第3章 一元一次方程 人教版数学七年级上册拓展练习及答案(2份)

合集下载

人教版七年级数学上册第3章 一元一次方程练习题(含答案)

人教版七年级数学上册第3章 一元一次方程练习题(含答案)

人教版七年级上册第三章一元一次方程练习题一、选择题1.已知下列方程:①x+1=3x ;②5x=8;③x3=4x+1;④4x2+2x−3=0;⑤x=1;⑥3x+y=6.其中一元一次方程的个数有()A. 2个B. 3个C. 4个D. 6个2.在下列等式的变形中,正确的是()A. 若3x=a,则x=a3B. 若ax=b,则x=baC. 若ac=bc,则a=bD. 若a=b,则a−c=c−b3.在下列各式中,是方程的是()A. 2x+3y=2B. 2a+3C. 2x>5D. π−1=2.144.下列方程中,移项正确的是()A. 12−x=−5,移项,得12−5=xB. −7x+3=−13x−2,移项,得13x−7x=−3−2C. 4x+3=2x+5,移项,得4x−2x=5+3D. −5x−7=2x−11,移项,得11−7=2x−5x5.解方程3x+7=32−2x正确的时()A. x=25B. x=5C. x=39D. x=3956.代数式2x−1与4−3x的值互为相反数,则x等于()A. −3B. 3C. −1D. 17.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为().A. 2B. −2C. 1D. −18. 若3x+12的值比2x−23的值小1,则x 的值为( )A. 135B. −135C. 513D. −5139. 若3a +1的值与3(a +1)的值互为相反数,则a 的值为( )A. −23B. −13C. 23D. 13 10. 某书上有一道解方程的题:1+▫x 3+1=x ,▫处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =−2,那么▫处的数字是( )A. 7B. 5C. 2D. −2 11. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +1 12. 把方程x −x−52=x−16去分母,正确的是( )A. x −3(x −5)=x −1B. 6x −3(x −5)=x −1C. x −x −5=x −1D. 6x −(x −5)=x −113. 甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A. 75×1+(120−75)x =270B. 75×1+(120+75)x =270C. 120(x −1)+75x =270D. 120×1+(120+75)x =27014. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则这个商店这次( ) A. 不赔不赚 B. 赚了8元 C. 赔了8元 D. 赔了10元15. 某足球比赛计分规则:胜一场得3分,平一场得1分,负一场得0分.某足球队经过26轮激战,以42分获比赛第五名,其中负6场,那么胜场数为( )A. 9B. 10C. 11D. 12二、填空题16.写出一个一元一次方程使它同时满足下列两个条件: ①未知数的系数是2; ②方程的解为2.则这个方程为.17.如果x+17=y+6,那么x+11=y+_____,根据是___________________.18.当x的值为________时,代数式2x+3与(x−7)的差等于5.19.当x=_________ 时,代数式x−x−25的值等于−2.20.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.三、解答题21.甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙三位爱心人士捐赠图书的册数之比是5:8:9,如果他们共捐了748册图书,那么甲、乙、丙三位爱心人士各捐了多少册图书?22.知关于x的方程2(x−1)=3m−1与3x+2=−2(m+1)的解互为相反数,求m的值.23.解下列方程:(1)2x+13−5x−16=1;(2)x−x−12=2−x+25.24.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)若在这次促销活动中,商场销售了这款空调100台,则盈利多少元?25.如图,数轴上A,B两点所表示的数分别为−5,10,O为原点,点C为数轴上一动点且表示的数为x.点P以每秒2个单位长度的速度,点Q以每秒3个单位长度的速度,分别自A,B两点同时出发,相向而行,在数轴上运动.设运动时间为t秒.(1)若点P,Q在点C处相遇,求点C所表示的数x;(2)若OP=OQ,求t的值;(3)当PQ=5时,求t的值;(4)若同时一只宠物鼠以每秒4个单位长度的速度从点B出发,与点P相向而行,宠物鼠遇到点P后立即返回,又遇到点Q后立即返回,又遇到点P后立即返回⋯⋯直到点P,Q相遇为止.求宠物鼠在整个过程中所经过的路程.答案和解析1.【答案】B【解析】【分析】本题主要考查的是一元一次方程的概念的有关知识,直接利用一元一次方程的概念进行求解即可.【解答】不是一元一次方程;解:①x+1=3x②5x=8是一元一次方程;=4x+1是一元一次方程;③x3④4x2+2x−3=0不是一元一次方程;⑤x=1是一元一次方程;⑥3x+y=6不是一元一次方程.故选B.2.【答案】A【解析】【分析】此题主要考查了等式的性质,关键是注意等式两边同时除以同一个数时,必须说明除以一个不为零的数.根据等式的性质:等式两边乘同一个数或除以一个不为零的数,结果仍得等式,进行分析即可.【解答】解:A.若3x=a,则x=a,本选项正确;3B.若ax=b,则x=b,没说明a≠0,本选项错误;aC.若ac=bc,若c=0,则a=b不一定成立,本选项错误;D.若a=b,则a−c=c−b不一定成立,本选项错误;故选A.3.【答案】A【解析】【分析】此题主要考查方程的概念,根据含有未知数的等式就是方程求解【解答】解:A.2x+3y=2是方程,故A选项正确;B.2a+3不是等式,故B选项错误;C.2x>5不是等式,故C选项错误;D.π−1=2.14,不含未知数,故D选项错误.故选A.4.【答案】B【解析】【分析】本题考查了解一元一次方程,注意移项要变号.根据移项要变号对各选项分析判断即可得解.【解答】解:A、12−x=−5,移项,得12+5=x,故本选项错误;B、−7x+3=−13x−2,移项,得13x−7x=−3−2,故本选项正确;C、4x+3=2x+5,移项,得4x−2x=5−3,故本选项错误;D、−5x−7=2x−11,移项,得11−7=2x+5x,故本选项错误.故选B.5.【答案】B【解析】【分析】本题考查的是解一元一次方程有关知识,首先对该方程移项,合并同类项,系数化为1可得.【解答】解:移项可得:3x+2x=32−7,合并同类项:5x=25,系数化为1可得:x=5.故选B.6.【答案】B【解析】【分析】本题主要考查的是相反数,一元一次方程的解法的有关知识,根据相反数的定义列出方程求解即可.【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x =3.故选B .7.【答案】B【解析】【分析】本题主要考查的是同解方程,一元一次方程的解法的有关知识.先求出方程x +2=2x +1的解,然后将x 的值代入3x +2m =−1进行求解即可.【解答】解: x +2=2x +1,∴x −2x =1−2,∴−x =−1,解得:x =1,∵两个方程的解相同,∴把x =1代入3x +2m =−1得3+2m =−1,解得:m =−2.故选B .8.【答案】B【解析】【试题解析】【分析】本题考查了解一元一次方程方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,求出解. 根据3x+12的值比2x−23的值小1列出方程,求出方程的解即可得到x 的值.【解答】解:由题,3x+12=2x−23−1,去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x =−13,系数化为1得:x =−135.故选B .9.【答案】A【解析】【分析】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.利用相反数的性质列出方程,求出方程的解即可得到a的值.【解析】解:根据题意得:3a+1+3(a+1)=0,去括号得:3a+1+3a+3=0,移项合并得:6a=−4,,解得:a=−23故选A.10.【答案】B【解析】【分析】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程,已知方程的解x=−2,把x=−2代入未知方程,就可以求出被油墨盖住的地方了.【解答】+1=x解:把x=−2代入1+□x3+1=−2,得:1−2□3解这个方程得:□=5.故选B.11.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.【答案】B【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.根据等式的基本性质,把方程的左右两边同时乘6,去掉分母即可.【解答】解:去分母得,6x−3(x−5)=x−1,故选B.13.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是了解相遇问题中的等量关系,难度不大.根据两车相遇共行驶270千米列出方程即可.【解答】解:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270,故选:B.14.【答案】C【解析】【分析】本题考查了一元一次方程的应用,需注意利润率是相对于进价说的,进价+利润=售价.已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,,列方程y−25%y=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店赔了8元.故选:C.15.【答案】C【解析】【分析】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解答】解:设胜场数为x场,则平场数为(26−6−x)场,依题意得:3x+(26−6−x)=42解得:x=11,那么胜场数为11场.故选C.16.【答案】2x−4=0(答案不唯一)【解析】【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且系数是2,还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x−4=0等17.【答案】0,等式的基本性质一【解析】【分析】本题主要考查了等式的性质,熟练掌握等式的性质是解题的关键,根据等式的基本性质一解答即可.【解答】解:x+17=y+6,两边同时减去6可得x+17−6=y+6−6,即x+11=y+0,故答案为0,等式的基本性质一.18.【答案】−5【解析】【分析】本题考查一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.根据代数式2x+3与x−7的差等于5,即可列方程2x+3−(x−7)=5,解方程即可求解.【解答】解:根据题意得,2x+3−(x−7)=52x+3−x+7=5x=−5,故答案为−5.19.【答案】−3【解析】【分析】本题考查了解一元一次方程的解法,解题时牢记解方程的步骤是关键.先列出等式,再根据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解题即可.【解答】=−2.解:x−x−25去分母得:5x−x+2=−10,移项、合并同类项得:4x=−12,系数化为1得:x=−3.故答案为−3.20.【答案】14【解析】【分析】本题考查了由实际问题抽象出一元一次方程.等量关系为:小明现在的年龄+父亲现在的年龄=54,把相关数值代入即可求解.【解答】解:设小明的年龄的为x岁,则父亲的年龄为(3x−2)岁,根据题意得:x+(3x−2)=54解得x=14.故答案为14.21.【答案】解:设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,∵他们共捐了748册,∴5x+8x+9x=748解得x=34,∴甲捐书5x=170册,乙捐书8x=272册,丙捐书为9x=306册.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.【解析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,根据他们共捐了748册,即可求出这三位同学各捐书多少册.22.【答案】解:解方程2(x−1)=3m−1得:x=3m+12;解方程3x+2=−2(m+1)得:x=−2m−43;因为两个方程的解互为相反数,所以3m+12+−2m−43=0,解得m=1.【解析】本题主要考查的是相反数,一元一次方程的解,一元一次方程的解法的有关知识.分别求出两个方程的解,然后根据相反数的定义得到关于m的方程求解即可.23.【答案】(1)2x+13−5x−16=1解:去分母(方程两边乘6),得2(2x+1)−(5x−1)=6.去括号,得4x+2−5x+1=6.移项,得4x−5x=6−2−1.合并同类项,得−x=3.系数化为1,得x=−3.(2)x−x−12=2−x+25解:去分母(方程两边乘10),得10x−5(x−1)=20−2(x+2).去括号,得10x−5x+5=20−2x−4.移项,得10x−5x+2x=20−4−5.合并同类项,得7x=11.系数化为1,得x=117.【解析】本题考查的是一元一次方程的解法。

