c,d)上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A.y=1−2xB.y=−x2+2xC.y=5D.y=√x−13.函数f(x)={x+1,x≥0x−1,x<0,在R上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数f(x)=x2−2(1−a)x+1 在区间(−∞,2]上为减函数,则a 的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数f(x)=axx−1,若2f(2)=f(3)+5.(l)求a 的值.(2)利用单调性定义证明函数f(x)在区间(1,+∞)的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中y=√x-1的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得2×2a2−1=3×a3−1+5,解得a=2.(2)由(1)知f(x)=2xx−1.任取x 1,x 2∈(1,+∞)且x 1<x 2,f (x 1)<f (x 2)=2x 1x 1−1−2x 2x 2−1=2x 1(x 2−1)−2x 2(x 1−1)(x 1−1)(x 2−1)=2(x 2−x 1)(x1−1)(x 2−1),因为1<x 1<x 2,所以x 1-1>0,x 2-1>0,x 2-x 1>0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令t (x )=y x=12x +80 000x-200,可以证明t (x )在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=−12x 2+300x -80 000=−12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损. 【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,12];单调减区间为(-∞,0)和(12,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设f (x ) 在[-2,-1]上为减函数,最小值为3,且f (x ) 为偶函数,则f (x ) 在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数y =f (x ) 是偶函数,其图象与x 轴有四个交点,则方程f (x )=0 的所有实根之和是 A.4B.2C.1D.03.函数y =f(x)是奇函数,图象上有一点为(a ,f(a)),则图象必过点A. (a ,f(−a))B. (−a ,f(a))C. (−a ,−f(a))D. (a ,1f(a)))4.设f (x )=ax 3+bx −5,其中a ,b 为常数,若f (−3)=7,则f (3)的值为 A.-7B.7C.17D.-175.已知定义在R 上的奇函数f (x ),当x >0 时,f (x )=x 2+|x |−1,那么x <0 时,f (x )= . 6.若函数f (x )=x+abx+1为区间[-1,1]上的奇函数,则a = ;b = .7.作出函数y =|x −2|(x +1)的图象,并根据函数的图象找出函数的单调区间. 8.已知函数f (x )=ax 3+bx 2+cx +d 是定义在R 上的偶函数,且当x ∈[1,2]时,该函数的值域为[−2,1],求函数f (x )的解析式. 【能力提升】已知函数f (x )=-12x 2+x ,是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数的值域恰为[2m ,2n ]?若存在,求出m ,n 的值;若不存在,说明理由.答案【基础过关】 1.D 2.D 3.C【解析】奇函数f (x )满足f (-x )=-f (x),故有f (-a )=-f (a ).因为函数f (x )是奇函数,故点(a ,f (a ))关于原点的对称点(-a ,-f (a ))也在y =f (x )上,故选C. 4.D【解析】∵f(-3)=a(-3)3−3b -5=7, ∴27a +3b =-12, ∴f (3)=27a +3b -5=-17. 5.-x 2-|x |+1 6.0 07.当x -2≥0,即x ≥2时,y =(x -2)(x +1)=x 2-x -2=(x −12)2−94;当x -2<0,即x <2时,y =-(x -2)(x +1)=-x 2+x +2=−(x −12)2+94.所以y ={(x −12)2−94,x ≥2.−(x −12)2+94,x <2.这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中(−∞,12],[2,+∞)是函数的单调增区间;(12,2)是函数的单调减区间.8.由f (x )为偶函数可知f (x )=f (-x ),即ax 3+bx 2+cx +d =-ax 3+bx 2-cx +d ,可得ax 3+cx =0恒成立,所以a =c =0,故f(x)=bx 2+d .当b =0时,由题意知不合题意;当b >0,x ∈[1,2]时f (x )单调递增,又f (x )值域为[-2,1],所以{f(1)=-2,f (2)=1⟹ {b +d =-2,4b +d =1⟹{b =1, d =−3;当b <0时,同理可得{f (1)=1, f (2)=−2⟹ {b +d =1, 4b +d =-2⟹{b =−1,d =2.所以f(x)=x 2-3或f (x )=−x 2+2. 【能力提升】假设存在实数m ,n ,使得当x ∈[m ,n ]时,y ∈[2m ,2n ],则在[m ,n ]上函数的最大值为2n .而f (x )=-12x 2+x =-12(x-1)2+12在x ∈R 上的最大值为12,∴2n ≤12,∴n ≤14.而f (x )在(-∞,1)上是增函数,∴f (x )在[m ,n ]上是增函数,∴{f(m)=2mf(n)=2n,即{−12m 2+m =2m −12n 2+n =2n.结合m <n ≤14,解得m =-2,n =0.∴存在实数m =-2,n =0,使得当x ∈[-2,0]时,f (x )的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简√−x 3x的结果为A.−√−xB.√xC.-√xD.√−x2.计算[(−√2)−2]−12的结果是A.√2B.−√2C.√22D.−√223.设13<(13)b <(13)a<1,则有A.a a <a b <b aB. a a <b a <a bC. a b <a a <b aD. a b <b a <a a4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)√a n n=a(a≥0);(3)(a b)5=a 5b15; (4)√(−3)26=(-3)13.A.1B.2C.3D.45.若10m =2,10n=4,则102m−n 2=.6.已知x=12(2 0131n -2 013−1n ),n ∈N *,则(x+√1+x 2)n 的值为 .7.化简下列各式: (1)(√a 23·√a )÷√a 6;(2)(a 23b 12)·(-3a 12b13)÷(13a 16b56).8.求下列各式的值:(1)2532;(2)(254)−32;(3)√259+(2764)−13-π0.【能力提升】已知x 12+x−12=3,求下列各式的值:(1)x+x -1;(2)x 32+x −32+2x 2+x −2+3.答案【基础过关】 1.A【解析】要使式子有意义,需-x 3>0,故x <0,所以原式=-√-x . 2.A【解析】本题考查指数运算.注意先算中括号内的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2《集合间的基本关系》同步练习题 1.集合A ={x |0≤x <3且x ∈Z}的真子集的个数是( )
