半导体的基础知识教案word版本

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体的导电性:在外电场作用下,自由电子产生定向移动,形成电子电流;另一方面,价电子也按一定方向依次填补空穴,即空穴产生了定向移动,形成所谓空穴电流。

载流子:由此可见,半导体中存在着两种载流子:带负电的自由电子和带正电的空穴。本征半导体中自由电子与空穴是同时成对产生的,因此,它们的浓度是相等的。

载流子的浓度:价电子在热运动中获得能量摆脱共价键的束缚,产生电子—空穴对。同时自由电子在运动过程中失去能量,与空穴相遇,使电子—空穴对消失,这种现象称为复合。在一定的温度下,载流子的产生与复合过程是相对平衡的,即载流的浓度是一定的。本征半导体中的载流子浓度,除了与半导体材料本身的性质有关以外,还与温度有关,当本征半导体所处环境温度升高或有光照射时,其内部载流子数增多,导电能力随之增强。所以半导体载流子的浓度对温度十分敏感。上述特点称为本征半导体的热敏性和光敏性,利用这些特点可以制成半导体热敏元件和光敏元件。

半导体的导电性能与载流子的浓度有关,但因本征载流子在常温下的浓度很低,所以它们的导电能力很差。当我们人为地、有控制地掺入少量的特定杂质时,其导电性将产生质的变化。

二、杂质半导体

在本征半导体中掺入适量且适当的其他元素(叫杂质元素),就形成杂质半导体,其导电能力将大大增强。因掺入杂质不同,杂质半导体可分为空穴(P)型和电子(N)型半导体两类。

1、P型半导体

在硅(或锗)的晶体内掺入少量三价元素(如硼元素)。硼原子只有3个价电子,它与周围硅原子组成共价键时,因缺少一个电子,在晶体中便产生一个空穴。这个空穴与本征激发产生的空穴都是载流子,具有导电性能。在P型半导体中,空穴数远远大于自由电子数,空穴为多数载流子(多子),自由电子为少数载流子(少子)。导电以空穴为主,故此类半导体称为空穴(P)型半导体。

2、N型半导体

在纯净的半导体硅(或锗)中掺入微量五价元素(如磷元素)后,就可成为N型半导体。在这种半导体中,自由电子数远大于空穴数,自由电子为多数载流子(多子);空穴为少数载流子(少子),导电以电子为主,故此类半导体称为电子(N)型半导体。

总结半导体的特点:

1.导电能力介于导体与绝缘体之间

2.受外界光和热的刺激时,导电能力会产生显著变化。

3. 在纯净半导体中,加入微量的杂质,导电能力急剧增强。

三、PN结的形成及特性

1.PN 结的形成

在一块完整的晶片上,通过一定的掺杂工艺,一边形成P型半导体,另一边形成N型半导体。在交界面两侧形成一个带异性电荷的离子层,称为空间电荷区,并产生内电场,其方向是从

N 区指向P 区,内电场的建立阻碍了多数载流子的扩散运动,随着内电场的加强,多子的扩散运动逐步减弱,直至停止,使交界面形成一个稳定的特殊的薄层,即PN 结。因为在空间电荷区内多数载流子已扩散到对方并复合掉了,或者说消耗尽了,因此空间电荷区又称为耗尽层。 2. PN 结的单向导电特性

在PN 结两端外加电压,称为给PN 结以偏置电压。 1) PN 结正向偏置

给PN 结加正向偏置电压,即P 区接电源正极,N 区接电源负极,此时称PN 结为正向偏置(简称正偏),如图1.6所示。由于外加电源产生的外电场的方向与PN 结产生的内电场方向相反,削弱了内电场,使PN 结变薄,有利于两区多数载流子向对方扩散,形成正向电流,此时PN 结处于正向导通状态。

图1.6 PN 结加正向电压 图1.7 PN 结加反向电压 2) PN 结反向偏置

给PN 结加反向偏置电压,即N 区接电源正极,P 区接电源负极,称PN 结反向偏置(简称反偏),如图1.7所示。

由于外加电场与内电场的方向一致,因而加强了内电场,使PN 结加宽,阻碍了多子的扩散运动。在外电场的作用下,只有少数载流子形成的很微弱的电流,称为反向电流。此时PN 结内几乎无电流流过,PN 结处于反向截止状态。

综上所述,PN 结具有单向导电性,即加正向电压时导通,加反向电压时截止

++++----

空穴(少数)

电子(少数)

变厚

P N

内电场外电场

A

I R

R

U

++++++++

--------+

++++

----

空穴(多数)

电子(多数)

变薄

P

N

内电场

外电场

mA

-I

R

U

相关文档
最新文档