5V高电压锂离子电池阴极材料研究进展

合集下载

高功率石墨电极在锂离子电池中的应用研究

高功率石墨电极在锂离子电池中的应用研究

高功率石墨电极在锂离子电池中的应用研究摘要:随着移动电子设备和电动汽车的快速发展,锂离子电池作为新一代高能量密度和高功率密度电池的代表,受到广泛关注。

而石墨电极作为重要的锂离子电池材料之一,在锂离子储能领域有着重要的应用价值。

本文旨在探讨高功率石墨电极在锂离子电池中的应用研究,并分析其优势与挑战。

引言:锂离子电池是一种以锂离子的嵌入/脱嵌过程来存储和释放电能的器件。

石墨电极作为锂离子电池的负极材料,具有很高的比能量和循环寿命,然而在高功率应用中的表现并不理想。

为了满足日益增长的高功率应用需求,研究人员开始寻找提高石墨电极功率特性的方法。

高功率石墨电极的开发将为电动汽车和可穿戴设备等领域的应用带来重要的突破。

1. 高功率石墨电极的优势和特点:石墨电极作为负极材料有着以下优势:1)丰富的资源,低成本制备;2)较高的比能量和循环寿命;3)良好的化学和物理稳定性。

而高功率石墨电极在这些基础上还具有如下特点:1)高电导率,有助于提高电池的输出功率;2)较低的内电阻,减少能量损失;3)良好的嵌入/脱嵌动力学特性,提高电池充放电速度。

2. 高功率石墨电极改进的方法:为了提高石墨电极的功率特性,研究人员采取了一系列改进方法,包括结构优化、添加剂掺杂和导电性调控等:1)结构优化:通过改变石墨电极的晶格结构和孔隙性质,提高锂离子扩散速率;2)添加剂掺杂:添加锂盐或其他金属氧化物等添加剂,改善石墨电极的电化学性能;3)导电性调控:通过控制石墨电极的导电性,降低内电阻并提高功率输出。

3. 高功率石墨电极的应用:在锂离子电池领域,高功率石墨电极已经得到了广泛的应用。

一方面,在电动汽车领域,高功率石墨电极可以提供更高的输出功率和更短的充电时间,以满足电动车辆对高功率的需求;另一方面,在可穿戴设备和移动电子设备领域,高功率石墨电极可以提高设备的使用时间和续航能力,提供更好的用户体验。

4. 高功率石墨电极的挑战和前景:尽管高功率石墨电极在锂离子电池中的应用取得了很大的成功,但仍然存在一些挑战:1)易发生石墨烯化,导致电化学性能损失;2)表面的锂离子聚集和金属锂枝晶的生长,导致安全性问题。

锡基作为锂离子电池负极材料的研究进展

锡基作为锂离子电池负极材料的研究进展

锡基作为锂离子电池负极材料的研究进展在锂离子电池技术不断发展过程中,以碳为负极的电池具有良好的循环性,技术成熟依然是目前主流的负极材料,但却基本达到了碳的理论容量。

