晶闸管的结构及性能特点

合集下载

晶闸管的结构原理及应用

晶闸管的结构原理及应用

晶闸管的结构原理及应用1. 晶闸管的概述晶闸管(Thyristor)是一种主要用于电能控制的半导体器件,广泛应用于电力电子技术领域。

晶闸管具有高压、大电流、能耗低、可靠性好等特点,被广泛应用于家电、工业控制、交通运输等领域。

2. 晶闸管的结构原理晶闸管的结构采用P-N-P-N四层结构,主要由控制极(G:Gate)、阳极(A:Anode)、阴极(K:Cathode)三个电极组成。

其结构和工作原理如下:•P层:阳极侧为P型半导体,控制极侧为薄的N型半导体层;•N层:阳极侧为N型半导体,控制极侧为一薄层的P型半导体层;•控制极:通过控制极加上一个触发脉冲,使得晶闸管的导通;•阳极:负责控制晶闸管的输出电流;•阴极:负责晶闸管的接地。

3. 晶闸管的工作原理晶闸管的工作原理可分为四个状态:关断(Off)、导通(On)、保持(Hold)、关断恢复(Off Recovery)。

1.关断状态:晶闸管在没有施加控制信号时处于关断状态,此时无法通过阳极和控制极之间的电流。

晶闸管的控制极与阳极之间存在电压可能会使其进入导通状态;2.导通状态:当控制极与阳极之间施加一个足够大的正向电压时,晶闸管进入导通状态。

此时,晶闸管的阳极和控制极之间的电流将开始流动;3.保持状态:在晶闸管进入导通状态后,控制极与阳极之间的电压可以降至较低水平,晶闸管仍然保持导通状态。

然而,如果该电压降至一定程度以下,则晶闸管将自动进入关断状态;4.关断恢复状态:当控制极与阳极之间的电压降至负值时,晶闸管将从导通状态恢复到关断状态。

4. 晶闸管的应用由于晶闸管具有可控性强、效率高、可靠性好等优点,被广泛应用于以下领域:•电力调节:晶闸管可用于交流电压调节,实现对电力的控制。

例如,晶闸管可以用于家庭用电中的调光灯、风扇等电器,以及电力工业中的电动机调速器、变频器等设备;•电流控制:晶闸管可用于控制电流的大小和方向。

例如,晶闸管可以用于电焊机,控制焊接电流,使焊接效果更加稳定和高效;•能量回收:晶闸管可以将电能回收并用于其他用途。

双向晶闸管的结构、导电特性和特点

双向晶闸管的结构、导电特性和特点

双向晶闸管的结构、导电特性和特点
1.结构
双向晶闸管是一种新型的半导体三端器件,它具有相当于两个单向晶闸管反向并联工作的作用。

如下图所示为双向晶闸管的实物和电路图形符号。

符号中的T1、T2称为两个主电极,无所谓阳极和阴极之分,其中T1称为第一主电极,T2称为其次主电极,G仍为掌握极。

2.导电特性
在双向晶闸管第一主电极和其次主电极之间加上合适的工作电压后,若掌握极加正极性触发信号,双向晶闸管导通,电流方向是从T2流向T1;若掌握极加负极性触发信号,双向晶闸管也导通,电流方向从T1流向T2。

