2017年全国中学生物理竞赛第30届复赛考试试题详解

合集下载

30届全国中学生物理竞赛(复赛)模拟试题(一)

30届全国中学生物理竞赛(复赛)模拟试题(一)

30届全国中学生物理竞赛(复赛)模拟试题(一)第一题:(20分)光子火箭从地球起程时初始静止质量(包括燃料)为M0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。

要求火箭在25年(火箭时间)后到达目的地。

引力影响不计。

1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M0ˊ,试问M0/ M0ˊ的最小值是多少?第二题.(20分)有一个两端开口、粗细均匀的U型玻璃细管,放置在竖直平面内,处在压强为0p的大气中,两个竖直支管的高度均为h,水平管的长度为2h,玻璃细管的半径为r,r«h,今将水平管内灌满密度为ρ的水银,如图所示。

1.如将U型管两个竖直支管的开口分别封闭起来,使其管内空气压强均等于大气压强,问当U型管向右作匀加速移动时,加速度应多大才能使水平管内水银柱长度稳定为h35。

2.如将其中一个竖直支管的开口封闭起来,使其管内气体压强为1atm,问当U型管绕以另一个竖直支管(开口的)为轴作匀速转动时,转数n应为多大才能使水平管内水银柱长度稳定为h35。

(U型管作以上运动时,均不考虑管内水银液面的倾斜)(1)图所示为一凹球面镜,球心为C,内盛透明液体,已知C至液面高度CE为40.0cm,主轴CO上有一物A,物离液面高度AE恰好为30.0cm时,物A的实像和物处于同一高度。

实验时光圈直径很小,可以保证近轴光线成像。

试求该透明液体的折射率n。

(2)体温计横截面如图所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C为圆柱面中心轴位置。

玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚实、正倒和放大倍数。

第四题(25分)左图为一无限多立方“格子”的电阻丝网络电路,每两节点之间电阻丝的电阻均为R,其中A、B两节点位于网络中部。

右图电路中的电源电动势(内阻为0)均为 ,电阻均为r。

若其中的a、b两节点分别与左图所示的电路中的A、B两节点相连结,试求流入电阻丝无限网络的电流。

2017年初中物理竞赛试题参考答案和评分标准

2017年初中物理竞赛试题参考答案和评分标准

2017年初中物理竞赛试题参考答案和评分标准一、单项选择题(每小题3分,共18分)1.B2.C3.D4.A5.A6.A二、填空题(第7-8题每题3分,第9题4分,第10题3分,共13分)7.保持F竖直向上8.6N9. 0 1010.红绿蓝白反射红光三、实验设计题(每题6分,共18分)11.器材:篮球、带阀门(夹子)的胶管、打气筒、天平、量筒、水、水槽操作步骤:(1)取一球胆(篮球)接一根带阀门(夹子)的胶管,用打气筒向球内打足气后,用天平称出其质量m1.(2)如图所示,用排水集气法在量筒中收集气体,集气完毕后,拧紧夹子,上下移动量筒,使其内外水平面一样高,以保证内外气体压强相等,然后由量筒刻度读出气体体积V.(3)再用天平称出放出气体后篮球的质量m2,篮球体积不变,避免篮球浮力对测量的影响。

则量筒内气体的质量为m1-m2.(4)空气的密度注:实验要考虑到压强和浮力对实验的影响,否则最多得3分12.如图(有错不给分) 13.如图(有错不给分)四、计算题(共27分)14.开关S 闭合,L 1和L 2并联后与L 3串联。

L 3为“6V 、 1W ”,它的电阻为:R 3=U 2/P 3=36Ω。

(1分)L 1和L 2为“6V 10W ”,电阻均为R=U 2/P=3.6Ω。

总电阻R 总=R 3+R/2=37.8Ω(1分) 通过L 3的电流I 3=U /R 总=0.16A (1分)L 3的功率P 3=I 2R=0.92W ,与L 3的额定功率(1W)相差不多,L 3能发光.(2分) L 1和L 2并联,通过每只灯泡的电流I 1=I 2=I 3/2=0.08A ,L 1的实际功率为P 1=I 2R=0.023W ,比它的额定功率10W 小得多,L 1不能发光。