不能够进一步满足当代对大容量小体积电池的要求。

因此必须开发新的理论容量高的负极材料,在研究过程中出现了不少的代替碳的负极材料。

锡基就是其中一种。

在1997年,日本的富士公司首先发现了无定形锡基氧化物(TOC)具有很长的循环寿命和较大的可逆容量。

此后,在全世界掀起了研究锡基材料的浪潮,开发了多种含锡的材料类型,包括金属锡,锡基氧化物,锡基合金,硫化锡等。

锡基负极材料在锂离子的嵌入和脱出过程中可以形成Sn,其中的x小于Lix4.4。

也就是说一个锡原子可以与4.4个锂原子相结合形成合金。

从而计算出锂的理论容量大概在990mAh/g,远大于碳基材料(理论容量372mAh/g),这使得锡基作为锂离子电池负极材料具有广大的潜力。

但是锡基作为负极材料时锂离子的嵌入和脱出会使体积发生巨大改变。

因此需要对锡基材料作进一步的研究,下面会从不同方面的锡基进行综述,来进一步了解锡基材料的优劣性。

2.1金属锡材料及复合材料锡和锂能够形成Sn。

纯净的Sn作为负极材料时,锂离子的嵌入和脱出Li4.4过程其体积变化率高达100%—300%,而且电极易发生破裂与粉碎,导致电池的可逆容量下降。

在Yang S等人[13]的文章中证实了此点,他们制作了厚度为12µm 到15µm的纯锡作为电极的电池。

在随后的研究中发现纯锡电极在前15次循环中的容量为600mAh/g,但在下面的循环中迅速降到了100~200mAh/g。

X射线研究分析可以看出晶体的尺寸变小了,由此可知以纯锡作为负极材料会发生严重变形。

目前的解决方法主要有两种,一种是将锡可以纳米化并加入碳材料,这一种情况与碳—硅复合材料类似,在上面已经提到过。

另一种方法是电镀制备锡薄膜电极。

2.1.1纳米化方法纳米化的研究中有Wang等人[14]以石墨为分散剂,采用高能机械研磨法SiO/和金属Li的混合物发生反应,并还原成金属Sn,得到纳米簇会均匀的SnO分布含锂的弹性石墨基质。

锂离子电池的研究进展及应用前景精选全文完整版

锂离子电池的研究进展及应用前景精选全文完整版

可编辑修改精选全文完整版锂离子电池的研究进展及应用前景近年来,新能源电池市场的发展迅猛,尤其是锂离子电池,在家用电器、电动车、太阳能等领域得到了广泛的应用。

对于锂离子电池的研究,不仅能够提高电池的性能,同时也能够为其更进一步的应用提供技术支持。

本文介绍了锂离子电池的研究进展以及其应用前景。

一、研究进展1. 电极材料改进电池的性能主要取决于电极材料的性质,因此在锂离子电池的研究中,电极材料的改进是必不可少的。

传统的电极材料为石墨,但石墨有低比容量、低导电性、易热化等问题。

近年来,锂离子电池的革新主要是基于正极和负极材料之间的平衡。

目前用于正极的材料有LiFePO4、LiCoO2、LiMn2O4等,用于负极的材料主要有石墨、金属锂、硅材料等。

这些材料科技的不断创新进步,使得锂离子电池的性能得到不断提升。

2. 电解质电解质是电池中极为重要的部分,因为它赋予电池主要的性能(如循环性能、电池容量、能量密度等)。

在传统的锂离子电池中,一般使用液态电解质,但液态电解质有泄漏的风险,而且易于氧化和燃烧。

为了提高电池的安全性和循环性能,目前锂离子电池中主要使用固态电解质。

固态电解质中,最为主流的是氧化铝、氧化锆等陶瓷材料。

固态电解质具有优异的化学稳定性,与高无效性的锂电求得更高电化学性能和更安全性的使用。

3. 电池系统除了电极材料和电解质的改进之外,电池系统的研究也是锂离子电池中一个必不可少的研究领域。

在电池工作过程中,电极和电解质之间的变化会影响电池的循环性能。

而电池系统从整体的角度出发,可以有效的解决这一问题。

电池系统研发的一个核心是电池管理系统(BMS),BMS在锂离子电池中起着重要的作用,它将对电池的使用和维护起到至关重要的作用。

同时,电池系统的研究还包括了钝化处理、电极的表面改性等专业技术的研发。

这些研究都可以有效的提高锂离子电池的研发与应用。

二、应用前景随着汽车、家用电器、通讯等领域的快速发展,锂离子电池在各个领域得到了广泛的应用。

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着科技的发展和社会的进步,能源问题已成为全球共同关注的焦点。

锂离子电池因其高能量密度、长寿命和环保等优点,被广泛应用于电动汽车、电子设备等领域。

然而,传统锂离子电池的负极材料存在着一些不足,如容量低、循环性能差等。

因此,开发新型高性能的锂离子电池负极材料具有重要意义。

近年来,基于石墨烯的锂离子电池负极材料因其独特的结构和性能受到了广泛关注。

本文将重点研究基于石墨烯的锂离子电池负极材料,分析其制备方法、性能及改进方向。

二、石墨烯的基本性质与结构石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、导热性、机械强度和较大的比表面积。

