2015年浙江省台州市中考数学试卷
浙江省台州市三门县城关中学2015届中考数学模拟试题二(含解析)

浙江省台州市三门县城关中学2015届中考数学模拟试题二一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A.B. C. D.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.05.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B.C.D.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O 交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.129.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.610.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共6小题)11.因式分解:x3﹣xy2= .12.正十边形的一个外角为度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.三.解答题(共7小题)17.计算:18.解方程:x2﹣5x﹣6=0.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.2015年浙江省台州市三门县城关中学中考数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题) 1.﹣5的绝对值是( )A .B .5C .﹣5D .﹣【考点】绝对值.【分析】利用绝对值的定义求解即可. 【解答】解:﹣5的绝对值是5, 故选:B .【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义. 2.函数中,自变量x 的取值范围是( )A .x≠3B .x≥3C .x >3D .x≤3 【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x ﹣3≥0.∴x≥3. 故选:B .【点评】此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.3.已知一次函数y=kx+k ﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是( )A .B .C .D .【考点】反比例函数的图象;一次函数的图象.【分析】因为k的符号不确定,所以应根据k﹣1的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,k﹣1<0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过二、三、四象限,故选项C错误,符合题意;而选项D正确,不合题意;当k>0时,k﹣1的符号不确定,则反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限或一、二、三象限故选项A,B正确,不符合题意.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.0【考点】二次函数的最值.【分析】由图可知,x≤1.5时,y随x的增大而减小,可知在﹣1≤x≤0范围内,x=0时取得最大值,然后进行计算即可得解.【解答】解:∵x≤1.5时,y随x的增大而减小,∴当﹣1≤x≤0时,x=0取得最大值,为y=2.故选C.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的增减性求最值,准确识图是解题的关键.5.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处【考点】三角形的外接圆与外心.【专题】应用题;压轴题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.【点评】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】常规题型.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O 交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.6【考点】反比例函数综合题.【专题】计算题.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=•b=3.故选:A.【点评】本题考查了点在函数图象上,点的横纵坐标满足函数图象的解析式.也考查了与坐标轴平行的直线上的点的坐标特点以及三角形的面积公式.10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【考点】正多边形和圆;勾股定理.【专题】计算题;压轴题.【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴扇形和圆形纸板的面积比是π÷(π)=.故选:A.【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二.填空题(共6小题)11.因式分解:x3﹣xy2= x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.正十边形的一个外角为36 度.【考点】多边形内角与外角.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出答案.【解答】解:正十边形的一个外角为360÷10=36度.【点评】本题主要考查了正多边形的性质:正多边形的各个外角相等,外角和是360度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是 6 .【考点】频数与频率.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.【考点】弧长的计算;旋转的性质.【分析】仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O 点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.【点评】本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3 .【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(2,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,正方形的性质;由点C的横坐标大于3列出不等式求解是解题的关键.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7 .【考点】矩形的性质;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF 的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.三.解答题(共7小题)17.计算:【考点】实数的运算.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为π;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.【考点】作图-旋转变换;勾股定理;弧长的计算;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O﹣S扇形B1OB﹣S△AOB=S扇形A1OA﹣S求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.扇形B1OB【解答】解:(1)△A1OB1如图所示;(2)由勾股定理得,BO==,所以,点B所经过的路径长==π;故答案为:π.(3)由勾股定理得,OA==,∵AB所扫过的面积=S扇形A1OA+S△A1B1O﹣S扇形B1OB﹣S△AOB=S扇形A1OA﹣S扇形B1OB,BO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA﹣S扇形B1OB+S扇形B1OB,=S扇形A1OA,=,=π.