利率期限结构(应用)

合集下载

利率期限结构的应用

利率期限结构的应用

利率期限结构的应用32014090132贾雅麒一、基本含义期限之间的关系。

利率的期限结构反映了不同期限的资金供求关系,利率期限结构是指在某一时点上,不同期限资金的收益率与到期揭示了市场利率的总体水平和变化方向,为投资者从事债券投资和政府有关部门加强债券管理提供可参考的依据。

二、四种类型1.预期理论:预期理论提出了以下命题:长期债券的利率等于在其有效期内人们所预期的短期利率的平均值。

2.分割市场理论:分割市场理论将不同到期期限的债券市场看做完全独立和相互分割的。

到期期限不同的每种债券的利率取决于该债券的供给与需求,其他到期期限的债券的预期回报率对此毫无影响。

3.流动性溢价理论:流动性溢价理论是预期理论与分割市场理论结合的产物。

它认为长期债权的利率应当等于长期债权到期之前预期短期利率的平均值与随债券供求状况变动而变动的流动性溢价之和。

流动性溢价理论关键性的假设是,不同到期期限的债券是可以相互替代的,这意味着某一债券的预期回报率的确会影响其他到期期限债券的预期回报率,但是,该理论承认投资者对不同期限债券的偏好。

换句话讲,不同到期期限的债券可以相互替代,但并非完全替代品。

4.期限优先理论:采取了较为间接地方法来修正预期理论,但得到的结论是相同的。

它假定投资者对某种到期期限的债券有着特别的偏好,即更愿意投资于这种期限的债券。

三、我国利率市场化改革对构建利率期限结构的影响在许多发达国家已经实现了利率市场化,他们的基准利率大多主要是货币市场利率的一种。

日本的银行间拆借利率和美国的联邦基金利率分别是日本和美国最重要的基准利率,伦敦同业银行拆借利率LIBOR 是英国的基准利率,甚至是许多其他国家的参考基准利率,而西班牙、法国、德国等国家都是以短期国债回购利率作为各自的基准利率。

应该选择什么样的利率作为我国的市场基准利率,国内学者做了相关大量的研究。

赵宇龄(2003)指出一般构造债券收益率曲线是从标准的基准收益率曲线出发,进行各种变形分析得到。

仿射利率期限结构:理论和应用

仿射利率期限结构:理论和应用

仿射利率期限结构:理论和应用利率期限结构是利率衍生品定价和风险管理的基础,也是研究微观和宏观变量之间关系的桥梁,同时还是货币政策制定和实施效果检验的依据,因此长期以来一直是金融理论与宏观经济理论研究的中心话题。

仿射期限结构模型本质上假设期限结构的动态性依赖于可观测或不可观测的因子,因子的动态性由随机过程决定,而债券价格是因子的指数仿射形式,而到期收益是因子的仿射函数。

这一仿射架构使一些衍生品定价和信用风险问题有闭式解,而且模型本身能灵活刻画利率的动态行为特征,能便宜考察不同驱动因素对期限结构的影响机制并给出恰当解释,还能方便的用来分解利率中隐含的经济信息。

就我国来说,宏观经济政策调控的主方向就是要逐步推进利率市场化、货币政策逐步转向以利率为主的价格调控。

而当前,无论是基准利率的选择还是货币政策的制定及其传导机制,我国与其他国家都有不同的特征,这样深刻分析我国利率的性态特征,掌握利率的行为演化规则,发掘宏观政策变化对利率变动的影响,成为利率市场化和深化金融市场的基础。

2011年我国长短期收益利差进一步扩大,长期利率对短期利率的敏感度进一步降低,在短期利率升高时长期利率出现了减小的现象。

这种现象与美国在1990到1996年、从2002到2006年两个时间段时,以期通过加息政策提高远期利率而结果却出现了短期利率上升,但长期利率反而下降的所谓“格林斯潘之谜”现象极为一致。

风险溢价是区分纯预期理论和理性预期理论的关键,也是预期假设成立与否的决定因素。

如果预期理论成立,当短期利率上升时,长期利率也应该相应提高,可见在我国这种理论作用的发挥受到了限制,长短期利率变化的关系与理论并不一致,其适用性值得进一步深思探讨。