这些特性使得石墨烯在锂离子电池负极材料中具有巨大的应用潜力。

石墨烯的片层结构可以为锂离子提供更多的嵌入位点,从而提高电池的容量。

此外,石墨烯的优异导电性有助于提高电池的充放电速率。

三、基于石墨烯的锂离子电池负极材料的制备方法1. 化学气相沉积法:通过在高温下使碳源气体分解,并在基底上沉积石墨烯。

该方法可以制备出高质量的石墨烯薄膜,但成本较高,生产效率较低。

2. 液相剥离法:利用溶剂剥离石墨得到单层或多层石墨烯。

该方法工艺简单,成本低,但产物中杂质较多,影响电池性能。

3. 化学氧化还原法:通过化学氧化天然石墨得到氧化石墨,再通过还原得到石墨烯。

该方法工艺成熟,可实现大规模生产。

四、基于石墨烯的锂离子电池负极材料的性能研究基于石墨烯的锂离子电池负极材料具有较高的理论容量和良好的循环性能。

在充放电过程中,锂离子可以在石墨烯片层间嵌入和脱出,从而实现能量的存储和释放。

此外,石墨烯的优异导电性有助于提高电池的充放电速率,降低内阻。

然而,在实际应用中,还需解决石墨烯材料的一些问题,如容量衰减、循环稳定性等。

五、性能改进措施及研究进展针对基于石墨烯的锂离子电池负极材料存在的问题,研究者们提出了多种改进措施。

1. 纳米结构化:通过制备具有特殊纳米结构的石墨烯材料,如三维网络结构、多孔结构等,提高材料的比表面积和嵌锂能力,从而提高电池性能。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展摘要:当前全球范围内的石油和其他传统能源越来越稀缺,迫切需要有效开发和利用可再生能源,例如太阳能、风能和潮汐能。

但是,这些新能源供应不稳定且持续不断,因此需要先转换成电能再输出,这促进了可充电电池的研究。

传统的铅酸电池,镍镉电池和镍氢电池存在使用寿命短、能量密度低和环境污染等问题,极大地限制了它们的大规模应用。

当前,电池行业的首要任务是找到可替代传统铅酸电池和镍镉电池的可充电电池,迫切需要开发无毒、无污染的电极材料和电池隔膜以及无污染的电池。

与传统的二次化学电池相比,锂离子电池由于其吸引人的特性已经在电子产品中占主导地位,显示出广阔的发展前景。

关键词:锂离子电池;负极材料;研究进展引言国际能源结构正从传统化石能源的主导地位逐渐转变为低碳、清洁和安全的能源,以二次电池为代表的电化学储能技术已成为最有前途的储能技术之一。

锂离子电池因其比能量高、工作电压高、循环寿命长和体积小等特点得到了广泛关注。

锂离子电池主体由正极、隔膜、负极、封装壳体四部分组成,就提高电池的比能量而言,提高负极的性能相对于改进正极、隔膜、封装壳体更为容易。

负极又包括了电流集流体(通常是铜箔)、导电剂(通常是乙炔黑)、粘结剂(通常是聚偏氟乙烯)和具有与锂离子可逆反应的活性材料。

电极的性能几乎取决于活性材料的性能。

1嵌入型负极材料嵌入型负极材料嵌入机制可以描述为,材料结构中可以容纳一定的外来的锂离子,相变形成新的含锂的化合物,并且能在随后的充放电过程中脱出外来的锂离子,恢复到先前的原始结构。

嵌入型负极材料,包括已经商业化锂离子电池负极材料石墨、非石墨化的碳材料(如石墨烯、碳纳米管、碳纳米纤维)、TiO2以及钛酸锂等。

其中碳质材料的优点包括良好的工作电压平台,安全性好以及成本低等。

但是也存在一些问题,如高电压滞后、高不可逆容量的缺点。

钛酸盐负极材料具有优异的安全性、成本低、长循环寿命的优点,但能量密度低。

石墨作为层状碳材料,是首先被商业化和人们所熟知的LIB负极材料,也是最成功的嵌入型负极材料,锂离子嵌入后可生成层状LiC6,其放电平台在0.2V(vs.Li+/Li)以下,有优异的嵌/脱锂动力学性能,是比较完美的LIB负极材料。

