实验一 Clementine12.0数据挖掘分析方法与应用
第5章 Clementine使用简介

第5章 Clementine使用简介5.1Clementine 概述Clementine数据挖掘平台是一个可视化的、强大的数据分析平台。
用户可以通过该平台进行与商业数据操作相关的操作。
数据流区域:它是Clementine窗口中最大的区域,这个区域的作用是建立数据流,或对数据进行操作。
选项板区域:它是在Clementine的底部,每个选项卡包含一组相关的可以用来加载到数据流区域的节点组成。
它包括:数据源、记录选项、字段选项、图形、建模和输出。
管理器:它位于Clementine的右上方,包括流、输出和模型三个管理器。
项目区域:它位于Clementine的右下方,主要对数据挖掘项目进行管理。
并且,它提供CRISP-DM和类两种视图。
另外,Clementine还包括类似于其他windows软件的菜单栏、工具栏和状态栏。
Clementine非常容易操作,包含很多经典数据挖掘算法和一些较新的数据挖掘算法通常,大多数数据挖掘工程都会经历以下过程:检查数据以确定哪些属性可能与相关状态的预测或识别有关。
保留这些属性(如果已存在),或者在必要时导出这些属性并将其添加到数据中。
使用结果数据训练规则和神经网络。
使用独立测试数据测试经过训练的系统。
Clementine的工作就是与数据打交道。
最简单的就是“三步走”的工作步骤。
首先,把数据读入Clementine中,然后通过一系列的操作来处理数据,最后把数据存入目的文件。
Clementine数据挖掘的许多特色都集成在可视化操作界面中。
可以运用这个接口来绘制与商业有关的数据操作。
每个操作都会用相应的图标或节点来显示,这些节点连接在一起,形成数据流,代表数据在操作间的流动。
Clementine用户界面包括6个区域。
数据流区域(Stream canvas):数据流区域是Clementine窗口中最大的区域,在这个区域可以建立数据流,也可以对数据流进行操作。
每次在Clementine中可以多个数据流同时进行工作,或者是同一个数据流区域有多个数据流,或者打开一个数据流文件。
实验二 Clementine12购物篮分析(关联规则)

实验二Clementine12购物篮分析(关联规则)一、[实验目的]设计关联规则分析模型,通过模型演示如何对购物篮分析,并根据细分结果对采取不同的营销策略。
体验以数据驱动的模型计算给科学决策带来的先进性。
二、[知识要点]1、购物蓝分析概念;2、管来呢规则算法原理;3、购物蓝分析工具;4、Clementine12.0关联规则分析流程。
三、[实验要求和内容]1、初步了解使用工作流的方式构建分析模型;2、理解智能数据分析流程,主要是CRISP-DM工业标准流程;3、理解关联规则模型原理;4、设计关联规则分流;5、运行该流,并将结果可视化展示;6、得出模型分析结论7、运行结果进行相关营销策略设计。
四、[实验条件]Clementine12.0挖掘软件。
五、[实验步骤]1、启动Clementine12.0软件;2、在工作区设计管来呢规则挖掘流;3、执行模型,分析计算结果;4、撰写实验报告。
六、[思考与练习]1、为什么要进行关联规则分析?它是如何支持客户营销的?实验内容与步骤一、前言“啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长!“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。
父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。
基于SPSS Clementine的关联规则分析在中医药数据挖掘中的应用优势和局限

中医学 是 一 门对 临 床经 验 有较 高 要求 的学 科 ,
一
,
它包 含 了决 策 树 、 支 持 向量 机 、 贝 叶斯 网络 等分
其本身具有整体性 、 系统性 、 复杂性等特点。 名老中
医作 为 中医药 学 术 的带 头 人 , 其学 术 思 想 和临 证 经 验 是 中 医学 的重 要 组成 部 分 , 也 是不 可 多得 的宝 贵
Vo l _39 No .6 1 2 .2 01 6
基于 S P S S C l e me n t i n e的关联规则分析在 中医药数 据挖掘 中的 应 用 优 势 和 局 限