我国当前经济发展面临着诸多不确定性,特别是在改革开放不断开创新局面的情形下,融入世界经济活动的程度日益加深,这样不仅是国内的,国外的经济波动对我国经济状况也产生了越来越大的影响。

2008年开始的经济危机犹在,各国货币量化宽松政策层出不穷,物价高企,我国2009年国务院明确提出“管理好通胀预期,保持价格基本稳定”且已被列为“十二五”规划中经济社会发展的主要目标之一。

利率期限结构

利率期限结构

利率期限结构(term structure),是某个时点不同期限的利率所组成的一条曲线.因为在某个时点,零息票债券的到期收益率等于该时期的利率,所以利率期限结构也可以表示为某个时点零息票债券的收益率曲线(yield curve).它是资产定价、金融产品设计、保值和风险管理、套利以及投机等的基准.因此,对利率期限结构问题的研究一直是金融领域的一个基本课题.利率期限结构是一个非常广阔的研究领域,不同的学者都从不同的角度对该问题进行了探讨,从某一方面得出了一些结论和建议.根据不同的角度和方向,这些研究基本上可以分为5类:1)利率期限结构形成假设;2)利率期限结构静态估计;3)利率期限结构自身形态的微观分析;4)利率期限结构动态模型;5)利率期限结构动态模型的实证检验.1利率期限结构形成假设利率期限结构是由不同期限的利率所构成的一条曲线.由于不同期限的利率之间存在差异,所以利率期限结构可能有好几种形状:向上倾斜、向下倾斜、下凹、上凸等.为了解释这些不同形状的利率期限结构,人们就提出了几种不同的理论假设.这些假设包括:市场预期假设(expectation hy-pothesis),市场分割假设(market segmentation hy-pothesis)和流动性偏好假设(liquidity preference hy-pothesis).为了对这些假设进行验证,不同的学者从不同的角度进行了分析.不同的学者利用不同的方法,使用不同国家的数据对利率期限结构形成假设进行了检验.在3个假设中,市场预期假设是最重要的假设,所以大多数的研究都是立足于市场预期假设,并在此基础上考虑流动性溢酬.4)中国市场.庄东辰[19]和宋淮松[20]分别利用非线性回归和线性回归的方法对我国的零息票债券进行分析.唐齐鸣和高翔[21]用同业拆借市场的利率数据对预期理论进行了实证.实证结果表明:同业拆借利率基本上符合市场预期理论,即长短期利率的差可以作为未来利率变动的良好预测,但是短期利率也存在着一些过度反应的现象.此外,还有杨大楷、杨勇[22],姚长辉、梁跃军[23]对国债收益率的研究.但这些研究大部分都是停留在息票债券的到期收益率上,没有研究真正意义上的利率期限结构.2利率期限结构静态估计当市场上存在的债券种类有限时(特别对债券市场不发达国家而言),如何根据有效的债券价格资料对整个利率期限结构进行估计,是进行债券研究的一个重要内容.不同的学者提出了不同的估计方法,其核心就是对贴现函数δ(m)的估计.郑振龙和林海[31]利用McCulloch[25]样条函数和息票剥离法对我国市场利率期限结构进行了静态估计,构造出中国真正的市场利率期限结构.朱世武和陈健恒[32]则使用Nelson-Siege-Svensson[33]方法对我国交易所市场的利率期限结构进行了估计.郑振龙和林海[34]估计出中国债券市场的违约风险溢酬并进行了分析.林海和郑振龙[35]对中国市场利率的流动性溢酬进行了估计和分析.林海和郑振龙[36]对这些问题进行了统一和归纳,并分析了其在中国金融市场的具体运用.3利率期限结构自身形态微观分析利率期限结构的变动也有平行移动和非平行移动.由于利率直接和债券的收益率相关,这些不同方式的移动对债券组合的收益会产生很大的影响,并进而影响债券组合管理的技术.为了衡量利率期限结构的形状变动对债券投资组合的影响并在此基础上进行有效的管理,达到“免疫”的目的,众多的学者对利率期限结构本身的形态作了大量的分析,并对利率期限结构的平行移动和非平行移动条件下的债券组合套期保值的问题进行了深入研究. Zimmermann[40],D'Ecclesia&Zenios[41], Sherris[42],Martellini&Priaulet[43],Maitland[44], Schere&Avellaneda[45]分别对德国、瑞士、意大利、澳大利亚、法国、南非、拉美等国家和地区的利率期限结构进行了主成分和因子分析.