人教版初中七年级数学上册第三章《一元一次方程》模拟检测卷(答案解析)(2)

人教版初中七年级数学上册第三章《一元一次方程》模拟检测卷(答案解析)(2)

一、选择题1.(0分)[ID :68202]若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .32 2.(0分)[ID :68196]把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 3.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .4.(0分)[ID :68166]下列解方程的过程中,移项正确的是( )A .由,得 B .由,得 C .由,得 D .由,得5.(0分)[ID :68162]有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .小时B .小时C .小时D .小时6.(0分)[ID :68160]某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( )A .17号B .18号C .19号D .20号7.(0分)[ID :68158]甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 8.(0分)[ID :68254]下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= 9.(0分)[ID :68248]下列变形不正确的是( )A .由2x-3=5得:2x=8B .由-23x=2得:x=-3C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( ) A .2 B .2- C .6 D .6-11.(0分)[ID :68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折12.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2 B .34 C .2 D .43- 13.(0分)[ID :68227]某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( )A .3x ﹣20=24x +25B .3x +20=4x ﹣25C .3x ﹣20=4x ﹣25D .3x +20=4x +25 14.(0分)[ID :68226]将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+15.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2二、填空题16.(0分)[ID :68341]某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元17.(0分)[ID :68338]某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.18.(0分)[ID :68336]已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.19.(0分)[ID :68318]5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.20.(0分)[ID :68316]对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.21.(0分)[ID :68314]某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.22.(0分)[ID :68311]如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)23.(0分)[ID :68301]开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.24.(0分)[ID :68293](1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________. 25.(0分)[ID :68291]某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米.(1)若设这个足球场的宽为x 米,那么长为_______米。