由此可见,双向晶闸管掌握极G上的触发脉冲极性转变时,就可以掌握其导通电流的方向。

加在掌握极G上的触发脉冲的大小或时间转变时,就能转变其导通电流的大小。

与单向晶闸管的区分是,双向晶闸管G极上触发脉冲的极性转变时,其导通方向就随着极性的变化而转变,从而能够掌握沟通电负载。

而单向晶闸管经触发后只能从阳极向阴极单方向导通,所以晶闸管有单双向之分。

3.双向晶闸管的特点
可控的双向导电开关。

阻断→导通的条件:其次主电极(T2)和掌握极(G)相对于第一主
电极(T1)的电压同为正或同为负导通→阻断的条件:。

04第四章 晶闸管及其应用

04第四章    晶闸管及其应用

第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。

优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。

缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。

(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。

1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。

晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。

晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。

2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。

晶闸管导通后,控制极便失去作用。

依靠正反馈,晶闸管仍可维持导通状态。

晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。

2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。

1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。

晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。

其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。

这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。

晶闸管 通态电阻

晶闸管 通态电阻

晶闸管通态电阻晶闸管是一种特殊的半导体器件,具有正向导通和反向截止的特性。

在正向电压作用下,晶闸管的通态电阻非常小,可以将电流从阳极导通到阴极。

本文将从晶闸管的结构、工作原理和特点等方面,详细介绍晶闸管通态电阻的相关知识。

一、晶闸管的结构晶闸管由PNPN四层结构组成,主要包括P型区、N型区、P型区和N型区。

其中,P型区和N型区分别被称为阳极和阴极,而两个N型区之间的P型区则被称为控制电极。

晶闸管的结构类似于二极管,但其多了一个控制电极。

二、晶闸管的工作原理晶闸管的工作原理可以分为两个阶段:触发阶段和维持阶段。

1. 触发阶段:当控制电极施加一个正向电压时,P型区和N型区之间的势垒会逐渐被击穿,形成一个电子洞对。

这个电子洞对的形成将导致P型区与N型区之间的势垒消失,使得晶闸管处于可导通状态。

2. 维持阶段:一旦晶闸管被触发导通,控制电极上的电压可以被移除,晶闸管会一直保持导通状态,直到阳极电流降低到一个很小的值。

在导通状态下,晶闸管的通态电阻非常小,几乎等于零。

三、晶闸管通态电阻的特点晶闸管在导通状态下的通态电阻非常小,这是晶闸管的一个重要特点。

晶闸管的通态电阻取决于其工作电流和工作温度。

通常情况下,晶闸管的通态电阻随着工作电流的增大而减小,但随着工作温度的增加而增大。

晶闸管的通态电阻对于其在电路中的应用至关重要。

晶闸管的低通态电阻使其成为一种理想的开关元件,可广泛应用于各种电力电子设备和高频电子设备中。

在电力电子设备中,晶闸管可以用于实现电能的控制和转换,如调光、变频、整流等。

在高频电子设备中,晶闸管可以用于实现高频信号的放大和调制。

值得注意的是,晶闸管在导通状态下的通态电阻虽然很小,但在截止状态下的反向电阻非常大。

这意味着晶闸管在反向电压作用下几乎不导电,可以起到很好的隔离作用。

因此,在某些特殊的应用场合下,晶闸管也可以用作保护元件,用于防止反向电压对其他电路元件的损害。

总结起来,晶闸管的通态电阻是指在导通状态下晶闸管的电阻,其特点是非常小。

晶闸管的结构与工作原理

晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。

晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。

在本文中,我们将讨论晶闸管的结构和工作原理。

一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。

2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。

3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。

在晶片上另一端同样有一块P型区,通常称为阴极。

4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。

5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。

门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。

晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。

二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。

下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。

此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。

2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。

在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。

3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。

因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。

晶闸管的用途

晶闸管的用途

晶闸管的用途1. 什么是晶闸管晶闸管(Thyristor)是一种具有控制特性的半导体器件,由四个层叠的PNPN结构组成。

它能够实现电流的整流、开关和控制,广泛应用于各种电力电子设备中。

2. 晶闸管的工作原理晶闸管的工作原理基于PN结的导电特性和PNPN结的开关特性。

当正向电压施加在晶闸管的控制端(称为门极)时,PNPN结会导通,形成一个低电阻通路,电流可以通过。

当反向电压施加在门极时,PNPN结会截止,晶闸管处于高阻态。

3. 晶闸管的用途晶闸管由于其独特的控制特性,被广泛应用于各个领域,以下是晶闸管的几个主要用途:3.1 电力控制晶闸管可以实现电流的整流和控制,因此在电力系统中有着重要的应用。