同理,L 2也不能发光。

(2分)15.解:(1)F 浮=ρ水gV 排 =1×103kg/m 3×10N/kg ×4×10-2m 3=400N (2分) (2)P =Fυ P 1= F 1υ绳=2 F 1υ P 2= F 2υ绳 =2 F 2υ21F F =21P P =1516 ① (2分) (3)在匀速提升水中物体M 的过程中,以动滑轮A 和物体M 为研究对象,受力分析如图3甲所示;在匀速提升水中物体M 的过程中,以动滑轮B 和物体M 为研究对象,受力分析如图图32F 1 F 浮 G 1G 甲 2F 2F 浮G 2G 乙3乙所示。

第30届全国中学生物理竞赛复赛模拟试题第2套答案

第30届全国中学生物理竞赛复赛模拟试题第2套答案
x 方向受电场力为:
0 1 Q k k Qkl Q F 2 dy y dy y 0 l /2 l / 2 2 2 4 l/2
(3 分)
(1) 由于上下电量相反, y 方向地强不变,故钉子 y 方向不受力。
(3 分)
(3 分)
故钉子压力为
(2 分)
(2 分) (2 分)
5
4 杆③
得到
8 mg , N3 mg N1 10 10
杆④
由受力平衡 得到
N6
N6 N3 mg N1
3 mg 10
(2 分)
分析杆上提供力矩规律,发现极值只可能出现在受力点处,分析各受力点提供力矩大小,找 到最大值:
M2 8 mg 0.25m mg 0.2m 10 4 mg 0.5m mg 0.2m 10
2 1 3
(3 分)
(3 分)
在整个过程中角动量守恒,而未态 未 =未 故
I 0 mM gR2 3 0
得到 代入得
2

1 3
I 未 +mM gR 2 3 末
2

1 3
(5 分) (3 分) (3 分)
未 1.4 106 rad / s
a未 =5.8 108 m
同时 M 3
(7 分,两式只给出一个扣 3 分)
此值等于 M max 时,杆断。故 得
mg 0.2m 5N m m 2.5kg
(2 分)
题二、 (22 分)如图所示,在一个光滑的底面积为 S 1dm 高为 H 0.2m 的固定圆柱形容
2
器内,有一个可以自由上下滑动活塞(活塞下方于大气联通) ,活塞质量为 m0 1.0kg ,活 塞下方用一根劲度系数为 k 200N/m ,原长为 l0 0.3m 的轻质弹簧连接到容器底。初始 时刻活塞位于距离底面 h 0.1m 高的位置,上方盛满方有密度为 1 10 kg/m 的水,

第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)

第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)

第30届全国中学生物理竞赛复赛模拟试卷(全国中学生物理竞赛委员会及大连理工大学物理系)本卷共八题,满分160分。

计算题的解答应写出必要的文字说明、方程式和重要的演算步骤。

只写出最后结果的不能得分.有数字计算的题,答案中必须明确写出数值和单位。

填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。

一、填空题.(本题共4小题,共25分)1.图1所示的电阻丝网络,每一小段电阻同为r ,两个端点A 、B 间等效电阻R 1=。

若在图1网络中再引入3段斜电阻丝,每一段电阻也为r ,如图2 所示,此时A 、B 间等效电阻R 2=。

2.右图为开尔文滴水起电机示意图。

从三通管左右两管口形成的水滴分别穿过铝筒A 1、A 2后滴进铝杯B 1、B 2,当滴了一段时间后,原均不带电的两铝杯间会有几千伏的电势差。

试分析其原理。

图中铝筒A 1用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。

3.受迫振动的稳定状态由下式给出)cos(ϕω+=t A x ,2222204)(ωβωω+-=hA ,220arctan ωωβωϕ--=。

其中m H h =,而)cos(t H ω为胁迫力,m γβ=2,其中dtdx γ-是阻尼力。

有一偏车轮的汽车上有两个弹簧测力计,其中一条的固有振动角频率为102727.39-=s ω,另外一条的固有振动角频率为1'05454.78-=s ω,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7.设为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为。