人教版七年级上册数学第三章 一元一次方程含答案【完整版】

人教版七年级上册数学第三章 一元一次方程含答案【完整版】

人教版七年级上册数学第三章一元一次方程含答案一、单选题(共15题,共计45分)1、根据下面所给条件,能列出方程的是().A.一个数的是6B.a与1的差的C.甲数的2倍与乙数的D.a与b的和的60%2、关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣33、某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元4、下列式子可以用“=”连接的是( )A.5+4_______12-5B.7+(-4)______7-(+4)C.2+4(-2)______-12 D.2(3-4)_____23-45、下列结论中正确的是()A.在等式3a﹣b=3b+5的两边都除以3,可得等式a﹣2=b+5B.如果2=﹣x,那么x=﹣2C.在等式5=0.1x的两边都除以0.1,可得等式x=0.5 D.在等式7x=5x+3的两边都减去x﹣3,可得等式6x﹣3=4x+66、把mn=pq(mn≠0)写成比例式,写错的是()A. =B. =C. =D. =7、解方程下=2,去分母正确的是( )A.2x-1-x+2=2B.2x-1-x+2=12C.2x-2-x-2=12D.2x-2-x-2=68、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价降价20%以96元出售,很快就卖掉了.则这次生意的赢亏情况为()A.亏4元B.亏24元C.赚6元D.不亏不赚.9、甲、乙两人每天生产某种产品的数量比是,经过生产线升级他们每天都多生产27件,那么现在他们每天生产品的数量之比为,则乙现在每天生产产品的件数为().A.42B.48C.54D.6310、A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x1)=1311、为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元12、要将等式进行一次变形,得到x=-2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以C.等式两边同时除以D.等式两边同时乘以13、下列等式变形,正确的是( )A.由2+x=8得x=8+2B.由2x+6=4x得x+6=2xC.由2x=3得x=D.由−1=1得x−5=114、如果(2+m)x|m|﹣1 +2=0是关于x的一元一次方程,则m的值为()A.1或﹣1B.2C.2或﹣2D.﹣215、数学竞赛卷共有20道题,每答对一道题得5分,不答或答错一道题倒扣1分,要得到76分必须答对的题数是()A.17B.16C.15D.14二、填空题(共10题,共计30分)16、当代数式2x﹣2与3+x的值相等时,x=________.17、已知方程(m-2)x|m-1|+4=7是关于x的一元一次方程,则m=________.18、有一批树苗.若每人种10棵,则余下6棵;若每人种12棵则缺6棵.参与种树的人数是________.19、商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是________元.20、某商品的进价是200元,标价300元出售,商店要求利润不低于5%,售货员最低可以打________折出售此商品.21、某市居民夏季(5月—10月)阶梯电价价目如右表.李叔叔家8月份用电500度,他家这个月要电费________元.张阿姨家8月份缴纳电费249.4元,她家这个月用电________度.(不计公共分摊部分).阶梯电量(度)电价/度第一档0—260部分0.59元第二档261—600部分0.64元第三档601度以上部分0.89元22、某种家电商场将一种品牌的电脑按标价的9折出售,仍可获利20%,已知该品牌电脑进价为9000元,如果设该电脑的标价为x元,根据题意得到的方程是________.23、王铭寒假时和同学们观看冰灯,门票每张150元,15张(含15张)以上打八折,他们共花1800元,他们共买了________ 张门票.24、1月份的日历,如果用表示日历方框中的4个数字,试用等式写出a,b,c,d之间的数字关系________.25、当x=________时,式子与的值相等.三、解答题(共6题,共计25分)26、关于x的方程与方程的解互为倒数,求a 的值.27、已知关于y的方程= 的解比关于x的方程3a-x= +3的解小3,求a的值.28、制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?29、方程17+15x=245,, 2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?30、已知关于x的方程=x+ 与方程= ﹣0.6的解互为倒数,求m的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、B5、B6、D8、A9、A10、A11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、30、。

第3章 一元一次方程 人教版数学七年级上册拓展练习及答案(2份)

第3章 一元一次方程 人教版数学七年级上册拓展练习及答案(2份)