朱峰[46]和林海[47]对中国的市场利率期限结构进行了主成分分析,并在此基础上对中国债券组合的套期保值提出了若干建议.4利率期限结构动态模型4.1基本利率期限结构动态模型根据利率期限结构模型的推导过程,可以分为两种类型:第一种类型就是一般均衡模型(Equilibriummodel),根据市场的均衡条件求出利率所必须遵循的一个过程,在这些模型中,相关的经济变量是输入变量,利率水平是输出变量;另一种类型是无套利模型(No arbitrage model),通过相关债券等资产之间必须满足的无套利条件进行分析,此时利率水平是一个输入变量,相关金融工具的价格是输出变量.必须特别指出的是,这些模型都是建立在风险中性世界中,所描述的均是风险中性世界中的利率变动行为.而实证检验都是利用现实世界的利率数据进行的.因此,在将现实世界中的估计结果运用于衍生产品定价时,必须先利用模型相对应的风险价格②通过Girsanov定理将现实世界转换为风险中性世界,然后再利用风险中性世界中的相应结果进行定价.1)一般均衡模型.主要包括Vasicek[66]模型和Cox,Ingersoll&Ross(CIR)[67,68]模型,此外还有Rendleman&Barter[69],Brennan&Schwartz[55]等.2)无套利模型.主要包括HJM[70]模型,Ho&Lee[71]以及Hull&White[72]模型.此外,还有Black,Derman&Toy[73]等.4.2一般化扩展模型1)仿射模型(Affine Model)2)二次高斯模型(Quadratic Gaussian model)3)非线性随机波动模型(Nonlinear StochasticV olatility Model)4)存在跳跃的利率期限结构模型(Diffusion-jump Model)5)机制转换模型(Regime ShiftModel)5利率期限结构动态模型的实证检验在对利率期限结构模型的理论研究基础之上,众多的学者都对不同的期限结构模型进行了实证检验,以对不同的模型进行判别和比较.实证分析可以分成几个类别:(1)对利率单位根问题的检验;(2)对不同期限结构模型的比较研究;(3)对某个特定期限结构模型的分析;(4)对模型可靠性的分析.5.1对利率单位根的检验Wang&Zhang[89]对利率的单位根问题进行了实证分析,以对利率市场的有效性进行验证5.2对不同期限结构模型的比较研究Durham[92]利用Durham&Gallant[93]的计量分析方法对不同的期限结构模型进行了实证检验. 陈典发[108]对Vasicek模型中参数和实际市场数据的一致性问题进行了研究,并探讨了它在公司融资决策中的应用.谢赤和吴雄伟[109]通过一个广义矩方法,使用中国货币市场的数据,对Vasicek模型和CIR模型进行了实证检验.6利率期限结构研究现状总结性分析根据上面对利率期限结构的文献回顾,可以从中发现利率期限结构研究目前的发展方向.(1)在利率期限结构形成假设方面,市场分割假设逐渐地被人们所遗忘,因为随着市场的发展,技术的进步,市场交易规模的扩大,市场已经逐渐形成一个统一的整体;而且市场预期假设如果没有同流动性溢酬相结合,都会被市场资料所拒绝.流动性溢酬呈现出不断变化的特征.因此,今后的研究方向应该是在市场预期假设的模型框架中引入流动性溢酬假设.(2)在利率期限结构静态估计方面,基本上采用样条函数和息票剥离法.为了保证估计的精确性,样条函数的选择越来越复杂.(3)在利率期限结构自身微观形态分析方面,如何通过对久期的进一步修正,从而使之能够地在利率期限结构非平行移动条件下更为有效地达到套期保值的效果,是该领域未来重要的研究方向.但是由于主成分分析受数据的影响很大,结果很不稳定,所以对主成分分析可靠性的检验,也是一个重要的研究内容.(4)根据对利率期限结构动态模型的实证分析,可以发现:1)不同的模型,不同的计量分析方法,不同的数据,所得出的实证结果都会产生差异.因此,对不同的市场,重要的是模型的适用性.2)实证分析也得出一些基本一致的结论:a.漂移率的假设不会对利率期限结构模型产生太大的影响;b.波动率是利率期限结构模型的重要因素;c.多因子模型要比单因子模型表现得好,但是多因子要牺牲自由度,因此,根据实证结果,两因子模型可能是一个比较好的模型.d.利率一般服从一个均值回归过程.3)基于概率密度预测(density forecast)的样本外检验是利率期限结构实证分析未来的发展方向.4)目前大部分对动态模型的检验都是直接利用实际数据在现实世界中进行的,对现实世界和风险中性世界的差异并未引起足够的重视.1.4 利率期限结构模型的最新进展近年来在HJM 模型类的推动下,利率期限结构理论研究的各种新模型层出不穷,如市场模型、随机弦模型、随机域模型、跳跃过程模型和随机折现因子模型等。