4.核潜艇中238U 核的半衰期为9105.4⨯年,衰变中有0.7%的概率成为234U 核,同时放出一个高能光子,这些光子中的93%被潜艇钢板吸收。

1981年,前苏联编号U137的核潜艇透射到艇外的高能光子被距核源(处理为点状)1。

5m 处的探测仪测得。

仪器正入射面积为22cm 2,效率为0。

25%(每400个入射光子可产生一个脉冲讯号),每小时测得125个讯号.据上所述,可知238U 核的平均寿命=年(693.02ln =),该核潜艇中238U 的质量m =kg (保留两位有效数字)。

全国高中物理竞赛历年试题与详解答案汇编

全国高中物理竞赛历年试题与详解答案汇编

全国高中物理竞赛历年试题与详解答案汇编———xxxx纪元中学2014年5月全国中学生物理竞赛提要编者按:按照中国物理学会全国中学生物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国目前中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他方面等部分。

其中理论基础的绝大部分内容和国家教委制订的(全日制中学物理教学大纲》中的附录,即 1983年教育部发布的《高中物理教学纲要(草案)》的内容相同。

主要差别有两点:一是少数地方做了几点增补,二是去掉了教学纲要中的说明部分。

此外,在编排的次序上做了一些变动,内容表述上做了一些简化。

1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。

1991年9月11日在xx由全国中学生物理竞赛委员会第10次全体会议正式通过,开始实施。

一、理论基础力学1、运动学参照系。

质点运动的位移和路程,速度,加速度。

相对速度。

矢量和标量。

矢量的合成和分解。

匀速及匀速直线运动及其图象。

运动的合成。

抛体运动。

圆周运动。

刚体的平动和绕定轴的转动。

2、xx运动定律力学中常见的几种力xx第一、二、三运动定律。

惯性参照系的概念。

摩擦力。

弹性力。

胡克定律。

万有引力定律。

均匀球壳对壳内和壳外质点的引力公式(不要求导出)。

开普勒定律。

行星和人造卫星的运动。

3、物体的平衡共点力作用下物体的平衡。

力矩。

刚体的平衡。

重心。

物体平衡的种类。

4、动量冲量。

动量。

动量定理。

动量守恒定律。

反冲运动及火箭。

5、机械能功和功率。

动能和动能定理。

重力势能。

引力势能。

质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。

弹簧的弹性势能。

功能原理。

机械能守恒定律。

碰撞。

6、流体静力学静止流体中的压强。

浮力。

7、振动xx振动。

振幅。

频率和周期。

第30届全国中学生物理竞赛复赛模拟试题第4套

第30届全国中学生物理竞赛复赛模拟试题第4套

两边温度可以在很长时间内维持不一样。
2S
S
2V0
V0
八、 介子一种可能的衰变模式为 e e 。 某个 介子在以 0.2c 的速度运动中
0
0
0
发生上述衰变。在和 介子前进方向夹角为 30 方向上接受到一个电子。求这个电子
0
速度大小的可能的范围。已知 m 0 135MeV , me 0.511MeV ,普朗克常数
七、 如图两个底面积分别为 2S 和 S 的绝热圆筒,用一个细的绝热阀门连接。左右各有 一密闭的,绝热的,不记阻力不记重力的活塞,活塞上端通过一个理想的滑轮组连接。 大气压为 P0 。初态阀门关闭,左边充满体积为 2V0 温度为 T0 的理想气体,定体摩尔热 容量为 CV