七年级上册第3章拓展练习(一)一.选择题(共10小题)1.若x=1是关于x的一元一次方程x+1=﹣2x+3m的解,则m的值为()A.2B.3C.D.2.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+63.小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=54.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5B.2或10C.2.5或3D.35.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x7.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣88.下列根据等式的性质变形正确的是()A.若4x+5=3x﹣5,则x=0B.若3x=2,则x=1.5C.若x=2,则x2=2xD.若,则3x+1﹣1=2x9.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12D.2(2x﹣1)﹣10x+1=1210.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若4a+9与3a+5互为相反数,则a的值为.14.列方程:“a的2倍与5的差等于a的3倍”为:.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)x﹣8=﹣0.2x;(2)=﹣1.17.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.18.若关于x的一元一次方程ax=b(a≠0)的解恰好为a+b即x=a+b,则称该方程为“友好方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.(1)①﹣2x=4,②3x=﹣4.5;③x=﹣1三个方程中,为“友好方程”的是(填写序号)(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=2m+1是“友好方程”,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.列方程求解:当k取何值时,代数式的值比的值大4?参考答案一.选择题(共10小题)1.解:∵x=1是关于x的一元一次方程x+1=﹣2x+3m的解,∴1+1=﹣2+3m,解得m=.故选:D.2.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.3.解:假设满足选项A、B两个方程,则.解得.把代入选项C的方程,满足选项C的方程,说明不满足的那个方程是选项D的方程,故选:D.4.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.7.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.8.解:A、若4x+5=3x﹣5,则x=﹣10,故本选项错误;B、若3x=2,则x=,故本选项错误;C、若x=2,则x2=2x,故本选项正确;D、若,则3x+1﹣2=2x,故本选项错误;故选:C.9.解:解方程﹣=3时,去分母得:2(2x﹣1)﹣10x﹣1=12,故选:C.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:解方程3x﹣7=5x+2得x=﹣,根据题意得,方程4y+3a=7a﹣8的解为y=﹣,所以4×(﹣)+3a=7a﹣8,解得a=.故答案为.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.14.解:由题意可得:2a﹣5=3a.故答案为:2a﹣5=3a.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去分母得:8x﹣160=5﹣4x,移项合并得:12x=165,解得:x=;(2)去分母得:15x﹣5=8x+4﹣10,移项合并得:7x=﹣1,解得:x=﹣.17.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.18.解:(1)﹣2x=4的解是x=2≠﹣2+4,即方程﹣2x=4不是“友好方程”,3x=﹣4.5的解是x=﹣1.5=3+(﹣4.5),即方程3x=﹣4.5是“友好方程”,x=﹣1的解是x=﹣2≠+(﹣1),即方程x=﹣1不是“友好方程”,故答案为:②;(2)∵关于x的一元一次方程3x=b是“友好方程”,∴=3+b,解得:b=﹣4.5;(3)∵关于x的一元一次方程﹣2x=2m+1是“友好方程”,=﹣2+(2m+1),解得:m=.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:依题意得:﹣=4,去分母得:2k﹣2﹣9k﹣9=24,移项合并得:﹣7k=35,解得:k=﹣5.七年级上册第3章拓展练习一.选择题(共10小题)1.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.6 2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.某品牌手机在元旦期间,进行促销活动,首先按标价降价8%在此基础上,商场又返还标价5%的现金,此时买这个品牌的手机需要1740元,那么这个手机的标价是()元.A.2400B.2200C.2100D.20005.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.学校有n名师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有25人没有上车;若每辆客车坐50人,则刚好空出一辆客车.以下四个方程:①45m+25=50(m﹣1);②45m﹣25=50(m﹣1);③=﹣1;④=+1;其中正确的有()A.1个B.2个C.3个D.4个7.已知关于x的方程x﹣2=1的解为3,则下列判断中正确的是()A.2a>b B.2a<b C.2a=b D.不能确定8.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若,则2(x﹣1)+3(x+1)=1C.若﹣3x=5,则x=﹣D.若5x﹣3=4x+2,则5x﹣4x=2+39.将方程2x﹣3=1+x移项,得()A.2x+x=1﹣3B.2x+x=1+3C.2x﹣x=1﹣3D.2x﹣x=1+3 10.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.已知x=3是方程3x﹣2a=5的解,则a=.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若3(x﹣2)和﹣2(3+x)互为相反数,则x的值为.14.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)3x﹣2=10﹣2(x+1);(2)﹣=1.17.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题(共10小题)1.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.解:设这个手机的标价是x元,根据题意可得:(1﹣8%)x•﹣5%x=1740,解得:x=2000.故选:D.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:由题意可得:45m+25=50(m﹣1),故①正确;=+1,故④正确.故选:B.7.解:把x=3代入方程得:﹣2=1,去分母得:3b﹣4a=2a,即6a=3b,整理得:2a=b,故选:C.8.解:∵5x﹣6=7,∴5x=7+6,∴选项A不符合题意;∵,则2(x﹣1)+3(x+1)=6,∴选项B不符合题意;∵若﹣3x=5,则x=﹣,∴选项C不符合题意;∵若5x﹣3=4x+2,则5x﹣4x=2+3,∴选项D符合题意.故选:D.9.解:将方程2x﹣3=1+x移项,得2x﹣x=1+3,故选:D.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:3(x﹣2)﹣2(3+x)=0,去括号得:3x﹣6﹣6﹣2x=0,移项得:3x﹣2x=6+6,合并得:x=12.故答案为:12.14.解:设寺内有x名僧人,由题意得+=364,故答案为:+=364.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去括号得:3x﹣2=10﹣2x﹣2,移项合并得:5x=10,解得:x=2;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.17.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.18.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。

人教版初中数学七年级数学上册第三单元《一元一次方程》测试(答案解析)(2)

人教版初中数学七年级数学上册第三单元《一元一次方程》测试(答案解析)(2)

一、选择题1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .11 2.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣73.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40C .44D .464.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b5.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =-,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++8.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .09.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 10.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个11.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.14.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.15.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时16.22223124,4135-=-225146-=,……221012m m -=+m =_____________ 17.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 18.计算7a 2b ﹣5ba 2=_____.19.已知|a|=-a ,b b=-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.20.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)三、解答题21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.22.一种商品每件成本a 元,原来按成本增加22%定出价格. (1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?23.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字. 24.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.25.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?26.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.3.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.7.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.8.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m=67.故选:B.【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.9.C解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+.故选:C.【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.10.C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n-.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.11.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.12.C解析:C 【解析】 【分析】根据长方形的周长公式列出算式后化简合并即可. 【详解】∵长方形一边长为2a +b ,另一边为a -b , ∴长方形周长为:2(2a +b +a -b )=6a. 故选C. 【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990 【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论. 【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.14.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2+-234m m【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]a b a b a b=+++-+[2]=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.16.9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】3n +,将210n +=代入即可得出答案.【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+= 故答案为:9. 【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.18.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 19.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c|解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.20.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.三、解答题21.(1)2a a++.a a++;(2)29324【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a2+3a﹣1+2a2﹣a+5=3a2+2a+4,即这个多项式是3a2+2a+4;(2)由(1)可得:3a2+2a+4﹣(2a2+a﹣5)=3a2+2a+4﹣2a2﹣a+5=a2+a+9即此题的正确的结果是a2+a+9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.23.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.24.3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.25.化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键. 26.(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(含解析)(2)