利率期限结构及其应用研究

利率期限结构及其应用研究

利率期限结构及其应用研究利率期限结构是指所有具有相同风险和信用质量的金融资产的利率和到期日之间的关系。

在金融市场中,利率期限结构的确立对于公司和个人的投资和融资决策具有重要意义,并可以预测未来的经济状况。

本文将介绍利率期限结构的基本概念、理论模型、实证研究和应用。

一、基本概念利率期限结构是金融市场上利率与到期日之间的关系,它包含了预期的未来利率、风险溢价和流动性溢价。

为了确定利率期限结构,需要考虑融资人所面临的风险,包括信用风险、市场风险和流动性风险。

此外,由于利率对于借入者和出借者都具有重要意义,因此金融市场上的资产和负债都会受到利率期限结构影响。

利率期限结构的概念可以通过图形来表示。

一般来说,利率期限结构的形状分为三种类型:正常、倒挂和平坦。

正常的利率期限结构表示长期利率高于短期利率,这是因为借入者需要为更长时间的负债支付更高的利息。

倒挂的利率期限结构表示短期利率高于长期利率,通常是因为市场对未来经济状况的担忧导致的。

平坦的利率期限结构表示长期和短期利率之间的差距很小,这表明市场对于未来的经济状况持中立态度。

二、理论模型利率期限结构的理论模型主要有两种:期望理论和风险溢价理论。

期望理论认为,长期利率等于短期利率加上预期通货膨胀率和预期实际利率,即Rt = rt + Et (π) + Et (Rt+1)。

风险溢价理论认为,长期利率等于短期利率加上一个风险溢价,即Rt = rt + rts。

其中,rts表示短期利率与长期利率之间的风险溢价,代表着市场对未来经济情况的预期。

三、实证研究许多研究表明,利率期限结构预示着未来经济状况。

根据利率期限结构的形状,可以预测通货膨胀率、资产收益率和股票市场表现等。

例如,研究表明,当利率期限结构倒挂时,通常是经济衰退的信号。

另外,一些文献认为,利率期限结构与货币政策、宏观经济环境和市场流动性等因素有关。

四、应用利率期限结构的应用主要有两个方面:市场投资和企业融资。

第8讲 利率期限结构

第8讲 利率期限结构
2011-4-8 9
当用于构建理论即期利率曲线的债券选定后,就要确定 当用于构建理论即期利率曲线的债券选定后, 构造曲线的方法,方法取决于被选定的证券。 构造曲线的方法,方法取决于被选定的证券。 下面我们就举例说明运用新发行国债收益率曲线构造理 论即期利率曲线的过程。 论即期利率曲线的过程。 一般新发行国债包括3个月、 个月和1 一般新发行国债包括3个月、6个月和1年期的短期国库 10年的中期国债 30年的长期国债 年的中期国债, 年的长期国债。 券,2年、5年、10年的中期国债,30年的长期国债。
第8讲 第5章利率期限结构 讲 章利率期限结构
在定价过程中, 在定价过程中,实际上假设了贴现率不随时间 变化, 变化,也就是说不管是从现在开始的一年还是 从明年开始的一年,只要时间长度相同, 从明年开始的一年,只要时间长度相同,不同 时间起点的利率是相同的。 时间起点的利率是相同的。 实际情况如何? 实际情况如何? 从固定收益证券的到期收益率来看, 反过来从固定收益证券的到期收益率来看,利率不随
