(完整版)广东工业大学线性代数试题A卷2(含答案)
广东工业大学高等代数2试卷和答案-2016

广东工业大学试卷用纸,共7页,第1页
广东工业大学试卷用纸,共7页,第2页
广东工业大学试卷用纸,共7页,第3页
记,
——(6分)
第二步单位化:
——(6分)
2. (12分)解:(用初等变换)
——(6分)
λλλ-;——(3分) 由上面特征矩阵的标准型,得出初等因子为,,2
且矩阵A的Jordan标准为
广东工业大学试卷用纸,共7页,第5页
的特征多项式为
X1,X2,X3就是特征值2的三个线性无关的特征向量;
X4就是特征值-2的特征向量;——(3分)
(2)因为特征向量X1,X2,X3,X4线性无关,则矩阵A可以对角化,且有
——(3)有(2),我们有
——(6分)
广东工业大学试卷用纸,共7页,第6页
——(6分)
广东工业大学试卷用纸,共7页,第7页。
08-09-2高数试卷A(2)(A考试卷)共6页word资料

广东工业大学考试试卷 (A)
课程名称: 高等数学A(2) 试卷满分 100 分
考试时间: 2009年6月29日 (第20周星期一)
题号一二三四五六七八九十总分评卷得分评卷签名
复核得分复核签名一、填空题:(每小题4分,共20
分)
1.设,,令. 则向量的方向余弦为:。
2.曲面在点处的切平面方程为:。
3.设区域,则 = 。
4.设是由方程所确定的隐函数,其中具有
连续的偏导数,且,则。
5.设是周期为的周期函数,它在区间上的定义为
,则的傅里叶级数在处收敛于________.
二、选择题:(每小题4分,共20分)
1.平面的位置是().
A.平行于轴.
B.斜交于轴
C.垂直于轴.
D.通过轴.
2. 考虑二元函数的下面4条性质:
①在点处连续;②在点处的两个偏导数连续;
③在点处可微;④在点处的两个偏导数存在.
若用“”表示可由性质推出性质,则有()
第 1 页
A ②③①;
B ③②①;
C ③④①;
D ③①④
学院:专业:学号:
姓名:
装订线
第 2 页
希望以上资料对你有所帮助,附励志名言3条:
1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
2、推销产品要针对顾客的心,不要针对顾客的头。
3、不同的信念,决定不同的命运。
第 6 页。
三、2009-6-15线性代数A卷

广东工业大学试卷用纸,共3页,第1页广东工业大学试卷用纸,共3页,第2页2、设行列式1534780311113152−−−==A D ,则2=+−+4443424135A A A A .(A )0(B )1(C )-1(D )-163、设A 、B 是n 阶方阵,下列等式正确的是.(A )AB=BA (B )))((22B A B A B A −+=−(C )22AA =(D )111)(−−−+=+B A B A 4、设0α是非齐次方程组b AX =的一个解,r ααα,,,21⋯是0=AX 的基础解系,则.(A)01,,,r ααα⋯线性相关。
(B )01,,,r ααα⋯线性无关。
(C )01,,,r ααα⋯的线性组合是b AX =的解。
(D )01,,,r ααα⋯的线性组合是0=AX 的解。
5、n 阶方阵A 与对角阵相似的充要条件是.(A)A 是实对称阵;(B)A 有n 个互异特征值;(C)A 的特征向量两两正交.(D)A 有n 个线性无关的特征向量;三、(10分)设na a a A +++=111111111||21⋯⋯⋯⋯⋯⋯⋯,021≠n a a a ⋯其中.求A .四、(10分)设4阶方阵C B A ,,满足方程11)2(−−=−C A B C E T ,试求矩阵A ,其中123212010*******,0012001200010001B C −−⎛⎞⎛⎞⎜⎟⎜⎟−⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠五、(10分)讨论λ为何值时,方程组⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321321321)1(3)1(0)1(x x x x x x x x x广东工业大学试卷用纸,共3页,第3页(1)有唯一解?(2)无解?(3)有无穷多解?并在此时求出其通解。
六、(10分)已知R 3中的向量组321,,ααα线性无关,向量组112223,b k b αααα=−=+,331b k αα=+线性相关,求k 值。
广东工业大学线性代数试题A卷2(含答案)