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(含解析)(2)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10, 系数化为1得:x=-2. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 解析:2000kg . 【详解】解:设粗加工的该种山货质量为x kg , 根据题意,得()3200010000x x ++=, 解得2000x =.答:粗加工的该种山货质量为2000kg . 4.解下列方程: (1)2(x -1)=6; (2)4-x =3(2-x); (3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解; (3)方程去括号,移项合并,将未知数系数化为1,即可求出解; 【详解】(1)去括号, 得2x -2=6. 移项,得2x =8. 系数化为1,得x =4. (2)去括号,得4-x =6-3x. 移项,得-x +3x =6-4. 合并同类项,得2x =2. 系数化为1,得x =1. (3)去括号,得5x +5=9x +3. 移项,得5x -9x =3-5. 合并同类项,得-4x =-2. 系数化为1,得x =12. 【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.运用等式的性质解下列方程: (1)3x =2x -6; (2)2+x =2x +1; (3)35x -8=-25x +1. 解析:(1)x =-6;(2)x =1;(3)x =9 【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x . 所以x =-6.(2)两边减x ,得2+x -x =2x +1-x . 化简,得2=x +1. 两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 8.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。

第3章 一元一次方程 人教版数学七年级上册能力提升训练及答案(2份)

第3章 一元一次方程 人教版数学七年级上册能力提升训练及答案(2份)