王玲 玲 ,付 桃 芳 ,杜 俊 英 , 梁 宜 1 , 2 A ,方剑 乔
( 1 .浙江 中医药大学第三临床医学院 ,浙江 杭州 3 1 0 0 5 3 ;2 .浙江 中医药大学附属第三 医院,浙江 杭州 3 1 0 0 0 5 )
基金项 目:全国名老中医药专 家传承工作室建设项 目( 国中医药人教发【 2 0 1 3 】 4 7号 ) ; 浙江省名老中医专 家传承工作室 建设项 目( GZ S 2 0 1 2 0 1 4) ; 浙江省 中医药科技计 划项 目( 2 0 1 4 Z A0 5 9 )
收 稿 日期 :2 0 1 6 — 0 9 — 2 5
摘要 :C l e m e n t i n e 是数据挖掘 的常用工具之一 , 在如今 中医学领 域数据挖掘方 面也 运用相 当广泛 , 其 中它 的关 联规则分析也是应用最多的挖掘方法之一 。 本文综述了 目前 S P S S C l e m e n t i n e 关联规则分析方法在 中医药研究 中运
用的概况 , 主要是对名老 中医经验传承 、 中医病机 、 症 状与 中药 、 医案研究 和针 灸处 方研究等方 面的关联规 律挖掘 ,
数据挖掘技术与应用实验报告

数据挖掘技术与应用 实 验 报 告专业:_______________________班级:_______________________学号:_______________________姓名:_______________________2012-2013学年 第二学期经济与管理学院实验名称:SPSS Clementine 软件安装、功能演练指导教师: 实验日期: 成绩:实验目的1、熟悉SPSS Clementine 软件安装、功能和操作特点。
2、了解SPSS Clementine 软件的各选项面板和操作方法。
3、熟练掌握SPSS Clementine 工作流程。
实验内容1、打开SPSS Clementine 软件,逐一操作各选项,熟悉软件功能。
2、打开一有数据库、或新建数据文件,读入SPSS Clementine,并使用各种输出节点,熟悉数据输入输出。
(要求:至少做access数据库文件、excel文件、txt文件、可变文件的导入、导出)实验步骤一 实验前准备:1.下载SPSS Clementine 软件安装包和一个虚拟光驱。
2.选择任意盘区安装虚拟光驱,并把下载的安装包的文件(后缀名bin)添加到虚拟光驱上,然后双击运行。
3.运行安装完成后,把虚拟光驱中CYGiSO文件中的lservrc文件和PlatformSPSSLic7.dll文件复制替换到安装完成后的bin文件中,完成破解,获得永久免费使用权。
4.运行中文破解程序,对SPSS Clementine 软件进行汉化。
二 实验操作:从 Windows 的“开始”菜单中选择:所有程序/SPSS 1、启动 Clementine:Clementine 12.0/SPSS Clementine client 12.02、Clementine窗口当第一次启动 Clementine 时,工作区将以默认视图打开。
中中,这将是用来工作的主要区域。
间的区域称作流工作区。
Clementine上机操作实验指导

数据流的基本操作
向数据流区域添节点
双击选项板区中待添加的节点; 左键按住待添加节点,将其拖入数据流区域内; 先选中选项板区中待添加的节点,然后将鼠标放入数据
流区域,在鼠标变为十字形时单击数据流区域的任何空 白处。
向数据流区域删节点
左键单击待删除的节点,按键盘上的delete键删除; 右键单击待删除的节点,在快捷菜单中选择delete。
管理器窗口
管理器窗口中共包含了“流”、“输出”、“模 型”三个栏。
工程管理区
工程管理区含有两个选项栏,一个是“CRISPDM”,一个是“类”。
数据流的基本操作
生成数据流的基本过程
向数据流区域增添新的节点; 将这些节点连接到数据流中; 设定数据节点或数据流的功能; 运行数据流。
调节因子η
点击“执行”按钮,即可在管理器窗口的“模型” 标签下显示生成的K-Means模型节点。
右键单击管理器窗口“模型”标签下生成的K-Means模型节点,在快 捷菜单中选择“浏览”,打开“K-Means”对话框,在“模型”标签 下会显示划分出来的三个聚类,点击“全部展开”,则可以显示每个 簇的一些统计信息