全固态锂离子电池V2O5阴极薄膜研究进展

全固态锂离子电池V2O5阴极薄膜研究进展

e g e st ,s p r rc a g — ic a g r p rya d g o aey r yd n iy u ei h r eds h r ep o e t n o ds ft .Th hn fm sc t o ei hskn f atr o eV2 t i i a ah d nt i ido te y Os l b
维普资讯

28 ・ 8
材料 导报
2 0 年 5月第 2 专辑 Ⅵ 06 O卷
全 固态 锂 离 子 电池 V2 o5阴极 薄膜 研 究进 展
蔡 羽 赵 胜 利 。文 九 巴。 陈海 云。 , , ,
( 河南科技 大学 信息管理研究所 ,洛阳 4 10 ;2 河 南科 技大学材料科学与工程学院 , 1 703 洛阳 4 10 ) 7 0 3 摘 要 全 固态薄膜锂 离子 电池 由于具有 能量 密度 高 、 环性能和 安全性 能好 等优 点 已成为 目前研 究的 热点。 循 其 中, 2 5薄膜是锂 离子 电池 中一种备 受重视 的阴极 材料 。对 v2 薄膜的 离子扩散 系数 以及 结构特点做 了简单介 v 0 05 绍 , 点评 述 了 v2 薄膜 电极制备和 电化 学性能研 究方 面的发展近 况, 重 并对今后的发展方 向进行 了展望 。
Ab t a t sr c Al s l -t t hnfl Lio atre a eb e xe sv l v siae ea s fterhg n l o i sa et i i - d m - nb teish v e n e tn ieyi e t tdb c u eo h i ihe — i n g
CAIYu , HAO h n l , EN ib 。 Z S e gi W 。 Ju a ,CHEN iu z Hay n

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析目前锂电池负极材料的研究主要集中在碳基材料、硅基材料、金属氧化物等方面。

这些材料在锂电池中都有其独特的优势和局限性,而且针对不同种类的锂电池,对负极材料的要求也有所不同。

对这些负极材料的研究和发展,将有助于提高锂电池的性能和推动新一代电池技术的发展。

碳基材料一直是锂电池负极材料的主要研究方向之一。

石墨、石墨烯、碳纳米管等碳材料,因其导电性好、比表面积大、化学稳定性高等特点,被广泛应用于锂电池负极材料中。

通过控制碳材料的结构和微观形貌,可以有效提高其对锂离子的嵌入/脱嵌能力,提高其循环稳定性和倍率性能。

不过,碳材料在储锂过程中很难实现高容量储存,这一问题已成为碳基负极材料的研究难点之一。

硅基材料也是当前锂电池负极材料的研究热点。

与碳材料相比,硅具有更高的理论储锂容量,因此被认为是一种非常有前景的锂离子电池负极材料。

硅材料在锂离子嵌入/脱嵌过程中会发生体积膨胀,导致材料结构破坏,电化学活性和循环寿命大大降低。

为了解决硅材料的这一问题,研究者们通过合成纳米结构的硅材料、设计多孔结构、以及与碳等材料的复合等方法,取得了一些积极的进展,但仍然存在一定的挑战。

在未来,锂电池负极材料的研究将朝着以下几个方向发展:通过材料设计与合成新型的碳基材料,以提高其储锂容量,并且降低材料的制备成本。

研究者也将继续探索碳材料的微观结构与电化学性能之间的关系,找出铁电影响碳材料电化学行为的机理。

将进一步发展硅基负极材料的制备技术,通过纳米结构设计、表面涂层等方法,提高硅材料的循环稳定性和倍率性能。

也将探索硅基材料与其他材料的复合应用,以扩展硅材料在锂电池中的应用范围。

对金属氧化物的研究也将继续深入,以寻找新型金属氧化物材料,并且改进其结构与性能。

研究者也将进一步研究金属氧化物的嵌入/脱嵌机制,以解决其循环稳定性问题。

随着锂电池技术的不断发展和应用需求的不断增加,对锂电池负极材料的研究也将持续深入。

锂离子电池快充石墨负极材料研究进展

锂离子电池快充石墨负极材料研究进展

锂离子电池快充石墨负极材料研究进展
廖雅贇;周峰;张颖曦;吕途安;何阳;陈晓燕;霍开富
【期刊名称】《储能科学与技术》
【年(卷),期】2024(13)1
【摘要】锂离子电池广泛应用于电动汽车和储能领域,石墨负极材料受制于缓慢的嵌锂动力学和低的工作电位,其高倍率充放电下的容量、稳定性和安全性无法满足快充电池的应用需求。