3 R ,右边真空,体积为 V0 。 2
h 6.64 1034 J s
gT 2 。 2
三、
空间中有两个线圈电阻可以忽略的线圈 A 、 B ,分别接入可控电流源 I A 和 I B 。初
时 I A IB 0 。 (1) 保持 I B 不变,将 I A 缓慢的从 0 增加到 I1 ,然后保持 I A 不变,缓慢的将 I B 从 0 增加到 I 2 。此时线圈 A 和线圈 B 的磁通量分别为 A L11I1 L12 I 2 ,
2013 年物理竞赛复赛模拟试题-第四套
命题人 蔡子星 孙鹏
一、 我们想用一些匀质的光滑的长度为 l 的木条在桌角搭出一个尽量远的“露台” 。逐
层叠放并不一定是最好的方案。比如图(a)用三个木条拉出了 拉开了
l l l 的距离。而图(b) 2 4 6
l l 的距离。问题用四根木条,分别采用图(c)和图(d)的方式,可以用四个木 2 2

北京市高中物理(力学)竞赛第30届(2017)决赛试题及答案解析

北京市高中物理(力学)竞赛第30届(2017)决赛试题及答案解析
8.(1)
参照物
f的功
f′的功
一对力μ1mgl
卡车
0
-μ1mgl
-μ1mgl
地面
μ1mgl
-μ1mg(l+L)
-μ1mgl
由上面计算发现,摩擦力既可以做正功也可以做负功,但是一对摩擦力做功之和一定是负功,大小与物体间的相对位移相关。
(2) ,
【解析】
(1)分别对卡车和木箱进行受力分析:
因为 , ,
所以 或
匀速圆周运动只有向心力,向心力大小为:

说明:此题关键靠学生的科学思维逻辑。逻辑清晰才满分。
10.近地点高度 ,远地点高度
【解析】
设火箭点燃时,卫星 对地形的位失为 ,速度为 ,使卫星转为椭圆轨道
因为对o点的 所以对o点角动量守恒。在近地点时,位矢为 ,速度位 ,则有
( )=
( )=
或者表述为:火箭点燃时卫星转为椭圆轨道,近(远)地点是卫星速度垂直于地心到卫星的直线,所以根据对o点角动量守恒有:
(1)
因为做椭圆运动时,只有万有引力做功,机械能守恒,有:
为了免去G、M的计算,通常利用卫星做圆周运动的向心力(既万有引力)来简化上式:
1.不变 时间喷出燃料动量变化 ,
【解析】
[1]随着火箭上升的速度不断变大,火箭所受推力的大小不变;
[2]理由是: 时间喷出燃料动量变化:
根据动量定理:
解得:
2.不是惯性,是动能,运动员速度快动能大,用力跳起后转化为转动动能足够太,也足够高,才能完成转4周落下。
【解析】
不是惯性,是动能,运动员速度快动能大,用力跳起后转化为转动动能足够太,也足够高,才能完成转4周落下。
北京市高中物理(力学)竞赛第30届(2017)

30届全国中学生物理竞赛(复赛)模拟试题(三)(黄爱国)

30届全国中学生物理竞赛(复赛)模拟试题(三)(黄爱国)

30届全国中学生物理竞赛(复赛)模拟试题(三)一.(20分)在用质子)(11P轰击固定锂)(73Li靶的核反应中,(1)计算放出α粒子的反应能。

(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量大约有多大?有关原子核的质量如下:H11,1.007825;He42,4.002603;Li73,7.015999。

二.(20分)2mol初始温度为270C,初始体积为20L的氦气,先等压膨胀到体积加倍,然后是绝热膨胀回到初始温度。

(1)在P—V图上画出过程方程;(2)在这一过程中系统总吸收热量等于多少?(3)氦气对外界做的总功等于多少?其中绝热膨胀过程对外界做功是多少?三.(15分)观测者S 测得两个事件的空间和时间间隔分别为600m 和8×10-7s ,而观测者S 1测得这两个事件同时发生。