33xx1166xx22
0 0
3x1 6x2 0
解之得基础解系
2 0
1
1
,
2
0
…………6 分
0
1
同理将 3 2 代入 A E x 0 得方程组的基础解系3 (1,1,1)T ………7 分
AB )
1 0 3
4、设矩阵
A
与
B
2
3
相似,则 | A* E | _________ .
3
5、若
2
为可逆阵
A
的特征值,则
1 3
A2
1
的一个特征值为
二、 选择题(每小题 4 分,共 20 分):
1、下列命题正确的是(
)。
(A) 若 AB E ,则 A 可逆且 A1 B
四、 解:由已知 (A 2E)X A ,…………………………………………2 分
1 0 0 3 8 6
因为 ( A 2E,
A)
r
0
0
广10东工10业大2学2试卷129用纸,96共 …3……页,…第……4…页……8
分
3 8 6
故
X
(
A
八、(共 14 分)证明题:
1、(6 分)若 A 为 n 阶幂等阵( A2 A ),求证: r( A) r( A En ) = n . 2、(8 分)设 A 是 m n 实矩阵, 0 是 m 维实列向量,
证明:(1)秩 r( A) r( AT A) ; (2)非齐次线性方程组 AT Ax AT 有解.
GDUT线代复习题

线代复习题一. 填空 1. 设矩阵A=5523-⎛⎫⎪-⎝⎭, 则A * = _________ , A –1= ___________.2. 若四阶矩阵A 的行列式 |A|=a, 则 |3A| = __________, 其伴随矩阵A *的行列式 |A *| =_________.3. 若a52231521-=0, 则a =______. a 的代数余子式(不用求值)是: 4. 已知四阶行列式D 的第三列元素依次为-1,3,0,2, 它们的余子式分别为5,6,-3,-1,则D=_______ 5. 线性方程组⎩⎨⎧=++-+=-+-+0x x 2x 2x 2x 20x 2x x x x 5432154321的基础解系中所含向量的个数为6. 若,032=--E A A 求1)(-+E A =7. 向量组)0,0,1(1=α,)0,1,0(2=α,),1,1(3b =α,要使321,,ααα线性相关,则 b=_____ 8. 已知矩阵A=[1 0],B=⎥⎦⎤⎢⎣⎡--1121 01,则AB=______ 二. 计算1. 行列式:(1) 2222222222222222a a b b +-+- ;(2)ab b b b a b b b b a b b b b aD =4 2. ⎪⎪⎪⎭⎫ ⎝⎛----=111211120A ,判断A 是否可逆;如果A 可逆,用初等变换求1-A 。
3. 讨论线性方程组⎪⎪⎩⎪⎪⎨⎧=-=-=-=-414343232121a x x a x x a x x a x x 有解的充要条件, 并在有解的情况下,求它的一般解 4. 已知矩阵 A=⎪⎪⎪⎭⎫ ⎝⎛-321111330 , 设 B E A 232+=. 求矩阵 B . (2) 设 B A AB 23+=.求矩阵 B .5. 已知线性方程组⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x , (1) 问λ为何值时,方程组有解;(2) 若方程组有无穷多解,用其齐次线性方程组的基础解系表示非齐次线性方程组的通解。
[VIP专享]广工10高数A(2)试卷及答案
![[VIP专享]广工10高数A(2)试卷及答案](https://img.taocdn.com/s3/m/9429543825c52cc58bd6bea3.png)
1.级数
n1
sin n
n2
的收敛性为(
A 绝对收敛 B 条件收敛 C 发散 D 敛散性不能确定
)
广东工业大学试卷用纸,共 7 页,第 0 页
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
五、(8 分)计算二重积分 x y 2 dxdy ,其中 D={ (x, y) | 0 x 1,0 y 1}。
线性代数习题1(附答案)