本文分析了快充石墨负极材料面临的主要挑战,着重介绍了石墨负极本征结构和浓差极化等限制其快充性能的内在因素,总结了通过石墨负极结构设计、化学修饰和表面包覆等策略提升石墨负极快充性能的方法,重点分析了增强石墨负极材料中离子电子传输、降低界面电阻等作用机理,展望了快充石墨负极的发展前景。

结合现有研究成果,提出硬碳包覆微晶石墨策略,有望从材料设计层面大幅提升石墨的倍率性能,为高功率、高能量密度的LIBs石墨负极材料设计提供指导。

【总页数】13页(P130-142)
【作者】廖雅贇;周峰;张颖曦;吕途安;何阳;陈晓燕;霍开富
【作者单位】华中科技大学中欧清洁与可再生能源学院
【正文语种】中文
【中图分类】TM912
【相关文献】
1.石墨负极对锂离子电池快充性能的影响
2.锂离子电池快充石墨负极材料的研究进展及评价方法
3.硬碳包覆人造石墨作为锂离子电池负极材料的快充性能评价
4.锂离子电池新型快充负极材料Li4Ti5O12的改性研究
5.锂离子电池快充石墨负极研究与应用
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5V高电压锂离子电池阴极材料研究进展(1)2012-03-15 19:14:14 作者:刘竞雅来源:电源在线网关键字:锂离子电池高电压高能量密度阴极材料1 前言锂离子电池作为一种可多次重复充放电的能量储存技术,在过去20年来取得了非常重要的成功应用,尤其是作为各种可移动电子设备的动力源,促进了通信、电子等工业的蓬勃发展。