SmallSampleComma.txt
字段实例化 将ID字段的类型修改为
无类型
字段方向
输入:输入或者预测字 段
输出:输出或者被预测 字段字段
两者:既是输入又是输 出,只在关联规则中用 到
无:建模过程中不使用 该字段
分区:将数据拆分为训 练、测试(验证)部分
字段方向设置只有在建 模时才起作用
如果数据是列界定的(字段未被分隔,但是 始于相同的位置并有固定长度),应该使用固 定文本文件导入固定文件节点
实验四 Clementine数据挖掘

实验四 数据挖掘实验指导一、目的掌握数据挖掘工具Clementine 的基本方法与操作。
二、任务利用Clementine 对药物数据进行简单的数据挖掘操作,熟悉数据挖掘的基本步骤。
三、要求了解数据挖掘的基本步骤,完成针对给定数据的决策树挖掘/关联规则分析/聚类分析,并写出实验报告。
四、实验内容利用Clementine 对Drug.txt 中药物研究数据进行决策树、关联规则分析,观察挖掘的结果,比较这些方法挖掘结果的异同,根据观察的结果写出实验报告。
注:药物研究数据来源于对治疗同一疾病病人的处方,这些病人服用不同药物,取得了相同效果。
其中所含数据项如下:Age: 年龄 Sex: 性别(M\F) Drug: 病人所服药物种类(A/B/C/X/Y) BP: 血压(High\Normal\Low)Cholesterol: 胆固醇(Normal\High) Na: 唾液中钠元素含量 K: 唾液中钾元素含量 希望通过数据挖掘发现这些处方中隐藏的规律,给出不同临床特征病人更适合服务哪种药物的建议,为未来医生填写处方提供参考。
五、实验环境1、 硬件:P4/256MB 台式计算机2、 软件:Windows 2000 Professional/SQL Server 2000/Clementine 8.1及以上3、 数据:Drugs 数据 (文件Drug.txt) 六、步骤(一) 启动clementine双击桌面数据挖掘工具“clementine 8.1” 图标或C:\Clementine 8.1\bin\Clementine.exe ,即可启动该挖掘工具,界面如图4-1所示。
主工作区结果输出区(二)数据挖掘操作1.挖掘流(stream)操作(1)新建:File菜单→New Stream命令(2)保存/另存:File菜单→Save Stream /Save Stream As…命令→指定保存位置、文件名称→保存按钮(3)打开:File菜单→Open Stream…命令→指定要打开流的位置、文件名称→打开按钮2.挖掘步骤(1)建立连接数据源1)在挖掘工具区选项卡“Sources”中将“Var. File”节点拖入到主工作区。
数据挖掘工具(一)Clementine

数据挖掘工具(一)SPSS Clementine18082607 洪丹Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。
1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台, Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。
强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。
同那些仅仅着重于模型的外在表现而忽略了数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比, Clementine其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率。
近年来,数据挖掘技术越来越多的投入工程统计和商业运筹,国外各大数据开发公司陆续推出了一些先进的挖掘工具,其中spss公司的Clementine软件以其简单的操作,强大的算法库和完善的操作流程成为了市场占有率最高的通用数据挖掘软件。
本文通过对其界面、算法、操作流程的介绍,具体实例解析以及与同类软件的比较测评来解析该数据挖掘软件。
1.1 关于数据挖掘数据挖掘有很多种定义与解释,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。
” 1、大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