【点评】本题考查了利用旋转变换作图,弧长公式,扇形的面积,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)表示出两线段扫过的面积之和等于扇形的面积.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O 的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴A P=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.22.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20 名同学,其中C类女生有 2 名,D类男生有 1 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.【考点】二次函数综合题.【专题】计算题;压轴题.【分析】(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c,列出方程组,即可求出函数解析式.(2)当P在l下方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;当P在l上方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;(3)画出函数图形,利用三角形相似,求出P点坐标,再利用待定系数法求出函数解析式.【解答】解:(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c得,,解得,函数解析式为y=﹣x2+3x+4.(2)P在l下方时,令①△AOC∽△AQP,=,即,由于y=﹣x2+3x+4,则有=,解得x=0(舍去)或x=,此时,y=,P点坐标为(,).②△AOC∽△PQA,,即,由于y=﹣x2+3x+4,则有,解得,x=0(舍去)或x=7,P点坐标为(7,﹣24).③P在l上方时,令△AOC∽△PQA,,即,∵y=﹣x2+3x+4,∴,解得,x=0(舍去)或x=﹣1,P点坐标为(﹣1,0)(不合题意舍去).④△AOC∽△AQP,=,即∴,解得,x=0(舍去)或x=,P点坐标为(,).(3)如图(1),若对称点M在y轴,则∠PAQ=45°,设AP解析式为y=kx+b,则k=1或﹣1,当k=1时,把A(0,4)代入得y=x+4,当k=﹣1时,把A(0,4)代入得y=﹣x+4,此时P在对称轴右侧,符合题意,∴y=x+4,或y=﹣x+4,设点Q(x,4),P(x,﹣x2+3x+4),则PQ=x2﹣3x=PM,∵△AEM∽△MFP.则有=,∵ME=OA=4,AM=AQ=x,PM=PQ=x2﹣3x,∴=,解得:PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,Rt△AOM中,由勾股定理得OM2+OA2=AM2,∴(3x﹣12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,故点P的坐标为(4,0)或(5,﹣6).设一次函数解析式为y=kx+b,把(0,4)(4,0)分别代入解析式得,解得,函数解析式为y=﹣x+4.把(0,4)(5,﹣6)分别代入解析式得,解得,函数解析式为y=﹣2x+4.综上所述,函数解析式为y=x+4,y=﹣x+4,y=﹣2x+4.【点评】本题考查了二次函数解析式的求法、二次函数解析式、相似三角形的性质、翻折变换、待定系数法求一次函数解析式等,题目错综复杂,涉及知识面广,旨在考查逻辑思维能力.。
2015年浙江省台州市黄岩区中考一模数学试卷(解析版)

2015年浙江省台州市黄岩区中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣B.﹣2C.D.22.(4分)用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是()A.B.C.D.3.(4分)小星同学参加体育测试的五次立定跳远的成绩(单位:米)是:1.2,1.3,1.2,1.0,1.1.这组数据的众数是()A.1.0B.1.1C.1.2D.1.34.(4分)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10﹣4吨5.(4分)掷一枚质地均匀的硬币10次,则下列说法正确的是()A.掷2次必有1次正面朝上B.必有5次正面朝上C.可能有5次正面朝上D.不可能10次正面朝上6.(4分)如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米7.(4分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=818.(4分)已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的三角形与已知三角形不一定全等的是()A.两个角是α,它们的夹边为4B.三条边长分别是4,5,5C.两条边长分别为4,5,它们的夹角为αD.两条边长是5,一个角是α9.(4分)学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=,从而得出以下命题:(1)当x>0时,y的值随着x的增大而减小;(2)y的值有可能等于3;(3)当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,x>0或x<﹣.你认为真命题是()A.(1)(3)B.(1)(4)C.(1)(3)(4)D.(2)(3)(4)10.(4分)如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为()A.2πB.(+1)πC.(+2)πD.(+1)π二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣9=.12.(5分)函数y=中,自变量x的取值范围是.13.(5分)如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=度.14.(5分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.15.(5分)已知函数y=kx2﹣2x﹣k﹣2的图象与坐标轴有两个交点,则k的值为.16.(5分)如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP 的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OP=3,PD =1,则OC=.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(1)计算:2sin45°﹣(﹣1)0;(2)化简:(x﹣1)(x+2)+(x﹣2)2.18.(8分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)19.(8分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如表、如图所示:解答下列问题:(1)求a和b的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(10分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC=,求AB的长.22.(12分)某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件.(1)若生产第3级产品,则每天产量为件,每件利润为元;(2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式;(3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.23.(12分)如图,已知抛物线y=x2﹣3x﹣与x轴交于A、B两点.(1)点A的坐标是,点B的坐标是,抛物线的对称轴是直线;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b<0)与x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.24.