北师大版勾股定理 PPT
合集下载
第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2
北师大版八年级数学上册第一章勾股定理勾股定理的应用课件

果梯子的顶端A沿墙下滑了4m,那么梯子的底部B在水平方向上也滑动了4m吗?
解:在Rt△ABO中, ∵AB=25 m,AO=24 m, ∴OB2=AB2-AO2=252-242=49. ∴OB=7 m. 同理,在Rt△COD中, DO2=CD2-CO2=252-202=152, ∴DO=15 m, ∴BD=OD-OB=15-7=8(m). 故梯子的底部B在水平方向滑动了8 m.
A. 9
B. 13
C. 14
D. 25
3. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,
已知大正方形的面积为49,小正方形的面积为4,若用x,y表示直角三角形的两直
角边(x>y),请观察图案,指出以下关系式中不正确的是( D )
A. x2+y2=49
B. x-y=2
C. 2xy+4=49 D. x+y=13
9. 如图,一次“台风”过后,一根旗杆被 台风从离地面9 m处吹断,倒下的旗杆的顶端落在 离旗杆底部12 m处,那么这根旗杆被吹断前有多 高?
解:如下图所示,
∵旗杆剩余部分、折断部分与地面正好构成直角三角 形,
∴BC2=AB2+AC2=225,∴BC=15 m. ∴旗杆的高=AB+BC=9+15=24 (m), 故这根旗杆被吹断前有24 m高.
1. 一根竹竿插到水池中离岸边1.5 m远的水底,竹竿高出水面0.5 m,
若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问
水池的深度为( A )
A. 2m
B. 2.5m
C. 2.25 m
D. 3m
2. 一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长
为( C )
A. 4
B. 8
解:在Rt△ABO中, ∵AB=25 m,AO=24 m, ∴OB2=AB2-AO2=252-242=49. ∴OB=7 m. 同理,在Rt△COD中, DO2=CD2-CO2=252-202=152, ∴DO=15 m, ∴BD=OD-OB=15-7=8(m). 故梯子的底部B在水平方向滑动了8 m.
A. 9
B. 13
C. 14
D. 25
3. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,
已知大正方形的面积为49,小正方形的面积为4,若用x,y表示直角三角形的两直
角边(x>y),请观察图案,指出以下关系式中不正确的是( D )
A. x2+y2=49
B. x-y=2
C. 2xy+4=49 D. x+y=13
9. 如图,一次“台风”过后,一根旗杆被 台风从离地面9 m处吹断,倒下的旗杆的顶端落在 离旗杆底部12 m处,那么这根旗杆被吹断前有多 高?
解:如下图所示,
∵旗杆剩余部分、折断部分与地面正好构成直角三角 形,
∴BC2=AB2+AC2=225,∴BC=15 m. ∴旗杆的高=AB+BC=9+15=24 (m), 故这根旗杆被吹断前有24 m高.
1. 一根竹竿插到水池中离岸边1.5 m远的水底,竹竿高出水面0.5 m,
若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问
水池的深度为( A )
A. 2m
B. 2.5m
C. 2.25 m
D. 3m
2. 一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长
为( C )
A. 4
B. 8
第1章第1课时 探索勾股定理PPT课件(北师大版)

2.(2018·山东滨州)在直角三角形中,若勾为 3,股
为 4,则弦为( A )
A.5
B.6
C.7
D.8
3.在一个直角三角形中,两直角边长分别为 3 和 4,
下列说法正确的是( C )
A.斜边长为 25
B.该三角形的周长为 25
C.斜边长为 5
D.该三角形的面积为 20
4.如图,在由边长均为 1 个单位长度的小正方形组 成的网格中,点 A,B 都是格点,则线段 AB 的长为( A )
1.下列说法正确的是( D ) A.若 a,b,c 是△ABC 的三边,则 a2+b2=c2 B.若 a,b,c 是 Rt△ABC 的三边,则 a2+b2=c2 C.若 a,b,c 是 Rt△ABC 的三边,∠A=90°, 则 a2+b2=c2 D.若 a,b,c 是 Rt△ABC 的三边,∠C=90°,则 a2+b2=c2
变式 3 飞机在空中水平飞行,某一时刻刚好飞到一 个男孩头顶上方 3 km 处,过了 20 s,飞机距离这个男孩 头顶 5 km(如图).这一过程中飞机飞行的速度是每秒多 少千米?