2、数据挖掘的意义却不限于此,尽管数据挖掘技术的诞生源于对数据库管理的优化和改进,但时至今日数据挖掘技术已成为了一门独立学科,过多的依赖数据库存储信息,以数据库已有数据为研究主体,尝试寻找算法挖掘其中的数据关系严重影响了数据挖掘技术的发展和创新。
尽管有了数据仓库的存在可以分析整理出已有数据中的敏感数据为数据挖掘所用,但数据挖掘技术却仍然没有完全舒展开拳脚,释放出其巨大的能量,可怜的数据适用率(即可用于数据挖掘的数据占数据库总数据的比率)导致了数据挖掘预测准确率与实用性的下降。
SPSS_Clementine典型案例分析

最后,在数据流中增加一个“条形图”节点。 双击该节点,在“字段”下拉列表中选择 “name”字段,点击“执行(E)”,得出 结果如图所示。在图中所显示的就是我们要 重点关注的数据。
24.4小结
本章通过使用Apriori模型、GRI模型、可视化网 络图、决策树、神经网络等来说明如何使用 Clementine在数据库中发现知识。Clementine系 统中提供了很多种模型,对于这些模型的使用, 要考虑到实际情况来酌情进行使用。 本章所展示的只是Clementine系统的一部分应 用。随着社会的不断发展,数据库技术的不断进 步。Clementine将会越来越多的被重视、使用。
数据挖掘原理与SPSS Clementine应用宝典
本章包括:
市场购物篮分析 利用决策树模型挖掘商业信息 利用神经网络对数据进行欺诈探测
24.1市场购物篮分析
本节的例子采用Clementine系统自带的 数据 集BASKETS1n。该数据集是超市的“购物 篮” (一次购物内容的集合)数据和购买者个人 的背景数据,目标是发现购买物品之间的关 联分析。
24.3.4 建模
将一个“类型”节点添加到当前数据流中。对 数据集中的数据进行设置。
在数据流上添加一个“神经网络”节点。执 行此数据流。神经网络经过训练后,会产生 一个模型。将产生的模型加入到数据流流中。 然后在数据流中再增加一个“散点图”节点, 对“散点图”节点进行设置。设置完成之后, 执行。
在数据流区域中添加一个“选择”节点,对 该节点进行设置。 以农场大小、主要作物类型、土壤质量等为 自变量建立一个回归模型来估计一个农场的 收入是多少。
为了发现那些偏离估计值的农场,先生成一个字段――diff, 代表估计值与实际值偏离的百分数。在数据流中再增加一 个“导出”节点 进行设置。 在数据流中增加一个“直方图”节点。对“直方图”节点进 行设置。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一Clementine12.0数据挖掘分析方法与应用一、[实验目的]熟悉Clementine12.0进行数据挖掘的基本操作方法与流程,对实际的问题能熟练利用Clementine12.0开展数据挖掘分析工作。
二、[知识要点]1、数据挖掘概念;2、数据挖掘流程;3、Clementine12.0进行数据挖掘的基本操作方法。
三、[实验内容与要求]1、熟悉Clementine12.0操作界面;2、理解工作流的模型构建方法;3、安装、运行Clementine12.0软件;4、构建挖掘流。
四、[实验条件]Clementine12.0软件。
五、[实验步骤]1、主要数据挖掘模式分析;2、数据挖掘流程分析;3、Clementine12.0下载与安装;4、Clementine12.0功能分析;5、Clementine12.0决策分析实例。
六、[思考与练习]1、Clementine12.0软件进行数据挖掘的主要特点是什么?2、利用Clementine12.0构建一个关联挖掘流(购物篮分析)。
实验部分一、Clementine简述Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。
1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台,Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。
强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。