A .5
B .6
C .7
D .8
2.在下列各式中错误的个数是( )
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}
A .1
B .2
C .3
D .4
3.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( )
A .A >
B B .A =B
C .B A
D .A ⊆B
4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若Ø
A ,则A ≠Ø.其中正确的有( )
A .0个
B .1个
C .2个
D .3个
5.集合{a ,b }的子集有( )
A .1个
B .2个
C .3个
D .4个
6.满足条件{1,2,3}M {1,2,3,4,5,6}的集合M 的个数是( )
A .8
B .7
C .6
D .5
7.下列各式中,正确的是( )
A .23∈{x |x ≤3}
B .23∉{x |x ≤3}
C .23⊆{x |x ≤3}
D .{23}∈{x |x ≤3} 8.若集合A ={x |x 2≤0},则下列结论中正确的是( )
A .A =0
B .A ⊂0
C .A =φ
D .φ⊂A
9.集合M ={x |x 2+2x ﹣a =0,x ∈R},且φM ,则实数a 的范围是( )
A .1-≤a
B .1≤a
C .1-≥a
D .1≥a
10.集合B ={a ,b ,c },C ={a ,b ,d },集合A 满足A ⊆B ,A ⊆C ,则集合A 的个数是________. 11.若{1,2,3}A ⊆{1,2,3,4},则A =__________________.
12.已知Ø{x |x 2-x +a =0},则实数a 的取值范围是________.
13.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.
14.已知集合A ={x ∈R |x 2+2ax +2a 2-4a +4=0},若φ
A ,则实数a 的取值是____________. 15.已知集合A ={x ∈N *|2
6+x ∈Z },集合B ={x |x =3k +1,k ∈Z },则A 与B 的关系是_________. 16.已知A ={x |x <3},B ={x |x <a }.
(1)若B ⊆A ,则a 的取值范围是____________.
(2)若A B ,则a 的取值范围是____________.
17.设集合A={x,y},B={0,x2},若集合A,B相等,求实数x,y的值.
18.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.19.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N ⊆M,求实数a的值.20.设A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,求实数a组成的集合.21.已知M={x|x2-2x-3=0},N={x|x2+ax+1=0,a∈R},且N M,求a的取值范围.
22.已知集合M={x|x=m+1
6,m∈Z},N={x|x=
n
2-
1
3,n∈Z},P={x|x=
p
2+
1
6,p∈Z},请探求集
合M、N、P之间的关系.
参考答案 1.C 2.A 3.C 4.B 5.D 6.C 7.B 8.D 9.C
10.4
11.{1,2,3,4,}
12.a ≤14
13.1
14.2
15.A B
16.(1)a ≤3;(2)a >3
17.设集合A ={x ,y },B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值.
解:因为A ,B 相等,则x =0或y =0.
(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.
(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.
综上知:x =1,y =0.
18.已知集合A ={x |1≤x <4},B ={x |x <a },若A ⊆B ,求实数a 的取值集合.
解:将数集A 表示在数轴上,要满足A ⊆B ,表示数a 的点必须在表示4的点处或在表示4的点的右边,所以所求a 的集合为{a |a ≥4}.
19.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值. 解:由x 2+x -6=0得:x =2或x =-3 ∴M ={2,-3}
由(x -2)(x -a )=0得:x =2或x =a ∴N ={2,a }
∵N ⊆M
∴当N M 时,则N ={2},a =2
当N =M 时,则N ={2,-3},a =-3
∴所求实数a 的值为2或-3.
20.设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,求实数a 组成的集合. 解:由x 2-8x +15=0得:x =3或x =5 ∴A ={3,5}
∵B ⊆A
∴若B =φ时,则a =0
若B ≠φ时,则a ≠0,这时有
a 1=3或a
1=5,即a =31,或a =51, ∴以由实数a 组成的集合为{0,51,31}.
21.已知M ={x |x 2-2x -3=0},N ={x |x 2+ax +1=0,a ∈R },且N M ,求a 的取值范围.
解:M ={x |x 2-2x -3=0}={3,-1}
(1)当N =φ时,N M 成立 ∵x 2+ax +1=0方程无实数解
∴a 2-4<0
∴-2<a <2
(2)当N ≠φ时,∵N
M ∴3∈N 或-1∈N
当3∈N 时,32-3a +1=0,即a =-310,N ={3,31}不满足N M 当-1∈N 时,(-1)2-a +1=0,即a =2,N ={-1}满足N
M ∴a 的取值范围是:-2<a ≤2
22.已知集合M ={x |x =m +16,m ∈Z},N ={x |x =n 2-13,n ∈Z},P ={x |x =p 2+16,p ∈Z},请探求集
合M 、N 、P 之间的关系.
解:M ={x |x =m +16,m ∈Z}={x |x =6m +16
,m ∈Z} N ={x |x =n 2-13,n ∈Z}={x |x =6
23-n ,n ∈Z} P ={x |x =p 2+16,p ∈Z}={x |x =3p +16
,p ∈Z} ∵3n -2=3(n -1)+1,n ∈Z.
∴3n -2,3p +1都是3的整数倍加1,
从而N =P
而6m +1=3×2m +1是3的偶数倍加1,
∴M N =P。

相关文档
最新文档