它可以用于交流电源的整流,将交流电转换为直流电,以供各类电子设备使用。

此外,晶闸管还可以用于电力系统的调整和控制,例如用于电力调频、电力调压等。

3.2 电动机控制晶闸管可以用于电动机的启动、制动和调速控制。

通过控制晶闸管的导通和截止,可以实现对电动机的精确控制。

晶闸管的调速控制可以使电动机在不同的负载情况下稳定运行,并且具有较高的效率和精度。

3.3 光控制和光通信晶闸管具有较高的开关速度和可控性能,因此在光控制和光通信领域有着广泛的应用。

晶闸管可以用于光控开关、光调制器等光学设备中,实现对光信号的精确控制和调节。

3.4 高压直流输电晶闸管可以用于高压直流输电系统中。

高压直流输电系统能够实现远距离的电力传输,并且具有较低的能量损耗。

晶闸管作为高压直流输电系统的关键元件之一,可以实现对输电系统的稳定控制和调节。

3.5 频率变换器晶闸管可以用于频率变换器中,将电源的频率转换为需要的频率。

频率变换器广泛应用于电力系统、电机驱动和工业自动化等领域,实现对电力和设备的精确控制。

4. 晶闸管的优势和发展趋势晶闸管作为一种重要的电力电子器件,具有以下优势:•高可靠性:晶闸管具有较高的工作可靠性和长寿命,能够在恶劣的工作环境下稳定工作。

晶闸管工作原理

晶闸管工作原理

晶闸管工作原理引言概述:晶闸管是一种重要的电子器件,广泛应用于电力控制和电子调节领域。

了解晶闸管的工作原理对于理解其应用和故障排除至关重要。

本文将详细介绍晶闸管的工作原理,包括晶闸管的结构、特性和工作方式。

一、晶闸管的结构1.1 硅基材料:晶闸管的主要材料是硅,因其具有较好的电特性和热特性而被广泛应用。

1.2 PN结:晶闸管由两个PN结组成,其中一个PN结被称为控制结,另一个PN结被称为终端结。

1.3 门极结:晶闸管的控制结上有一个附加的门极结,通过控制门极上的电压来控制晶闸管的导通和截止。

二、晶闸管的特性2.1 可控性:晶闸管的导通和截止状态可以通过控制门极上的电压来实现,具有可控性。

2.2 双向导通性:晶闸管可以在正向和反向电压下导通,具有双向导通性。

2.3 高电压和高电流承受能力:晶闸管能够承受较高的电压和电流,适用于高功率电子设备的控制。

三、晶闸管的工作方式3.1 导通状态:当门极结施加正向电压时,晶闸管处于导通状态,电流可以从终端结流过。

3.2 截止状态:当门极结施加反向电压时,晶闸管处于截止状态,电流无法通过终端结。

3.3 触发方式:晶闸管可以通过正向或负向的脉冲电压来触发,使其从截止状态转变为导通状态。

四、晶闸管的应用4.1 电力控制:晶闸管可以用于电力调节、电压变换和电流控制等领域,实现对电力的精确控制。

4.2 电子调节:晶闸管可以用于调节电子设备的亮度、速度和功率等,提高设备的性能和效率。

4.3 高频电子设备:晶闸管具有快速开关速度和较低的开关损耗,适用于高频电子设备的控制和调节。

五、晶闸管的故障排除5.1 过电流保护:晶闸管在工作过程中可能会受到过电流的影响,需要采取相应的保护措施。

5.2 过电压保护:晶闸管在工作过程中可能会受到过电压的影响,需要采取相应的保护措施。

5.3 温度控制:晶闸管在工作时会产生较高的温度,需要采取散热措施来控制温度,以避免故障发生。

结论:晶闸管作为一种重要的电子器件,具有可控性、双向导通性和高电压、高电流承受能力等特点。

晶闸管特点

晶闸管特点

晶闸管特点
晶闸管是一种重要的电子电路,它可以以非常高的速度、灵敏度和精度控制电流或电压。

晶闸管具有很高的可靠性、耐受性、体积小、低成本等特点,是重要的电路元件,广泛应用于电子、电脑、通讯和机械等领域。

其特点如下:
1.性能稳定:晶闸管具有很高的稳定性,它可以在极端温度或恶劣环境下正常工作。

此外,它也具有高可靠性,具有较高的连续运行率,且可以长期稳定工作。

2.噪音低:晶闸管的噪音水平极低,而且周围环境的噪音也不会影响其正常使用。

3.结构简单:晶闸管的结构比较简单,只需要两个端子,就可以连接其它的电路,不需要复杂的外观装置。

4.体积小:晶闸管的体积和重量都比较小,可以方便地安装在其它电路之中。

5.价格低廉:晶闸管的价格低廉,而且因为它的质量较好,生产成本也不高。

6.结构耐受:晶闸管既可以焊接或手动安装,也可以接受封装,因而易于安装和使用。

7.功耗低:晶闸管只需要极少的电路就可以控制很大的功率,因而它的功耗很低,耗电量比其它电路低。

以上是晶闸管的特点,由于它的优良性能、低价格、小体积、结构简单和可靠性高等优点,使晶闸管得到了广泛应用,在各个领域中
都发挥着重要作用。

晶闸管由于它的优良性能和低价格,受到了许多消费者的青睐,是电子设备行业的标准元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶闸管的结构及性能特点
(一)普通晶闸管
普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。

普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。

当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。

当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。

此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。

普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。

只有把阳极A电压撤除或
阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。

普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。

普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。

(二)双向晶闸管
双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。

图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。

图8-8是其触发状态。

当门极G和主电极T2相对于主电极T1的电压为正(V T2>V T1、V G>V T1)或门极G和主电极T1相对于主电极T2的电压为负(V T1<V T2、V G<V T2)时,晶闸管的导通方向为T2→T1此时T2为阳极,T1为阴极。

当门极G和主电极T1相对于主电极T2为正(V T1>V T2、V G>V T2)或门极G和主电极T2相对于主电极T1为负(V T2<V T1、V G<V T1)时,则晶闸管的导通方向为T1→T2,此时T1为阳极,T2为阴极。

双向晶闸管的主电极T1与主电极T2间,无论所加电压极性是正向还是反向,只要门极G和主电极T1(或T2)间加有正、负极性不同的触发电压,满足其必须的触发电流,晶闸管即可触发导通呈低阻状态。