某个时点不同期限的利率所组成的一条曲线。 某个时点不同期限的利率所组成的一条曲线。 因为在某个时点,零息票债券的到期收益率等于 因为在某个时点, 该时期的利率, 该时期的利率,因此利率期限结构也可以表示为 curve。 某个时点零息票债券的收益率曲线yield curve。 利率期限结构是资产定价、金融产品设计、保值 利率期限结构是资产定价、金融产品设计、 和风险管理、套利以及投机等的基准。 和风险管理、套利以及投机等的基准。
2011-4-8
37
利率期限结构的变动以及资产免疫
2011-4-8
38
利率期限结构的变动以及资产免疫
2011-4-8
39
时间变化意味着所有信用风险相同的债券的到期收益率 相同。 相同。

利率期限结构(应用)讲解19页PPT

利率期限结构(应用)讲解19页PPT
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
利率期限结构(应用)讲解
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

利率的期限结构投资学财经大学

利率的期限结构投资学财经大学

(五)短期利率和收益率曲线斜率
当下一年度短期利率 r2 大于今年得短期利 率r1时, 收益率曲线 向上倾斜。
暗示收益率预计会 上升。
当下一年得短期利率 r2 小于今年得短期利 率r1时, 收益率曲线 会下降。
暗示收益率预计会 下降。
图 15、3 短期利率和即期利率
(六)根据观察到得收益率解出 未来短期利率
(1 y2 )2 (1 r1)[1 E(r2 )]
也就是5%,利率期限结构呈现水平。 如果下一年得期望短期收益率E(r2) 就是6%,
则两年期即期利率y2将就是5、5%,利率期限 结构呈现向上。而下一年得期望短期收益率 E(r2) 如果就是4%,则两年期即期利率y2将就 是4、5%,利率期限结构呈现向下。
例15、1 附息债券得估值
使用表15、1得折现率,计算3年期, 票面利率为 10% 得附息债券(假设面值为$1000)得价值:
价值
$100 1.05
$100 1.062
$1100 1.073
价值 = $1082、17 ,又有:
1082.17
$100 1.0688
$100 1.06882
$1100 1.06883
利率的期限结构投资学财经大学
一、利率期限结构概述
利率期限结构就是不同期限债券贴现现金流得 利率结构。
通常情况下,期限短得现金流用较低得利率贴 现,即要求较低得收益率;期限长得现金流用较 高得利率贴现,即要求较高得收益率。
收益率曲线显示了收益率和期限之间得关系, 所以收益率曲线就是利率期限结构得图形表现。
收益率曲线有四种类型:
从收益率曲线四种类型中可以看到,不同期限债 券得收益率不相同。
收益率曲线在固定收益证券领域有重要得作用。