七年级上册第3章能力提升训练(一)一.选择题(共10小题)1.一元一次方程x+3x=8的解是()A.x=﹣1B.x=0C.x=1D.x=22.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣83.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1B.2C.3D.44.定义运算“*”为A*B=AB+2A,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.3D.﹣35.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+66.下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则B.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣37.小组活动中,同学们采用接力的方式求一元一次方程的解,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后求出方程的解.过程如下:接力中,自己负责的一步出现错误的是()A.甲B.乙C.丙D.丁8.设x、y都是有理数,且满足方程(+)x+(+)y﹣4﹣π=0,则x﹣y的值为()A.18B.19C.20D.219.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA10.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.6二.填空题(共5小题)11.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.12.七年级(2)班数学兴趣小组的同学一起租车去某地参加社会实践活动,预计租车费人均摊16元,后来又有3名同学加入进来.租车费不变,结果每人可少摊3元,设原来有学生x人.可列方程为.13.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.14.已知整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,关于y的方程(3n ﹣3m)y=﹣my﹣5的解为.15.已知方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,则m的值为.三.解答题(共5小题)16.解方程:(1);(2)17.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.18.鹿山广场元旦期间搞促销活动,如图.(1)小哲在促销活动时两次购物分别用了135元和481元.①若小哲购物时没有促销活动,则他共需付多少钱?②若你需购这些同样的物品,请问还有更便宜的购物方案吗?若有,请说出购物方案,并算出共需付多少钱;若没有,则说明理由.(2)若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.①你列举一对a,b的值;②求符合条件的整数a,b共有几对?(直接答案即可).19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.阅读下列材料,并回答问题:我们知道|a|的几何意义是指数轴上表示数a的点与原点的距离,那么|a﹣b|的几何意义又是什么呢?我们不妨考虑一下a,b取特殊值时的情况,比如考虑|9﹣(﹣3)|的几何意义,在数轴上分别标出表示﹣3和9的点A,B(如图所示),A,B两点间的距离是12,而|9﹣(﹣3)|=12,因此不难看出|9﹣(﹣3)|就是数轴上表示﹣3和9两点间的距离.(1)根据|a﹣b|的几何意义可知|a﹣b||b﹣a|(填“>”“<”“=”);(2)说出|x﹣2|的几何意义,并求出当|x﹣2|=2时x的值.(3)点P、点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,设运动时间为t秒,若AP+BQ =2PQ,求时间t的值.参考答案一.选择题(共10小题)1.解:方程合并同类项得:4x=8,解得:x=2,故选:D.2.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.3.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.4.解:根据题中的新定义得:3x+6+3x+2x=14,移项合并得:8x=8,解得:x=1,故选:B.5.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.6.解:∵若a=b,只有c≠0时,成立,∴选项A符合题意;∵若a=b,则ac=bc,∴选项B不符合题意;∵若a(x2+1)=b(x2+1),则a=b,∴选项C不符合题意;∵若x=y,则x﹣3=y﹣3,∴选项D不符合题意.故选:A.7.解:乙步骤错误,原因是去括号没有变号,故选:B.8.解:∵x和y满足(+)x+(+)y﹣4﹣π=0,可变形为:,∵x和y都是有理数,则可得:,整理得:,①﹣②得:x﹣y=18,故选:A.9.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.10.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.二.填空题(共5小题)11.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.12.解:依题意,得16x=(16﹣3)(x+3).故答案为:16x=(16﹣3)(x+3).13.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.14.解:∵整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,∴,解得:,关于y的方程(3n﹣3m)y=﹣my﹣5可以整理为:(﹣12+9)y=3y﹣5,则﹣6y=﹣5,解得:y=.故答案为:y=.15.解:∵方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,∴|m|﹣1=1且m﹣2≠0,解得m=﹣2.故答案是:﹣2.三.解答题(共5小题)16.解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.17.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.18.解:(1)①小哲在促销活动时购物用了135元,则原价为135÷(1﹣10%)=150元;小哲在促销活动时购物用了481元,设原价为x元,由题意得:500×(1﹣15%)+(1﹣20%)(x﹣500)=481解得:x=570若小哲购物时没有促销活动,则150+570=720(元)答:若小哲购物时没有促销活动,则他共需付720元;②若我需购买这些同样的物品,则还有更便宜的购物方案,购物方案是两次购物合并成为一次,共需付钱:500×(1﹣15%)+(1﹣20%)×(720﹣500)=425+176=601(元).(2)①若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.列举一对a、b的值为a=190,b=201,当a=190时,实际付款190×(1﹣10%)=171(元),而b=201时,实际付款201×(1﹣15%)=170.85(元).②由题意得:(1﹣15%)b<200×(1﹣10%)而(1﹣10%)a>200×(1﹣15%),且a≤200<b∴200<b≤,<a≤200∴符合条件的整数a有189~200,整数b有201~211若a=189,则0.85b<189×0.9,b<,没有满足条件的整数b;若a=190,则0.85b<190×0.9,b<,满足条件的整数b为b=201;若a=191,则0.85b<191×0.9,b<,满足条件的整数b有:201,202;若a=192,则0.85b<192×0.9,b<,满足条件的整数b有:201,202,203;若a=193,则0.85b<193×0.9,b<,满足条件的整数b有:201,202,203,204;若a=194,则0.85b<194×0.9,b<,满足条件的整数b有:201,202,203,204,205;…若a=200,则0.85b<200×0.9,b<,满足条件的整数b有:201,202,203,204,205,206,207,208,209,210,211;∴符合条件的整数a、b共有:1+2+3+4+5+6+7+8+9+10+11=66(对).19.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.解:(1)根据|a﹣b|的几何意义可知|a﹣b|=|b﹣a|.故答案为:=;(2)|x﹣2|的几何意义是在数轴上表示x的点与表示2的点之间的距离;|x﹣2|=2,x﹣2=2或x﹣2=﹣2,解得:x=4或0;(3)∵点P从A点以每秒3个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴AP=3t,BQ=2t.设运动时间为t秒,则t秒时P点表示的数为﹣3+3t,Q点表示的数为9﹣2t.