解:在 Rt△ABC 中,BC2=52-32=16. 因为 BC>0,所以 BC=4(km). 4÷20=0.2(km/s). 答:这一过程中飞机飞行的速度是每秒 0.2 千米.
A.5 C.7
B.6 D.25
5.已知在 Rt△ABC 中,∠C=90°,∠A,∠B, ∠C 的对应边分别为 a,b,c.
(1)若 a=3,b=4,则 c=____5____; (2)若 a=40,b=9,则 c=___4_1____; (3)若 a=6,c=10,则 b=____8____; (4)若 c=25,b=15,则 a=___2_0____.
北师大版七年级上册第一章勾股定理1.1.2 探索勾股定理(共30张PPT)

勾股定理的
在1876年一个周末的傍晚,在美国首都华盛顿 的郊外,有一位中年人正在散步,欣赏黄昏的美 景……他走着走着,突然发现附近的一个小石凳上, 有两个小孩正在聚精会神地谈论着什么,时而大声 争论,时而小声探讨.由于好奇心驱使他循声向两 个小孩走去,想搞清楚两个小孩到底在干什么.只 见一个小男孩正俯着身子用树枝在地上画着一个直 角三角形……
b c
∴a2+b2=c2
方法二
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为c2 + 2ab. a a2+2ab+b2 = c2 +2ab b a b ∵ (a+b)2 = c2 + 2ab
a a
b
c
c
c
b c
∴a2+b2=c2
方法三 c b 大正方形的面积等于
a
c
2
大正方形面积 也可以表示为
1 4 ab (b a ) 2 2 2ab b 2 a 2 2ab a 2 b2 .
∴a2+b2=c2
方法四
b a c a2
c2
b2
∴ a 2 + b 2 = c2
方法五
④
c
③
⑤
b
a
① ②
∴ c2 = b2 + a2
方法六
a
b
S梯形
c c b
1 a b a b 2
2002 年 的 数 学 家 大 会 ( ICM-2002)在北京召开,这 届大会会标 的中央图案正是经 过艺术处理的弦图,这既标志 着中国古代的数学成就 ,又像 一只转动的风车,欢迎来自世 界各地的数学家们!
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.
八年级数学上册第一章勾股定理北师大版ppt课件

45 3
32 + 42 = 5 2
? 5
12
5 2+ 12 2= 13 2
精品课件
勾股定理
如果直角三角形两直角边分别为a、b,斜
边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等
于斜边的平方。
在西方又称毕达 哥拉斯定理耶!
精品课件
勾
弦
股
方法一
•
•••
•
• •
• •
••C••
• •
分割成若干个直角边 为整数的三角形
精品课件
返回
C A
方法三
S正方形c
B C
图1-1
A
B 图1-2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
精品课件
1 62 2
1 8(单位面积)
返回
方法四
b
a
a c cb
bc c
a
abΒιβλιοθήκη cab ac b (b-a) b c
a ba
c
精品课件
勾股逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
勾股数
能够成为直角三角形三条边长度的三个正整数,称为勾股数.
即 满足a2 +b2=c2的三个正整数,称为勾股数
精品课件
• 下面来看定理的应用.
• 例1 根据下列三角形的三边a、b、c的值,判断三角形是不
2.一颗9米高的树被风折断,树顶落在离树根3 米之处, 若要查看断痕,要从树底开始爬多 高?
精品课件
问题: 城市A要到达城市B必须经过C地的一条互相 垂直的公路才能到达,为了城市发展的需要,政府 决定在城市A、B之间建造一条最短的公路。如果你 是工程师,如何建造?建成之后两个城市之间缩短 了多少距离?
北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

( 55 ) 25
30
( 34)
95 61
( 42 ) 18
60
200 ( 350)
150
总结归纳
C A
B
SA+SB=SC
ac b
ac b
a2+b2=c2
a2+b2=c2
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.如果a,b和c分别表示直角三角形的 两直角边和斜边,那么a2+b2=c2.