利率期限结构

利率期限结构
假定今天的利率r1=8%,预期明年的短期利率 E(r2)=10%,那么一年期零息债券的价格为 1000/1.08=925.93,两年期的零息债券的价 格为1000/(1.08*1.1)=841.75。
如果你是一个投资者,你想投资一年时间, 你可以买入一年期零息债券,也可以买入两 年期零息债券然后持有一年卖掉,你会选择 哪一个呢?
有两种债券,期限都是两年,每年付息一次 ,债券A息票利率为3%,债券B息票利率为12% 。第一年和第二年的短期利率是8%,10%。
债券A的价格为30÷1.08+1030÷(1.08×1.1 )=894.78,它的到期收益率为8.98%;同理 ,债券B的价格为1053.87,到期收益率为 8.94%。
(1 y2 )2 (1 y1)(1 E(r2 ))
根据远期利率公式有
(1 y2 )2 (1 y1)(1 f2 ),则
E(r2 ) f2
31
Monday, June 08,
石河子大学商学院孙家瑜
利率期限结构
利率期望理论的结论
➢若远期利率(f2,f3,….,fn)上升,则长期债 券的到期收益率yn上升,即上升式利率期限结 构,反之则反。
6
Monday, June 08,
石河子大学商学院孙家瑜
到期收益率曲线(yield curve) :
利率期限结构
7
Monday, June 08,
石河子大学商学院孙家瑜
利率期限结构
相同期限的债券到 期收益率都一样么 ?
8
Monday, June 08,
石河子大学商学院孙家瑜
利率期限结构
❖纯收益率曲线
也许你会说四年期的债券收益率较高,因为 其即期利率高,但这是错误的。实际上,相 同时间段,所有的债券的回报是一样的。否 则就存在着套利机会。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Zimmermann,D'Ecclesia&Zenios,Sherris,Martellini&Priau let,Maitland,Schere&Avellaneda分别对德国、瑞士、意大 利、澳大利亚、法国、南非、拉美等国家和地区的利率期 限结构进行了主成分和因子分析.朱峰和林海对中国的市 场利率期限结构进行了主成分分析,并在此基础上对中国 债券组合的套期保值提出了若干建议.
三、利率期限结构的现实意义 • (1)保值和风险管理。利率风险是投资者面临的一 个重要风险,通过对利率期限结构的动态估计,就可 以对未来利率变动进行一个比较有效的预测,从而 为投资者的保值和风险管理提供有用的信息。 • (2)金融产品设计。在对利率期限结构进行有效估 计并对相应产品进行准确定价的基础上,就可以充 分利用金融工程的“量子理论”,通过分解和组合 现有的资产形成新的能够满足投资者需要的资产 并能够进行合理定价。 • (3)套利。通过对市场利率期限结构的分析,就可以 发现市场上资产定价可能存在的不合理性,并利用 这种不合理性进行套利,获取无风险收益,从而促进 市场的完善。这种套利包括跨市场套利、跨期限 套利、跨商品套利以及综合套利等。
• (6)利率期限结构研究现状总结性分析
• 根据上面对利率期限结构的回顾,可以从中发现利率期限 结构研究目前的发展方向.(1)在利率期限结构形成假设方 面,市场分割假设逐渐地被人们所遗忘,因为随着市场的发 展,技术的进步,市场交易规模的扩大,市场已经逐渐形成一 个统一的整体;而且市场预期假设如果没有同流动性溢酬 相结合,都会被市场资料所拒绝.流动性溢酬呈现出不断变 化的特征.因此,今后的研究方向应该是在市场预期假设的 模型框架中引入流动性溢酬假设.(2)在利率期限结构静态 估计方面,基本上采用样条函数和息票剥离法.为了保证估 计的精确性,样条函数的选择越来越复杂.(3)在利率期限结 构自身微观形态分析方面,如何通过对久期的进一步修正, 从而使之能够地在利率期限结构非平行移动条件下更为有 效地达到套期保值的效果,是该领域未来重要的研究方向. 但是由于主成分分析受数据的影响很大,结果很不稳定,所 以对主成分分析可靠性的检验,也是一个重要的研究内容