分两种情况:①P、Q相遇之前,此时PQ=9﹣2t﹣(﹣3+3t)=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=2(12﹣5t),解得t=;②P、Q相遇之后,此时PQ=(﹣3+3t)﹣(9﹣2t)=5t﹣12,∵AP+BQ=2PQ,∴3t+2t=2(5t﹣12),解得t=.故时间t的值为或.七年级上册第3章能力提升训练(二)一.选择题(共10小题)1.下列等式是一元一次方程的是()A.s=a+b B.2﹣5=﹣3C.+1=﹣x﹣2D.3x+2y=52.方程13﹣x=17的解是()A.x=﹣4B.x=﹣2C.x=2D.x=43.某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.184.设x、y都是有理数,且满足方程(+)x+(+)y﹣4﹣π=0,则x﹣y的值为()A.18B.19C.20D.215.下列变形中正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程t=,未知数系数化为1,得t=1D.方程=x化为=x6.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.67.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.38.若关于x的方程3(x+4)=2a+5的解不小于方程x﹣3a=4x+2的解,则a的取值范围是()A.a>1B.a<1C.a≥1D.a≤19.解方程﹣=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=.A.①B.②C.③D.④10.在梯形面积公式中,已知S=50,a=6,b=a,则h的值是()A.B.C.10D.25二.填空题(共5小题)11.已知方程2x﹣a=8的解是x=2,则a=.12.若(m+1)x m+3=0是关于x的一元一次方程,则m=.13.当t=时,整式5t+与4(t﹣)的值相等.14.为支持武汉抗击疫情,全国各地加班加点为前线医护人员提供防护面罩和防护服.某车间有30名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是.15.若数轴上点A表示4,点B表示﹣2,有一个动点P从点A出发,沿若数轴以每秒2个单位/秒的速度向左运动,有一个动点Q从点B出发,沿着数轴以每秒3个单位/秒的速度向右运动,若运动的时间为t,当点P与点Q的距离为10时,则t=.三.解答题(共5小题)16.解方程:(1)7﹣2x=3﹣4x;(2)x﹣=2﹣.17.甲、乙、丙三人共同出资做生意,甲投资了24万元,乙投资了20万元,丙投资了28万元,年终时,共赚得利润27万元,甲、乙、丙三人按比例进行分配,各可以分得多少利润?18.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进1410424光明149523远大14m n22卫星14410a钢铁1401414请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.19.如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t >0).(1)填空:数轴上点B表示的数为,点P表示的数为(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R 同时出发,经过多长时间,P,R之间的距离为2个单位长度?20.已知多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,且4b、﹣10c3、﹣(a+b)2bc的值分别是点A、B、C在数轴上对应的数,点P从原点O出发,沿OC方向以1单位/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点P,Q其中有一点停止运动,另一点同时停止运动),两点同时出发.(1)分别求4b、﹣10c3、﹣(a+b)2bc的值;(2)若点Q运动速度为3单位/s,经过多长时间P、Q两点相距70;(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,试问的值是否变化,若变化,求出其范围:若不变,求出其值.参考答案一.选择题(共10小题)1.解:A、s=a+b,是三元一次方程,故本选项不符合题意;B、2﹣5=﹣3中不含有未知数,不是方程,故本选项不符合题意;C、+1=﹣x﹣2,是一元一次方程,故本选项符合题意;D、3x+2y=5中含有2个未知数,不是一元一次方程,故本选项不符合题意.故选:C.2.解:方程13﹣x=17,移项得:﹣x=17﹣13,合并得:﹣x=4,解得:x=﹣4.故选:A.3.解:由题意得,8+(x﹣3)×1.6=24,1.6x﹣4.8+8=24,1.6x=24+4.8﹣8,1.6x=20.8,解得x=13,故选:B.4.解:∵x和y满足(+)x+(+)y﹣4﹣π=0,可变形为:,∵x和y都是有理数,则可得:,整理得:,①﹣②得:x﹣y=18,故选:A.5.解:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故选项A变形错误;方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故选项B变形错误;方程t=,未知数系数化为1,得t=,故选项C变形错误;方程=x化为=x,利用了分数的基本性质,故选项D正确.故选:D.6.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.7.解:x﹣=﹣1,6x﹣(4﹣ax)=2(x+a)﹣66x﹣4+ax=2x+2a﹣66x+ax﹣2x=2a﹣6+4(a+4)x=2a﹣2x=,∵方程的解是非正整数,∴≤0,解得:﹣4<a≤1,当a=﹣3时,x=﹣8;当a=﹣2时,x=﹣3;当a=﹣1时,x=﹣(舍去);当a=0时,x=﹣(舍去);当a=1时,x=0;则符合条件的所有整数a的和是﹣3﹣2+1=﹣4.故选:A.8.解:方程3(x+4)=2a+5,去括号得:3x+12=2a+5,解得:x=,方程x﹣3a=4x+2,移项合并得:﹣3x=3a+2,解得:x=﹣,根据题意得:≥﹣,去分母得:2a﹣7≥﹣3a﹣2,移项合并得:5a≥5,解得:a≥1.故选:C.9.解:①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.10.解:把S=50,a=6,b=a代入梯形面积公式中,50=(6+×6)h,解得h=.则h的值为.故选:B.二.填空题(共5小题)11.解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.12.解:由题意得:m=1,且m+1≠0,解得:m=1,故答案为:1.13.解:根据题意得:5t+=4(t﹣),去括号得:5t+=4t﹣1,解得:t=﹣,故答案为:﹣.14.解:设分配x名工人生产防护服,则分配(30﹣x)人生产防护面罩,根据题意,得160x=240(30﹣x).故答案是:160x=240(30﹣x).15.解:当运动时间为t秒时,点P表示的数为﹣2t+4,点Q表示的数为3t﹣2,依题意,得:|(﹣2t+4)﹣(3t﹣2)|=10,即6﹣5t=10或5t﹣6=10,解得:t=﹣(不合题意,舍去)或t=.故答案为:.三.解答题(共5小题)16.解:(1)移项,可得:﹣2x+4x=3﹣7,合并同类项,可得:2x=﹣4,系数化为1,可得:x=﹣2.(2)去分母,可得:6x﹣3(x﹣1)=12﹣2(x+2),去括号,可得:6x﹣3x+3=12﹣2x﹣4,移项,合并同类项,可得:5x=5,系数化为1,可得:x=1.17.解:24:20:28=6:5:7,设甲可以获得6x万元,乙可以获得5x万元,丙可以获得7x万元,6x+5x+7x=27,解得,x=1.5,∴6x=9,5x=7.5,7x=10.5,答:甲可以分得9万元,乙可以分得7.5万元,丙可以分得10.5万元.18.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.19.解:(1)数轴上点B表示的数为2﹣6=﹣4,点P表示的数为2+t(用含t的式子表示);(2)依题意有2+t﹣(﹣4)=8,解得t=2.故经过2秒长时间,P、B两点之间相距8个单位长度;(3)①当点R追上P前,依题意有2+t﹣(﹣4+2t)=2,解得t=4;②当点R追上P后,依题意有﹣4+2t﹣(2+t)=2,解得t=8.故经过4秒或8秒长时间,P,R之间的距离为2个单位长度.故答案为:﹣4,2+t.20.解:(1)∵多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,∴a=﹣2,b=5,c=﹣2,∴4b=4×5=20;﹣10c3=﹣10×(﹣2)3=80;﹣(a+b)2bc=﹣(﹣2+5)2×5×(﹣2)=90;(2)设运动时间为t秒,则OP=t,CQ=3t,当P、Q两点相遇前:90﹣t﹣3t=70,解得:t=5;当P、Q两点相遇后:t+3t﹣70=90,解得:t=40>30(所以此情况舍去),∴经过5秒的时间P、Q两点相距70;(3)由题意可知:当点P运动到线段AB上时,OB=80,AP=t﹣20,又∵分别取OP和AB的中点E、F,∴点F表示的数是,点E表示的数是,∴EF=,∴,∴的值不变,=2.。