同那些仅仅着重于模型的外在表现而忽略了数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比,Clementine其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率。
为了解决各种商务问题,企业需要以不同的方式来处理各种类型迥异的数据,相异的任务类型和数据类型就要求有不同的分析技术。
Clementine提供最出色、最广泛的数据挖掘技术,确保可用最恰当的分析技术来处理相应的问题,从而得到最优的结果以应对随时出现的商业问题。
即便改进业务的机会被庞杂的数据表格所掩盖,Clementine也能最大限度地执行标准的数据挖掘流程,为您找到解决商业问题的最佳答案。
为了推广数据挖掘技术,以解决越来越多的商业问题,SPSS和一个从事数据挖掘研究的全球性企业联盟制定了关于数据挖掘技术的行业标准--CRISP-DM (Cross-Industry Standard Process for Data Mining)。
与以往仅仅局限在技术层面上的数据挖掘方法论不同,CRISP-DM把数据挖掘看作一个商业过程,并将其具体的商业目标映射为数据挖掘目标。
最近一次调查显示,50%以上的数据挖掘工具采用的都是CRISP-DM的数据挖掘流程,它已经成为事实上的行业标准。
Clementine完全支持CRISP-DM标准,这不但规避了许多常规错误,而且其显著的智能预测模型有助于快速解决出现的问题。
在数据挖掘项目中使用Clementine应用模板(CATs)可以获得更优化的结果。
应用模板完全遵循CRISP-DM标准,借鉴了大量真实的数据挖掘实践经验,是经过理论和实践证明的有效技术,为项目的正确实施提供了强有力的支撑。
Clementine中的应用模板包括:(1)CRM CAT--针对客户的获取和增长,提高反馈率并减少客户流失;(2)Web CAT--点击顺序分析和访问行为分析;(3)cTelco CAT--客户保持和增加交叉销售;(4)Crime CAT--犯罪分析及其特征描述,确定事故高发区,联合研究相关犯罪行为;(5)Fraud CAT--发现金融交易和索赔中的欺诈和异常行为;(6)Microarray CAT--研究和疾病相关的基因序列并找到治愈手段。
利用Clementine,可以在如下几方面提供解决方案:(1)公共部门。
各国政府都使用数据挖掘来探索大规模数据存储,改善群众关系,侦测欺诈行为(譬如洗黑钱和逃税),检测犯罪行为和恐怖分子行为模式以及进一步扩展电子政务领域。
(2)CRM。
客户关系管理可以通过对客户类型的智能分类和客户流失的准确预测而得到提高。
Clementine 已成功帮助许多行业的企业吸引并始终保有最有价值的客户。
(3)Web 挖掘。
Clementine 包含的相关工具具有强大的顺序确定和预测算法,对于准确发现网站浏览者的行为以及提供精确满足浏览者需求的产品或信息而言,这些工具是不可或缺的。
从数据准备到构建模型,全部的数据挖掘过程均可在Clementine 内部操控。
(4)药物发现和生物信息学。
通过对由试验室自动操作获得的大量数据进行分析,数据挖掘有助于药物和基因组的研究。
聚类和分类模型帮助从化合物库中找出线索,与此同时顺序检测则有助于模式的发现。
二、Clementine数据挖掘的基本思想数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,它是一种深层次的数据分析方法。
随着科技的发展,数据挖掘不再只依赖在线分析等传统的分析方法。
它结合了人工智能(AI)和统计分析的长处,利用人工智能技术和统计的应用程序,并把这些高深复杂的技术封装起来,使人们不用自己掌握这些技术也能完成同样的功能,并且更专注于自己所要解决的问题。
Clementine为我们提供了大量的人工智能、统计分析的模型(神经网络,关联分析,聚类分析、因子分析等),并用基于图形化的界面为我们认识、了解、熟悉这个软件提供了方便。
除了这些,Clementine还拥有优良的数据挖掘设计思想,正是因为有了这个工作思想,我们每一步的工作也变得很清晰。
Clementine 遵循CRISP-DM Model(Cross Industry Standard Process for Data Mining,数据挖掘跨行业标准流程),具体如图所示。
图4.1 CRISP-DM process model如图可知,CRISP-DM Model包含了六个步骤,并用箭头指示了步骤间的执行顺序。