二、利率期限结构的理论意义 • (1)促进中国资本市场的完善。一个完善的市场应 该是一个定价合理、不存在套利机会的市场。通 过利率期限结构的准确动态估计,就可以为政府提 供有关市场价格是否合理的信息,为减少市场套利, 促进市场的完善提供指导性的理论建议。 • (2)为我国的利率市场化进程提供基准利率支持。 利率市场化是我国利率体系改革的一个方向。在 利率市场化改革的进程中,如何确定基准的市场利 率是一项十分重要的基础性工作。它必须建立在 市场上投资者预期的基础之上,并能够切实地反应 这种预期。我国国债市场的利率期限结构因为其 本身的众多特点,可以成为这种基准利率的一个十 分重要的参考。
• (4)利率期限结构动态模型 • 基本利率期限结构动态模型根据利率期限结构模 型的推导过程,可以分为两种类型:第一种类型就是 一般均衡模型(Equilibriummodel),根据市场的均衡 条件求出利率所必须遵循的一个过程,在这些模型 中,相关的经济变量是输入变量,利率水平是输出变 量;另一种类型是无套利模型(No arbitrage model), 通过相关债券等资产之间必须满足的无套利条件 进行分析,此时利率水平是一个输入变量,相关金融 工具的价格是输出变量.必须特别指出的是,这些模 型都是建立在风险中性世界中,所描述的均是风险 中性世界中的利率变动行为.而实证检验都是利用 现实世界的利率数据进行的.因此,在将现实世界中 的估计结果运用于衍生产品定价时,必须先利用模 型相对应的风险价格通过Girsanov定理将现实世 界转换为风险中性世界,然后再利用风险中性世界 中的相应结果进行定价.
利率期限结构
• 利率期限结构(term structure),是某个时点 不同期限的利率所组成的一条曲线.因为在 某个时点,零息票债券的到期收益率等于该 时期的利率,所以利率期限结构也可以表示 为某个时点零息票债券的收益率曲线(yield curve).它是资产定价、金融产品设计、保 值和风险管理、套利以及投机等的基准.因 此,对利率期限结构问题的研究一直是金融 领域的一个基本课题.
• (5)利率期限结构动态模型的实证检验 • 在对利率期限结构模型的理论研究基础之上,众多的学者 都对不同的期限结构模型进行了实证检验,以对不同的模 型进行判别和比较.实证分析可以分成几个类别: • 1)对利率单位根的检验。Wang&Zhang对利率的单位根 问题进行了实证分析,以对利率市场的有效性进行验证 • 2)对不同期限结构模型的比较研究。Durham利用 Durham&Gallant的计量分析方法对不同的期限结构模型 进行了实证检验. • 3)对特定利率期限结构模型的分析。Fernandez利用智 利的数据采用非参数检验的方法对利率期限结构进行了实 证分析. • 4)对模型可靠性的分析。Ball&Torous对CIR模型以及 Brennan&Schwartz的两因子模型中的利率时间序列单位 根问题进行了分析.
• (4)根据对利率期限结构动态模型的实证分析,可以 发现: • 1)不同的模型,不同的计量分析方法,不同的数据, 所得出的实证结果都会产生差异.因此,对不同的市 场,重要的是模型的适用性. • 2)实证分析也得出一些基本一致的结论:a.漂移率 的假设不会对利率期限结构模型产生太大的影 响;b.波动率是利率期限结构模型的重要因素;c.多 因子模型要比单因子模型表现得好,但是多因子要 牺牲自由度,因此,根据实证结果,两因子模型可能 是一个比较好的模型.d.利率一般服从一个均值回 归过程. • 3)目前大部分对动态模型的检验都是直接利用实 际数据在现实世界中进行的,对现实世界和风险中 性世界的差异并未引起足够的重视.
• 四、利率期限结构预测未来通货膨胀
• 紧缩性的货币政策将导致长短期利差变小,收益率 曲线变平坦,市场参与者预期央行的紧缩措施将导 致未来通货膨胀率下降;反之,收益率曲线变陡峭, 长短期利率差变大,预示未来通货膨胀率将会上升。 一般而言,收益率曲线斜率、长短期利差与未来通 货膨胀率之间存在正向关系。由于央行的货币政 策从实施到实体经济发生变化需要一定的时滞,国 外的实证研究表明,长短期利差主要预测未来6个 月—1年后的通货膨胀率。