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发 现这幅图中的奥秘吗?带着疑问我们来一起探索吧.
数学家毕达哥拉斯的故事
相传2005年前,毕达哥拉斯有一次在朋友家做客时,发现 朋友家的用砖铺成的地面…
毕达哥拉斯就从地面上这十分常见的图形中,发现了令世人震惊的定理:
方法一:割
方法二:补
方法三:拼
分割为四个直角三 角形和一个小正方 形.
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积.
将几个小块拼成若干个小 正方形,图中两块红色 (或绿色)可拼成一个小 正方形.
填一填:观察右边两 幅图:完成下表(每 个小
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
怎样计 算正方 形C的面 积呢?
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
C A
B
SA+SB=SC
结论:以直角三角形两 直角边为边长的小正方 形的面积的和,等于以 斜边为边长的正方形的 面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.1探索勾股定理
一、情境导入
《周髀算经》中国最古老的天文学和
数学著作,曾记载记录着商高和周公的
一段对话。
我早就听说您是擅长数 学的人,请问古代伏羲测量天文
制定历法,可没有登天的台阶,又
不能测量大地的尺寸,这数据是
怎么来的呢?
数是根据圆形和方形的 数学道理计算得来的。圆来自 方,而方来自直角三角形,直角三角 形是根据乘法九九表算出来的。如果 将一线段折成三段围成直角三角形, 一直角边(勾)为三,另外一直角 边(股)为四,则斜边(弦)
更进一步:
3.如右图,图中所有的三角形 都是直角三角形,所有的四边 形都是正方形,问A+B+C+D的 面积。
答案:49平方厘米
摩拳擦掌:
4.在直角三角形ABC中,AB=3,AC=4,那么以BC为边的正方 形的面积是多少?
分析:分情况讨论
解:情况一:当BC为斜边时
情况一:当BC为斜边时; 由勾股定理可知:AB2 AC 2 BC 2 情况二:当BC为直角边时 所以有BC 2 32 42 9 16 25
例一:如图,从电线杆离地面8m处向地面拉
一条钢索,如果这条钢索在地面的固定点距离 电线杆底部6m,那么需要多长的钢索?
A
B
C
再接再厉:
2.分别以直角三角形三边为边长的 正方形的面积如下图,问另外一个正 方形的面积.
∟
62A5 400
225
81 ∟ 1B44
225
规律:以直角三角形两直角边为边长的正方形的面积 和等于以斜边长的正方形面积。
a2 b2 c2
b
c
∟
a
我国古代把直角三角形中较短的直 角边称为 勾,较长的直角边称为股,斜边 称为弦,“勾股定理”因此而得名. (在西 方称为毕达哥拉斯定理)
弦 勾
股
四、简单应用 小试牛刀:
1.求出下列直角三角形中未知边的长度.
A
8
∟
C
6B
答案:AB=10
A
13 5
∟
C
B
答案:BC=12
实际问题
情况二:当BC为直角边时
由勾股定理可知:AB2 BC 2 AC 2
所以有BC 2 AC 2 AB2 16 9 7
总结:主要考查勾股定理的运用,以及分类讨论的数学思想
跃跃欲试:
5.若直角三角形的两条直角边分别为3和4,问斜边上 的高是多少?
答案:斜边上的高为2.4
大显身手:
7.如图所示,矩形ABCD沿AE折叠,使 A 点D落在BC边上点F处,若CD =6,FC=2, 求DE的值.
a
1 ab 1 ab 1 c2
222
ab 1 c2 2
所以: 1 a2 b2 ab 1 c2 ab
2
2
1 a2 b2 1 c2
2
2
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等 于斜边的平方.如果用 a,b和c 分别表 示直角三角形的两直角边和斜边,那 么
就是五。
勾股定理是关于什么图形 的定理?
答:关于直角三角形三边的关系
二、探索发现:如何推导勾股定理?
• 求这个梯形的面积 方法一:
A
b
c
S梯形
1 2
a
ba
b
1 a2 2ab b2
B
2
c
a
1 a2 b2 ab 2
∟
D aE
b
C
方法二:
b
cC
A
∟
a
c B
b
案:DE=
3
B
D E FC
总结:此题与折叠问题结合,同时应用方程的思想
五、课堂总结 :
这堂课你学会了那些知识?学会了那些 数学思想?