试求S 1相对S 的速度,以及S 1测得这两个事件的空间距离。

四.(20分)神奇的自聚焦透镜:自聚焦透镜依靠折射率的恰当变化对近轴光线成像。

该透镜呈圆柱状,截面半径为R ,长为l 。

其折射率在截面内延半径方向呈抛物线状连续变小,可表示为)211(22202r a n n r -=式中n 0为中心的折射率,a 为比1小得多的正数。

(1) 求从圆心入射与圆柱平面夹角为0θ的光线在自聚焦透镜内传播的轨迹方程。

(2) 平行于z 轴的平行入射光经过自聚焦透镜后交汇于一点,求自聚焦透镜的焦距。

五.(20分)如图所示,有二平行金属导轨,相距l ,位于同一水平面内(图中纸面),处在磁感应强度为B 的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处。

假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L 。

今对金属杆cd 施以沿导轨向右的瞬时冲量,使它获得初速v 0.设导轨足够长,x 0也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距x 0,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒定不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第30届全国中学生物理竞赛复赛考试试题解答与评分标准[2013-09-21]【一】15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .【参考解答】以滑块和地球为系统,它在整个运动过程中机械能守恒.度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v(1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . 【(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)】将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q=0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.【二】(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.【参考解答】1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C 2l r =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v .(3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)【代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). 】设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l r α+∆+∆=+=+v v .(9)由此得2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.【代替 (7)-(9) 式,可利用对于系统的动量定理 21C D F t F t m m ∆+∆=+v v . 】【也可由对质心的角动量定理代替 (7)-(9) 式. 】2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+ v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.【评分标准】本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.【三】(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t t θθθθ=【参考解答】1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω=(1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---====(2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω=(5)[][][][]k E L αβγλω=(6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---=(7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ===(8) 所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,rk k k E E E =+(10)其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11)注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13) 由此解得 16k =(14) 于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭ (16)由(15)、(16)式得w =.(17)以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v .(18)设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=-(20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==.(22)由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--=(23)()()253sin 2L r L r N mg L θ-+=(24)【评分标准】本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.【四】(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .【参考解答】设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得max ()mg h R V q-=(6)【评分标准】本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.【五】(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示. 1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )【参考解答】1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)x y z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9)可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)【评分标准】本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.【六】(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )【参考解答】设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2)式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4)联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.【七】(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.【参考解答】1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1)的均匀介质的光程相同,即2111112nh h bh δ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有 21h h δ=-(3) 于是hx()212112y h b h δδδ=+=+.(4)由几何关系有1tan h y θ=.(5) 故()22tan 2b y h y δθ=+.(6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h.(7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ== .(9) 由此得y A θθ===.(10)除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A .(11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则49,,,m m m y y y === .(12),光线在焦点处依然相互加强而形成亮纹.【评分标准】本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).【八】(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰, 1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .【参考解答】1.设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,e e E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1)由动量守恒有p e +p g =¢p e+¢p g . (2)光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足 22224e e e E p c m c -=,22224e e e E p c m c ''-=(4)由(1)、(2)、(3)、(4)式解得e E E E γγ+'= (5)2. 由(5)式可见,为使¢E g >E g , 需有0E E γγ'-=>即E γ 或 e p p γ>(6)注意已设p e >0、p g <0. 3. 由于2e e E mc >>, 因此有242e e e m cE E -.(7)将(7)式代入(5)式得eee E cm E E E E 22242'+≈γγγ. (8)代入数据,得 ¢E g »29.7´106eV .(9)【评分标准】本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 式2分; 第2问5分,(6) 式5分;第3问5分,(7) 式2分, (8) 式1分, (9) 式2分.。

相关文档
最新文档