人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)

人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)

人教版七年级数学上册第三章 一元一次方程 专题训练特殊一元一次方程的解法技巧1.解方程:4310.20.5x x ---=.2.解方程:1250.250.5x x +--=.3.解方程:32122234xx ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦.4.解方程:791246919753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.5.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦.6.解方程:41(7)6(7)55x x -=--.7.解方程:121(2050)(52)(410)0632x x x +++-+=.8.解方程:421263x xx ---=.9.解方程:228425920xx x--+=-.10.解方程:112259797z z +=-.11.解方程:32324343x x -=-.12.[中]解方程:2431362x x +--=.13.解方程223146x x +--=:.14.解方程:2123163234386x x x x -++++=+.15.解方程:16231056x x x x --++=-.参考答案 1.答案:见解析解析:分子、分母同乘10,得10(4)10(3)125x x ---=. 去分母,得5(4)2(3)1x x ---=. 去括号,得520261x x --+=. 移项,得521206x x -=+-. 合并同类项,得3x =15. 系数化为1,得x =5. 2.答案:见解析解析:原方程可化为4(1)2(2)5x x +--=. 去括号,得44245x x +-+=. 移项及合并同类项,得23x =-. 系数化为1,得32x =-. 3.答案:见解析解析:去括号,得1324x x ---=.移项及合并同类项,得364x-=.系数化为1,得8x =-. 4.答案:见解析解析:方程可化为12467153x +⎛⎫+++= ⎪⎝⎭.整理,得1241253x +⎛⎫+=-⎪⎝⎭. 方程两边都乘5,得24603x ++=-.方程两边都乘3,得212180x ++=-. 解得194. 5.答案:见解析解析:去中括号,得111(3)(3)1266x x x x -+-=-+. 将(3)x -看作一个整体, 移项及合并同类项,得112x =. 系数化为1,得x =2. 6.答案:见解析解析:移项,得41(7)(7)655x x -+-=.将(7)x -看作一个整体,合并同类项,得7x -=6. 移项及合并同类项,得x =13. 7.答案:见解析解析:原方程可化为52(25)(25)(25)033x x x +++-+=.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+= ⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=. 移项,得25x =-. 系数化为1,得52x =-. 8.答案:见解析解析:原方程可化为211233x xx ---=. 去分母,得3(21)12x x x --=-. 去括号,得32112x x x -+=-.移项,得32211x x x -+=-. 合并同类项,得3x =0.系数化为1,得x =0.9.答案:见解析解析:原方程可化为2222595xx x --+=+. 移项及合并同类项,得229x =.系数化为1,得49x =.10.答案:见解析解析:移项,得112529977z z -=--.合并同类项,得1z =-. 11.答案:见解析解析:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 即32(1)(1)043x x -+-=.将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-= ⎪⎝⎭. 所以1x -=0,移项,得x =1.12.答案:见解析解析:原方程可化为221133322x x +-+=.移项及合并同类项,得233x -=-.系数化为1,得x =2. 13.答案:见解析解析:原方程可化为1114232x x +-+=.移项,得1114322x x -=--,合并同类项,得11043x ⎛⎫-= ⎪⎝⎭. 故x =0.14.答案:见解析解析:移项,得2323163213684x x x x +++--=-. 两边分别通分,得4112568x x ++=. 去分母,得4(41)3(125)x x +=+. 去括号,得1643615x x +=+. 移项,得1636154x x -=-. 合并同类项,得2011x -=. 系数化为1,得0.55x =-.15.答案:见解析解析:移项,得26136510x x x x +--+=-. 两边分别通分,得3211610x x +-=. 去分母,得5(32)3(11)x x +=-. 去括号,得1510333x x +=-.移项,得1533310x x -=--.合并同类项,得12 x =-43. 系数化为1,得4312x =-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第3章拓展练习(一)一.选择题(共10小题)1.若x=1是关于x的一元一次方程x+1=﹣2x+3m的解,则m的值为()A.2B.3C.D.2.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+63.小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=54.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5B.2或10C.2.5或3D.35.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x7.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣88.下列根据等式的性质变形正确的是()A.若4x+5=3x﹣5,则x=0B.若3x=2,则x=1.5C.若x=2,则x2=2xD.若,则3x+1﹣1=2x9.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12D.2(2x﹣1)﹣10x+1=1210.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若4a+9与3a+5互为相反数,则a的值为.14.列方程:“a的2倍与5的差等于a的3倍”为:.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)x﹣8=﹣0.2x;(2)=﹣1.17.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.18.若关于x的一元一次方程ax=b(a≠0)的解恰好为a+b即x=a+b,则称该方程为“友好方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.(1)①﹣2x=4,②3x=﹣4.5;③x=﹣1三个方程中,为“友好方程”的是(填写序号)(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=2m+1是“友好方程”,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.列方程求解:当k取何值时,代数式的值比的值大4?参考答案一.选择题(共10小题)1.解:∵x=1是关于x的一元一次方程x+1=﹣2x+3m的解,∴1+1=﹣2+3m,解得m=.故选:D.2.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.3.解:假设满足选项A、B两个方程,则.解得.把代入选项C的方程,满足选项C的方程,说明不满足的那个方程是选项D的方程,故选:D.4.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.7.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.8.解:A、若4x+5=3x﹣5,则x=﹣10,故本选项错误;B、若3x=2,则x=,故本选项错误;C、若x=2,则x2=2x,故本选项正确;D、若,则3x+1﹣2=2x,故本选项错误;故选:C.9.解:解方程﹣=3时,去分母得:2(2x﹣1)﹣10x﹣1=12,故选:C.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:解方程3x﹣7=5x+2得x=﹣,根据题意得,方程4y+3a=7a﹣8的解为y=﹣,所以4×(﹣)+3a=7a﹣8,解得a=.故答案为.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.14.解:由题意可得:2a﹣5=3a.故答案为:2a﹣5=3a.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去分母得:8x﹣160=5﹣4x,移项合并得:12x=165,解得:x=;(2)去分母得:15x﹣5=8x+4﹣10,移项合并得:7x=﹣1,解得:x=﹣.17.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.18.解:(1)﹣2x=4的解是x=2≠﹣2+4,即方程﹣2x=4不是“友好方程”,3x=﹣4.5的解是x=﹣1.5=3+(﹣4.5),即方程3x=﹣4.5是“友好方程”,x=﹣1的解是x=﹣2≠+(﹣1),即方程x=﹣1不是“友好方程”,故答案为:②;(2)∵关于x的一元一次方程3x=b是“友好方程”,∴=3+b,解得:b=﹣4.5;(3)∵关于x的一元一次方程﹣2x=2m+1是“友好方程”,=﹣2+(2m+1),解得:m=.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:依题意得:﹣=4,去分母得:2k﹣2﹣9k﹣9=24,移项合并得:﹣7k=35,解得:k=﹣5.七年级上册第3章拓展练习一.选择题(共10小题)1.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.6 2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.某品牌手机在元旦期间,进行促销活动,首先按标价降价8%在此基础上,商场又返还标价5%的现金,此时买这个品牌的手机需要1740元,那么这个手机的标价是()元.A.2400B.2200C.2100D.20005.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.学校有n名师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有25人没有上车;若每辆客车坐50人,则刚好空出一辆客车.以下四个方程:①45m+25=50(m﹣1);②45m﹣25=50(m﹣1);③=﹣1;④=+1;其中正确的有()A.1个B.2个C.3个D.4个7.已知关于x的方程x﹣2=1的解为3,则下列判断中正确的是()A.2a>b B.2a<b C.2a=b D.不能确定8.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若,则2(x﹣1)+3(x+1)=1C.若﹣3x=5,则x=﹣D.若5x﹣3=4x+2,则5x﹣4x=2+39.将方程2x﹣3=1+x移项,得()A.2x+x=1﹣3B.2x+x=1+3C.2x﹣x=1﹣3D.2x﹣x=1+3 10.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.已知x=3是方程3x﹣2a=5的解,则a=.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若3(x﹣2)和﹣2(3+x)互为相反数,则x的值为.14.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)3x﹣2=10﹣2(x+1);(2)﹣=1.17.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题(共10小题)1.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.解:设这个手机的标价是x元,根据题意可得:(1﹣8%)x•﹣5%x=1740,解得:x=2000.故选:D.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:由题意可得:45m+25=50(m﹣1),故①正确;=+1,故④正确.故选:B.7.解:把x=3代入方程得:﹣2=1,去分母得:3b﹣4a=2a,即6a=3b,整理得:2a=b,故选:C.8.解:∵5x﹣6=7,∴5x=7+6,∴选项A不符合题意;∵,则2(x﹣1)+3(x+1)=6,∴选项B不符合题意;∵若﹣3x=5,则x=﹣,∴选项C不符合题意;∵若5x﹣3=4x+2,则5x﹣4x=2+3,∴选项D符合题意.故选:D.9.解:将方程2x﹣3=1+x移项,得2x﹣x=1+3,故选:D.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:3(x﹣2)﹣2(3+x)=0,去括号得:3x﹣6﹣6﹣2x=0,移项得:3x﹣2x=6+6,合并得:x=12.故答案为:12.14.解:设寺内有x名僧人,由题意得+=364,故答案为:+=364.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去括号得:3x﹣2=10﹣2x﹣2,移项合并得:5x=10,解得:x=2;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.17.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.18.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。

相关文档
最新文档