六、家庭作业
作业: 1.除了上课老师讲的一种证明勾股 定理的方法,请你尝试找到另外一 种证明勾股定理的方法; 2.课堂精炼相对应的练习题; 3.复习这节课的知识,预习下节内 容。
一、情境导入
《周髀算经》中国最古老的天文学和
数学著作,曾记载记录着商高和周公的
一段对话。
我早就听说您是擅长数 学的人,请问古代伏羲测量天文
制定历法,可没有登天的台阶,又
不能测量大地的尺寸,这数据是
怎么来的呢?
数是根据圆形和方形的 数学道理计算得来的。圆来自 方,而方来自直角三角形,直角三角 形是根据乘法九九表算出来的。如果 将一线段折成三段围成直角三角形, 一直角边(勾)为三,另外一直角 边(股)为四,则斜边(弦)
更进一步:
3.如右图,图中所有的三角形 都是直角三角形,所有的四边 形都是正方形,问A+B+C+D的 面积。
答案:49平方厘米
摩拳擦掌:
4.在直角三角形ABC中,AB=3,AC=4,那么以BC为边的正方 形的面积是多少?
分析:分情况讨论
解:情况一:当BC为斜边时
情况一:当BC为斜边时; 由勾股定理可知:AB2 AC 2 BC 2 情况二:当BC为直角边时 所以有BC 2 32 42 9 16 25
例一:如图,从电线杆离地面8m处向地面拉
一条钢索,如果这条钢索在地面的固定点距离 电线杆底部6m,那么需要多长的钢索?
A
B
C
再接再厉:
2.分别以直角三角形三边为边长的 正方形的面积如下图,问另外一个正 方形的面积.
∟
62A5 400
225
81 ∟ 1B44
225
规律:以直角三角形两直角边为边长的正方形的面积 和等于以斜边长的正方形面积。
a2 b2 c2
b
c
∟
a
我国古代把直角三角形中较短的直 角边称为 勾,较长的直角边称为股,斜边 称为弦,“勾股定理”因此而得名. (在西 方称为毕达哥拉斯定理)
弦 勾
股
四、简单应用 小试牛刀:
1.求出下列直角三角形中未知边的长度.
A
8
∟
C
6B
答案:AB=10
A
13 5
∟
C
B
答案:BC=12
实际问题
情况二:当BC为直角边时
由勾股定理可知:AB2 BC 2 AC 2
所以有BC 2 AC 2 AB2 16 9 7
总结:主要考查勾股定理的运用,以及分类讨论的数学思想
跃跃欲试:
5.若直角三角形的两条直角边分别为3和4,问斜边上 的高是多少?
答案:斜边上的高为2.4
大显身手:
7.如图所示,矩形ABCD沿AE折叠,使 A 点D落在BC边上点F处,若CD =6,FC=2, 求DE的值.
a
1 ab 1 ab 1 c2
222
ab 1 c2 2
所以: 1 a2 b2 ab 1 c2 ab
2
2
1 a2 b2 1 c2
2
2
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等 于斜边的平方.如果用 a,b和c 分别表 示直角三角形的两直角边和斜边,那 么
就是五。
勾股定理是关于什么图形 的定理?
答:关于直角三角形三边的关系
二、探索发现:如何推导勾股定理?
• 求这个梯形的面积 方法一:
A
b
c
S梯形
1 2
a
ba
b
1 a2 2ab b2
B
2
c
a
1 a2 b2 ab 2
∟
D aE
b
C
方法二:
b
cC
A
∟
a
c B
b
案:DE=
3
B
D E FC
总结:此题与折叠问题结合,同时应用方程的思想
五、课堂总结 :
这堂课你学会了那些知识?学会了那些 数学思想?
六、家庭作业
作业: 1.除了上课老师讲的一种证明勾股 定理的方法,请你尝试找到另外一 种证明勾股定理的方法; 2.课堂精炼相对应的练习题; 3.复习这节课的知识,预习下节内 容。