线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。
广工12高数A(2)试卷及答案

学院:专业:学号:姓名:装 订 线 广东工业大学考试试卷 ( A ) 课程名称: 高等数学A(2) 试卷满分 100 分 考试时间:2012年 7 月 2 日 (第 20 周 星期 一 ) 题 号 一 二 三 四 五 六 七 总分 1 2 3 评卷得分 评卷签名 复核得分 复核签名 考生注意:请把所有答案直接写在试卷上,卷面务必保持清洁。
一、填空题(每小题4分,共20分) 1.向量}1,2,2{=→b 在向量}4,3,4{-=→a 上的投影为 。
2.函数 u xyz = 在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向导数 为 。
3.交换二次积分⎰⎰x x dy y x f dx 220),(的顺序后为 。
4.设f 具有二阶连续偏导数, ⎝⎛⎪⎪⎭⎫=y x x,f z ,则y z ∂∂= 。
5 设区域D 是由圆周x 2+y 2=4所围成的闭区域,则=+⎰⎰σd e y x D 22 。
二、选择题(每小题4分,共20分) 1.周期为2的函数f(x)在一个周期内的表达式为5.01-1x 0.5 ,1,≤≤<<⎩⎨⎧x x ,则它的傅里叶 级数在5.3-=x 处的和为( ).A .0.75 B. 0 C .0.35 D. -0.75广东工业大学试卷用纸,共5页,第1页 2. 无穷级数∑∞=-2ln )1(n nn 为( )。
A. 绝对收敛 B. 条件收敛 C .发散 D. 无法确定3.对于二元函数22x xy y) f(x, y +=,极限)y ,(lim )0,0(),(x f y x →为( ). A. 不存在 B. 0 C. 1 D. 无穷大4. 曲面922=++z y x 在点(1, 2, 4)处的切平面方程为( )。
A -14z 4y 2x =++B 14z 4y 2x =++C -14z -4y 2x =+D 14z 4y 2x =+-5. 直线x+y+3z=0,x-y-z=0与平面x-y-z+1=0的夹角为( )A 4πB 2πC 0D 3π 三、计算题(每小题8分,共32分)1. 设方程组⎩⎨⎧=+-+-=--+010u 222xy v u y x v 确定隐函数),(),,(v u y v u x x ==,求u x ∂∂,u y ∂∂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C) ;(D) .
5、设 、 为n阶实对称可逆矩阵,则下面命题错误的是()
(A)有可逆矩阵 、 使得 (B)有可逆矩阵 使得
(C)有可逆矩阵 使得 (D)有正交矩阵 使得
三、计算行列式(6分):
设 ,计算 的值,其中 是代数余子式.
四、(10分)设矩阵 满足关系 ,其中 ,求 .
五、(10分)设线性方程组为 ,问: 、 取何值时,方程组无解、有唯一解、有无穷多解? 在有一个基础解系, 不是 的解,即 ,
讨论:向量组 线性相关还是线性无关?.
七、(10分)设 ,问A能否对角化?若能对角化,则求出可逆矩阵 ,使得 为对角阵.
八、(共14分)证明题:
(C)若方阵 不可逆,则 都不可逆
(D)若 阶矩阵 或 不可逆,则 必不可逆
2、设 为 阶矩阵, 为其伴随矩阵,则 ( ).
(A) (B) (C) (D)
3、若非齐次线性方程组 中方程个数少于未知数个数,那么( ).
(A) 必有无穷多解;(B) 必有非零解;
(C) 仅有零解;(D) 一定无解.
4、设有向量组 , , , 与 ,则向量组的极大线性无关组是()
八、(14分)
1、证明: ,
…………………………………………3分
又
故 …………………………………………6分
2、证明:(1)因为若 ,则 ;
而当 时,由
,得 。
因此齐次线性方程组 与 ,同解,
故秩 。…………………………………………4分
(2)因为秩
因此 ,故非齐次线性方程组 有解。
………………………………………8分
当 -2, -1时,方程组无解……………………………………7分
当 -2, -1时, =2 < 3,方程组有无穷多组解,
其通解为 , 为任意常数。…………………10分
六、解:设有 使得
,(1)
, (2)………4分
若 ,则 可由 线性表示,
是 的解,与已知矛盾.故必有 ,
从而 ,………………………………………………………7分
由 是 的一个基础解系知 线性无关,
, ,
因此向量组 线性无关.…………………………………10分
七、解:由 ,
得全部特征值为: ,………………………………………4分
将 代入 得方程组
解之得基础解系 …………6分
同理将 代入 得方程组的基础解系 ………7分
由于 ,所以 线性无关,
令 ,则有: ………10分
1、(6分)若 为 阶幂等阵( ),求证: = .
2、(8分)设 是 实矩阵, 是 维实列向量,
证明:(1)秩 ; (2)非齐次线性方程组 有解.
故 …………………………………………10分
评分说明:本题方法不唯一,若结果不对的根据步骤酌情给出。
五、解: …………………3分
当 -2时,方程组有唯一解……………………………………………5分