此时,主电极T1、T2间压降约为1V左右。

双向晶闸管一旦导通,即使失去触发电压,也能继续维持导通状态。

当主电极T1、T2电流减小至维持电流以下或T1、T2间电压改变极性,且无触发电压时,双向晶闸管阻断,只有重新施加触发电压,才能再次导通。

(三)门极关断晶闸管
门极关断晶闸管(GTO)(以P型门极为例)是由PNPN四层半导体材料构成,其三个电极分别为阳极A、阴极K和门极G,图8-9是其结构及电路图形符号。

门极关断晶闸管也具有单向导电特性,即当其阳极A、阴极K两端为正向电压,在门极G上加正的触发电压时,晶闸管将导通,导通方向A→K。

在门极关断晶闸管导通状态,若在其门极G上加一个适当有负电压,则能使导通的晶闸管关断(普通晶闸管在靠门极正电压触发之后,撤掉触发电压也能维持导通,只有切断电源使正向电流低于维持电流或加上反向电压,才能使其关断)。

(四)光控晶闸管
光控晶闸管(LAT)俗称光控硅,内部由PNPN四层半导体材料构成,可等效为由两只晶体管和一只电容、一只光敏二极管组成的电路。

如图8-10所示。

由于光控晶闸管的控制信号来自光的照射,故其只有阳极A和阴极K两个引出电级,门极为受光窗口(小功率晶闸管)或光导纤维、光缆等。

当在光控晶闸管的阳极A加上正向电压、阴极K上加负电压时,再用足够强的光照射一下其受光窗口,晶闸管即可导通。

晶闸管受光触发导通后,即使光源消失也能维持导通,除百加在阳极A和阴极K之间的电压消失或极性改变,晶闸管才能关断。

光控晶闸管的触发光源有激光器、激光二极管和发光二极管等。

(五)逆导晶闸管
逆导晶闸管(RCT)俗称逆导可控硅,它在普通晶闸管的阳极A与阴极K间反向并联了一只二极管(制作于同一管芯中)如图8-11所示。

逆导晶闸管较普通晶闸管的工作频率高,关断时间短、误动作小,可广泛应用于超声波电路、电磁灶、开关电源、电子镇流器、超导磁能储存系统等领域。

(六)BTG晶闸管
BTG晶闸管也称程控单结晶体管PUT,是由PNPN四层半导体材料构成的三端逆阻型晶闸管,其电路图形符号,内部结构和等效电路见图8-12。

BTG晶闸管的参数可调,改变其外部偏置电阻的阻值,即可改变BTG晶闸管门极电压和工作电流。

它还具有触发灵敏度高、脉冲上升时间短、漏电流小、输出功率大等优点,被广泛应用于可编程脉冲电路、锯齿波发生器、过电压保护器、延时器及大功率晶体管的触发电路中,既可作为小功率晶闸管使用,还可作为单结晶体管〔双基极二极管(UJT)〕使用。

(七)温控晶闸管
温控晶闸管是一种新型温度敏感开关器件,它将温度传感器与控制电路结合为一体,输出驱动电流大,可直接驱动继电器等执行部件或直接带动小功率负荷。

温控晶闸管的结构与普通晶闸管的结构相似(电路图形符号也与普通晶闸管相同),也是由PNPN半导体材料制成的三端器件,但在制作时,温控晶闸管中间的PN结中注入了对温度极为敏感的成分(如氩离子),因此改变环境温度,即可改变其特性曲线。

在温控晶闸管的阳极A接上正电压,在阴极K接上负电压,在门极G和阳极A之间接入分流电阻,就可以使它在一定温度范围内(通常为–40~+130℃)起开关作用。

温控晶闸管由断态到通态的转折电压随温度变化而改变,温度越高,转折电压值就越低。

(八)四极晶闸管
四极晶闸管也称硅控制开关管(SCS),是一种由PNPN四层半导体材料构成的多功能半导体器件,图8-13是其电路图形符号内部结构和等效电路。

四极晶闸管的四个电极分别为阳极A、阴极K、阳极控制极G A和阴极控制极G K。

若将四极晶闸管的阳极控制极G A空着不用,则四极晶闸管可以代替普通晶闸管或门极关断晶闸管使用;若将其阴极控制极G K空着不用,则可以代替BTG 晶闸管或门极关断晶闸管、单结晶体管使用;若将其阳极门极G A与阳极A短接,则可以代替逆导晶闸管或NPN型硅晶体管使用。

(九)晶闸管模块
晶闸管模块,它是将两只参数一致的普通晶闸管串联在一起构成的,如图8-14所示。

晶闸管模块具有体积小、重量轻、散热好、安装方便等优点,被广泛应用于电动机调速、无触点开关、交流调压、低压逆变、高压控制、整流、稳压等电子电路中。

相关文档
最新文档