如今,世界各国都努力试图将锂离子电池应用到汽车等运输工具中,以提供动力。

丰田,福特等公司已经开发了多款混合动力源汽车,以减少汽油的使用。

例如,丰田的Toyota Pirus混合动力汽车,因为使用锂离子电池作为辅助动力,每加仑汽油可行驶约50英里。

现在,各国、各公司也都在大力投资试图率先开发出可靠安全的,唯一使用锂离子电池作为动力源的电动汽车。

使用锂离子电池作为单一的动力源,要求锂离子电池能够储存/释放更高的能量、更长的重复充放电寿命、并且安全可靠。

IBM发起的电池500项目,旨在开发出单次充电可行驶500英里(800km)的电池,即要求电池的能量容量约为125kWh[1]。

这些应用也对电池材料提出了更高的要求,尤其是电池的阴极(正极)材料。

相对于电池的负极(阳极)材料,阴极材料的容量普遍更低。

石墨作为阳极材料容量接近约400 mAh/g,而广泛商用的阴极材料LiCoO2只有约140 mAh/g的可利用充放电容量,LiFePO4约160 mAh/g。

电池的能量密度约为电池放电电压和容量的乘积,因此,除提高阴极材料容量外,提高阴极材料相对于Li/Li+电极的电势,是另一个提高电池能量密度的有效途径。

LiCoO2相对Li/Li+电极的放电电压约为4V,若与5V相同容量的阴极材料相比,电池能量密度可提高约25%。

因此,近来5V高电压阴极材料的研究开发,也取得了众多研究者越来越多的关注。

具有类尖晶石晶体结构的LiNi0.5Mn1.5O4、和类橄榄石晶体结构的LiMPO4(M=Co,Ni)的两类材料为最有开发潜力的5V高电压阴极材料。

本文将系统地阐述5V高电压阴极材料所面临的问题,以及取得的最新进展。

图1 电解液电势窗口与电极活性材料氧化还原势的相对关系。

(a)电解液电化学势窗口示意图。

(b)常用电极材料电势与有机电解液(1M LiPF6 溶于EC:DEC)的电化学势窗口间的相对关系[2]。

2 5V高电压阴极材料面临的问题图1(a)示意地说明了电池热力学稳态时阴极、阳极和电解液的电子能级。

以Li/Li+电极为参比电位,μA为阳极材料的相对电化学势,μC为阴极材料的电化学势,电解液电势窗口Eg为电解液最低电子未占能级和最高电子占有能级之差。

以阴极和阳极组成电池时,μC和μA的差为电池的开路电压。

当阳极和阴极的电化学势在电解液的最低电子未占能级和最高电子占有能级之间时,电解液能很好的工作。

但当阳极材料的电化学势高于最低电子未占能级时,阳极材料的电子会被电解液夺取,因而电解液被氧化,反应产物在阳极材料颗粒表面形成固液界面层;类似地,当阴极材料的电化学势低于最高电子占有能级时,电解液中的电子被阴极材料取得,从而氧化电解液,在阴极颗粒表面形成固液界面层。

但是,当阴阳极电化学势略在Eg范围之外时,一些固液界面层能阻挡电子在电解液和阴(阳)极间的进一步输运,从而阻止进一步的反应,保护电极材料。

例如,石墨相对Li/Li+电极的电化学势约为0.2V,在电解液(1M LiPF6 溶于EC:DEC)的电势窗口Eg范围之外(1V~4.5V)。

但是,因为EC能形成保护性的固液界面层,从而使得电解液不被进一步还原,所以石墨能成功应用为锂电池的阳极材料。

现在商用的有机电解液为1M LiPF6溶于EC:DEC或EC:DMC,其电势窗口Eg范围约为1V~ 4.5V。

然而,5V高电压阴极材料已经接近或者超出了现在商用有机电解液的电势窗口,因而电解液在充放电过程中极易被氧化,形成固液界面层,随着充放电循环次数的增加,容量大大降低,循环寿命减小。

图1(b)示意的说明了一些电极材料的充放电电势与商用有机电解液电势窗口Eg的相对关系[2]。

类尖晶石晶体结构LiNi0.5Mn1.5O4和类橄榄石晶体结构LiCoPO4的电势接近甚至超出Eg。

因此,寻找与LiNi0.5Mn1.5O4和LiCoPO4相匹配的电解液,或者对其保护性表面改性开发成为现今改进5V高压阴极材料主要的研究途径。

3 5V高电压阴极材料研究进展在类尖晶石结构的LiMn2O4中掺杂阳离子(Fe,Co,Ni等)可提高电势,在4V和5V 左右会分别出现两个放电平台[3]。

这些掺杂体系中,LiNi0.5Mn1.5O4具有约4.7V的放电电势和约130mAh/g的容量(理论容量达147 mAh/g)[4],最具开发潜力。

而和LiFePO4具有相似结构的LiCoPO4和LiNiPO4,分别具有4.8V,和5.2V的放电电势,且理论容量都接近170 mAh/g[5],因而也受到了很多的关注。

3.1 LiNi0.5Mn1.5O43.1.1 掺杂在LiNi0.5Mn1.5O4中掺杂阳离子或者阴离子是提高LiNi0.5Mn1.5O4化学稳定性,进而提高循环充放电性能的有效途径。

加入的微量替换离子能在颗粒表面聚集,减少表面的反应活性更高的Ni离子,从而减少表面的有害反应并抑制固液界面的形成,因此提高LiNi0.5Mn1.5O4的快速充放电性能和循环稳定性。

Ooms等人[6]发现,掺杂Mg能提高LiNi0.5Mn1.5O4的结构稳定性。

通过溶胶-凝胶法和固态反应制备的LiMgxNi0.5-xMn1.5O4(x<0.1),在0.1C速率下充放电容量接近理论值(大于120 mAh/g)。

Locati等人[7]制备的纳米级LiMg0.05Ni0.45Mn1.5O4,在室温下具有约10-6 S/cm的电导率,从而具有良好的快速充放电性能,0.1C速率下容量为131 mAh/g,1C速率下容量为117 mAh/g。

Liu等人[8]制备了掺杂不同含量Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和LiMn1.5Ni0.34Fe0.16O4。

未掺杂LiNi0.5Mn1.5O4的在C/6速率下容量为~130 mAh/g,循环50次后容量保持为92%;而掺杂Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和LiMn1.5Ni0.34Fe0.16O4容量分别为136,131,和127 mAh/g,且100次循环后容量仍保留100%。