这些顺序并不严格,用户可以根据实际的需要反向执行某个步骤,也可以跳过某些步骤不予执行。
通过对该步骤的执行,我们也涵盖了数据挖掘的关键部分。
1.商业理解商业理解阶段应算是数据挖掘中最重要的一个部分,在这个阶段里我们需要明确商业目标、评估商业环境、确定挖掘目标以及产生一个项目计划。
Clementine的可视化操作界面使得企业可以更容易地把业务知识应用到数据挖掘项目中。
此外,使用针对特定商业目标的Clementine应用模板(CATs),可以在数据挖掘工作中使用成熟的、最佳的方法。
CATs使用的样本数据可以以平面文件或者关系型数据库表的形式安装。
■ 客户关系管理(CRM)CAT*■ 电信CAT*■ 欺诈探测CAT*■ 微阵列CAT*■ 网页挖掘CAT* (需要购买Web Mining for Clementine)2.数据理解数据是我们挖掘过程的“原材料”,在数据理解过程中我们要知道都有些什么数据,这些数据的特征是什么,可以通过对数据的描述性分析得到数据的特点。
使用Clementine,可以做到:■ 使用Clementine的数据审核节点获取对数据的初步认识;■ 通过图形、统计汇总或数据质量评估快速浏览数据;■ 创建基本的图表类型,如直方图、分布图、线形图和点状图;■ 在图形面板节点中通过自动帮助方式创建比过去更多的基本图形及高级图形;■ 通过表格定制节点轻松创建复杂的交叉表;■ 编辑图表使分析结果交流变得更容易;■ 通过可视化联接技术分析数据的相关性;■ 与数据可视化互动,可在图形中选择某个区域或部分数据,然后对选择的数据部分再进行观察或在后续分析中使用这些信息;■ 在Clementine中直接使用SPSS统计分析、图形以及报表功能。
3.数据准备在数据准备阶段我们需要对数据作出选择、清洗、重建、合并等工作。
选出要进行分析的数据,并对不符合模型输入要求的数据进行规范化操作。
运用Clementine,可以做到:(1)访问数据–---结构化(表格) 数据■ 通过SPSS Data Access Pack访问支持ODBC的数据源,包括IBM DB2,Oracle,Microsoft SQL Server,Informix和Sybase数据库;■ 导入用分隔符分隔和固定宽度的文件,任何SPSS的文件,SAS 6, 7, 8, 和9文件;■ 在读取Excel文件时,可以限定工作表和数据范围。
–---非结构化(原文) 数据■ 使用Text Mining for Clementine自动从任何类型的文本中提取各种概念。
– ---网站数据■ 使用Web Mining for Clementine自动从网络日志中提取网站上的事件。
–----调查数据■ 直接访问存储在Dimensions数据模型或Dimensions*产品中的数据文件。
–--- 数据输出■ 可以输出为分隔符分隔,固定宽度的文件,所有主流数据库数据,Microsoft Excel,SPSS,和SAS 6,7,8和9文件;■ 使用Excel导出节点导出成XLS格式;■ 为市场调研输出数据到Dimensions中。
(2)各种数据清洗选项–移出或者替换无效数据–使用预测模型自动填充缺失值–自动侦测及处理异常值或极值(3)数据处理–--- 完整的记录和字段操作,包括:■ 字段过滤、命名、导出、分段、重新分类、值填充以及字段重排;■ 对记录进行选择、抽样(包括簇与分层抽样)、合并(内连接、完全外连接、部分外连接以及反连接)和追求;排序、聚合和平衡;■ 数据重新结构化,包括转置;■ 分段节点能够根据预测值对数字值进行最优分段;■ 使用新的字符串函数:字符串创建、取子字符串、替换、查询和匹配、空格移除以及截断;■ 使用时间区间节点为时间序列分析做准备;–--- 将数据拆分成训练、测试和验证集。
–--- 对多个变量自动进行数据转换。
■ 可视化的标准数据转换–---数据转换在Clementine中直接使用SPSS数据管理和转换功能;■ RFM评分:对客户交易进行汇总,生成与最近交易日期、交易频度以及交易金额相关的评分,并对这些评分进行组合,从而完成完整的RFM分析过程。
4.建模建模过程也是数据挖掘中一个比较重要的过程。
需要根据分析目的选出适合的模型工具,通过样本建立模型并对模型进行评估。
Clementine提供了非常广泛的数据挖掘算法以及更多高级功能,从而帮助企业从数据中得到尽可能最优的结果。