• 一、利率期限结构的现有研究 • 利率期限结构是一个非常广阔的研究领域, 不同的学者都从不同的角度对该问题进行 了探讨,从某一方面得出了一些结论和建议. 根据不同的角度和方向,这些研究基本上可 以分为5类: • 1)利率期限结构形成假设; • 2)利率期限结构静态估计; • 3)利率期限结构自身形态的微观分析; • 4)利率期限结构动态模型; • 5)利率期限结构动态模型的实证检验.
六、利率期限结构模型的最新进展 近年来在 HJM 模型类的推动下,利率期限 结构理论研究的各种新模型层出不穷,如 市场模型、随机弦模型、随机域模型、跳 利率期限结构自身形态微观分析 利率期限结构的变动也有平行移动和非平行移动.由于利率 直接和债券的收益率相关,这些不同方式的移动对债券组 合的收益会产生很大的影响,并进而影响债券组合管理的 技术.为了衡量利率期限结构的形状变动对债券投资组合 的影响并在此基础上进行有效的管理,达到“免疫”的目 的,众多的学者对利率期限结构本身的形态作了大量的分 析,并对利率期限结构的平行移动和非平行移动条件下的 债券组合套期保值的问题进行了深入研究.
• 不同的学者利用不同的方法,使用不同国家的数据 对利率期限结构形成假设进行了检验.在3个假设中, 市场预期假设是最重要的假设,所以大多数的研究 都是立足于市场预期假设,并在此基础上考虑流动 性溢酬. • 庄东辰和宋淮松分别利用非线性回归和线性回归的 方法对我国的零息票债券进行分析.唐齐鸣和高翔 用同业拆借市场的利率数据对预期理论进行了实证. 实证结果表明:同业拆借利率基本上符合市场预期 理论,即长短期利率的差可以作为未来利率变动的 良好预测,但是短期利率也存在着一些过度反应的 现象.此外,还有杨大楷、杨勇姚长辉、梁跃军对国 债收益率的研究.但这些研究大部分都是停留在息 票债券的到期收益率上,没有研究真正意义上的利 率期限结构.
• 五、中国利率期限结构的缺陷和改革 • 中国的债券市场,除了交易所的交易市场之外,还有 银行间债券市场。在一个合理的统一市场条件下, 这两个市场的利率期限结构不应该存在太多的差 异。但是,有学者通过对这两个市场的利率期限结 构的分析,发现二者之间存在着相当大的差异,这反 映了我国国债市场发展的不完善,不利于一个统一 的市场基准利率的形成,对我国的利率市场化进程 是一个极大的障碍。他们提出了统一两个市场的 设想。要改变我国利率期限结构的不合理状态,最 有效的方法就是将交易所市场和银行间债券市场 统一起来,建立一个统一的国债市场。通过资本在 两个不同市场之间的自由流动,充分市场的无套利 目标,促进市场的完善以及一个统一的市场基准利 率的生成,为我国的利率市场化奠定一个坚实的基 础。
(2)利率期限结构静态估计 当市场上存在的债券种类有限时(特别对债券 市场不发达国家而言),如何根据有效的债券价格资 料对整个利率期限结构进行估计,是进行债券研究 的一个重要内容.不同的学者提出了不同的估计方 法,其核心就是对贴现函数δ(m)的估计.郑振龙和林 海利用McCulloch样条函数和息票剥离法对我国 市场利率期限结构进行了静态估计,构造出中国真 正的市场利率期限结构.朱世武和陈健恒则使用 Nelson-Siege-Svensson方法对我国交易所市场 的利率期限结构进行了估计.郑振龙和林海估计出 中国债券市场的违约风险溢酬并进行了分析.林海 和郑振龙对中国市场利率的流动性溢酬进行了估 计和分析.林海和郑振龙对这些问题进行了统一和 归纳,并分析了其在中国金融市场的具体运用.
• 利率期限结构包含着丰富的经济含义,其 形状蕴含着投资者对未来经济增长和通货 膨胀的预期。陈 鹏 徐 炜使用我国银行间国 债市场利率期限结构中不同期限的利率差 作为预测因子建立三类模型” 并与基准模 型进行比较“发现10年期与3年期利差对经 济增长的预测能力最强” 且预测步长为未 来 4个月。10 年期与 7年期利率差对未来3 个月的通货膨胀预测能力最强。同时得出 结论“ 在我国利率差增大预示着未来经济 的增长" 同时也预示着未来的通货膨胀率增 大。
相关文档
最新文档