电化学阻抗谱(EIS)显示掺杂Fe后,表面阻抗降低;X射线光电子能谱(XPS)显示表面的Fe含量高于芯部,而表面的Ni含量低于芯部,Fe 相比于Ni具有更低的反应活性,因而抑制了有害反应和固液界面层的形成。

Co也是报道较多的一种有效掺杂元素[9-12]。

Oh等人[11]制备了Co掺杂Li[Ni0.5Co0.05Mn1.45]O4,其放电容量在5C速率时达118 mAh/g,10C速率时为103 mAh/g;而未掺杂在5C和10C速率下放电容量仅分别为100 mAh/g和10 mAh/g。

.掺杂Cr也能有效地提高LiNi0.5Mn1.5O4的电化学性能。

Liu等人[13]用溶胶凝胶法制备了LiCr0.1Ni0.4Mn1.5O4,并获得更好的高速充放电性能和循环性能。

Arunkumar等人[14]制备的LiMn1.5-0.5yNi0.5-yCryO4在4.2-5V容量为128 mAh/g,且50次循环后保留98%的容量,均高于未掺杂的LiNi0.5Mn1.5O4(118mAh/g,50次循环后容量保留92%)。

最近,Aklalouch 等人[15]制备的650 纳米大小的单晶LiMn1.4Ni0.4Cr0.2O4在1C的速率下容量可达142 mAh/g,高达60C的速率下25oC温度下放电容量仍可达到131 mAh/g,55℃时容量为123 mAh/g,且55℃下循环50次循环后容量保留98.7%。

Ti[16-18]和Ru[19]也被发现可提高的高速充放电性能和循环性能。

Kim等人[17]发现掺杂Ti 能提高充放电电压、提高锂离子扩散速率、并获得更好的高速充放电性能。

Wang等人制备的Ru掺杂Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4比未掺杂LiNi0.5Mn1.5O4具有更好的高速充放电性能和循环性能。

Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4在10 C的放电容量分别为108 mAh/g和117 mAh/g,且500次循环后仍能分别保留91%和84%的容量。

除了掺杂上述阳离子替代部分Ni或者Mn之外,掺杂氟离子以替代部分氧离子也可大大提高LiNi0.5Mn1.5O4的电化学性能[20-22]。

在电解液中由于微量HF的存在而与电极材料发生反应,溶解部分Ni或者Mn离子,恶化电化学性能,而掺杂氟离子则可有效的抑制这种破坏反应。

Xu等人[22]制备的掺杂氟LiNi0.5Mn1.5O3.975F0.05在3.5V-5.2V间充放电容量为140 mAh/g,高于未掺杂的130 mAh/g,且40次循环后容量保留为95%。

3.1.2 涂层由于LiNi0.5Mn1.5O4具有的高充放电电压,其与电解液之间发生的反应会氧化电解液形成固液界面层,同时电解液中的HF会溶解部分Ni和Mn离子,从而使得电极材料的充放电容量下降,循环性能恶化。

表面改性或表面涂层是研究较多的一种改善活性材料性能的有效手段。

在活性材料颗粒表面形成氧化物(MOx)或者金属磷酸物(MxPO4),能有效的一方面能提供一层物理阻碍膜避免电解液与活性颗粒的直接接触;另一方面氧化物能与电解液中的HF发生反应而消耗掉HF,减少HF对活性颗粒的攻击。

金属氧化物涂层ZnO[23-24],ZrO2[25],Al2O3[26]等能有效的提高LiNi0.5Mn1.5O4的电化学性能。

表面具有ZnO涂层的LiNi0.5Mn1.5O4容量达到137 mAh/g,且在55℃温度下50次循环后几乎没有容量的下降[23]。

Liu等人[26]在LiMn1.42Ni0.42Co0.16O4表面分别涂覆较均匀的约10 nm厚度的Al2O3,Bi2O3,ZnO,AlPO4,均能大大提高快速充放电性能和循环充放电性能。

由于电解液中微量水分的存在而提供H+形成HF,HF与活性颗粒的反应会进一步的产生水分,从而使性能大大恶化,而氧化物的涂层能消耗HF且抑制固液界面层的形成,从而提高性能。

Li3PO4[27]也被报道能提高LiNi0.5Mn1.5O4的高速充放电性能和循环性能。

相关文档
最新文档