(14分)定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD中,对角线AC,BD相交于点O.①如图1,若BD=CO,求tan∠BCD的值.②如图2,若∠DAC=∠BCD=72°,求AD:CD的值.(3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.2015年浙江省台州市黄岩区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣B.﹣2C.D.2【解答】解:﹣2的相反数是2,故选:D.2.(4分)用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是()A.B.C.D.【解答】解:从正面看,上面一层最左边有2个正方形,下边一层有2个正方形.故选:B.3.(4分)小星同学参加体育测试的五次立定跳远的成绩(单位:米)是:1.2,1.3,1.2,1.0,1.1.这组数据的众数是()A.1.0B.1.1C.1.2D.1.3【解答】解:这组数据中1.2出现的次数最多,故众数为1.2.故选:C.4.(4分)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10﹣4吨【解答】解:67500=6.75×104.故选:B.5.(4分)掷一枚质地均匀的硬币10次,则下列说法正确的是()A.掷2次必有1次正面朝上B.必有5次正面朝上C.可能有5次正面朝上D.不可能10次正面朝上【解答】解:A、不是必然事件,故A错误;B、不是必然事件,故B错误;C、是随机事件,故C正确;D、是随机事件,故D错误;故选:C.6.(4分)如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米【解答】解:∵BC⊥AC,AC=6米,∠BAC=α,∴=tanα,∴BC=AC•tanα=6tanα(米).故选:D.7.(4分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=81【解答】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选:B.8.(4分)已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的三角形与已知三角形不一定全等的是()A.两个角是α,它们的夹边为4B.三条边长分别是4,5,5C.两条边长分别为4,5,它们的夹角为αD.两条边长是5,一个角是α【解答】解:A、符合全等三角形的判定定理ASA,能判定两三角形全等,故本选项错误;B、符合全等三角形的判定定理SSS,能判定两三角形全等,故本选项错误;C、符合全等三角形的判定定理SAS,能判定两三角形全等,故本选项错误;D、不符合全等三角形的判定定理,不能判定两三角形全等,故本选项正确;故选:D.9.(4分)学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=,从而得出以下命题:(1)当x>0时,y的值随着x的增大而减小;(2)y的值有可能等于3;(3)当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,x>0或x<﹣.你认为真命题是()A.(1)(3)B.(1)(4)C.(1)(3)(4)D.(2)(3)(4)【解答】解:(1)∵y==3+,∴当x>0时,y的值随着x的增大而减小;(2)∵3x+1≠3x,∴y的值不可能为3,故错误;(3)∵y==3+,∴当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,可得或,解得:x>0或x<﹣,故正确,∴正确的有(1)、(3)、(4),故选:C.10.(4分)如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为()A.2πB.(+1)πC.(+2)πD.(+1)π【解答】解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可证:∠OAD′=60°,∴∠D′AB=120°;∵∠D′AB′=90°,∴∠BAB′=120°﹣90°=30°,由旋转变换的性质可知∠C′AC=∠B′AB=30°;∵四边形ABCD为正方形,且边长为2,∴∠ABC=90°,AC==2,∴当点D第一次落在圆上时,点C运动的路线长为:=.以D或B为圆心滚动时,每次C点运动,以A做圆心滚动两次,以B和D做圆心滚动三次,所以总路径=×2+×3=(+1)π.故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).12.(5分)函数y=中,自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(5分)如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=20度.【解答】解:作CE∥l,如图,∵l∥m,∴CE∥m,∴∠1=70°,∠2=α,∵∠BCD=90°,即∠1+∠2=90°,∴70°+α=90°,∴α=20°.故答案为20.14.(5分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.【解答】解:如图:两次取的小球的标号相同的情况有4种,概率为P==.故答案为:.15.(5分)已知函数y=kx2﹣2x﹣k﹣2的图象与坐标轴有两个交点,则k的值为0或﹣1或﹣2.【解答】解:当k=0时,函数y=﹣2x﹣2,与x轴和y轴各有一个交点,满足条件;当k≠0时,若二次函数不过原点,令y=0可得kx2﹣2x﹣k﹣2=0,由函数与y 轴交于点(0,﹣k﹣2),则与x轴只能有一个交点,∴△=(﹣2)2﹣4k(﹣k﹣2)=0,解得k=﹣1;若二次函数过原点,也满足条件,此时﹣k﹣2=0,解得k=﹣2;综上可知k的值为0或﹣1或﹣2,故答案为:0或﹣1或﹣2.16.(5分)如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP 的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OP=3,PD=1,则OC=3.【解答】解:∵AO⊥OC,CD⊥OD,∴∠AOC=∠D=90°,∴∠OAP+∠ACO=∠DPC+∠DCP=90°,∵OA=OP,∴∠OAP=∠APO,∵∠APO=∠DPC,∴∠DPC=∠OAC,∴∠ACO=∠ACD,∴AC平分∠OCD,∴=3:1,设OC=3k,CD=k,∵OD2+CD2=OC2,即42+k2=(3k)2,∴k=,∴OC=,故答案为:3.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(1)计算:2sin45°﹣(﹣1)0;(2)化简:(x﹣1)(x+2)+(x﹣2)2.【解答】解:(1)原式=2×﹣1=﹣1;(2)原式=x2+2x﹣x﹣2+x2﹣4x+4=2x2﹣3x+2.18.(8分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)【解答】解:(1)有以下答案供参考:.(2)有以下答案供参考:.19.(8分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如表、如图所示:解答下列问题:(1)求a和b的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.【解答】解:(1)∵喜欢排球的有12人,占10%,∴样本容量为12÷10%=120;∴a=120×25%=30,b=120﹣30﹣12﹣36﹣18=24;(2)1000×=300(人).即可以估计上述1000名学生中最喜欢羽毛球运动的人数为300人.20.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.【解答】解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10,b=3;(2)作AC⊥x轴于点C,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),∴OB=3,∵点A的坐标是(2,5),∴AC=5,∴=5=.21.(10分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC=,求AB的长.【解答】解:(1)连接OC,∵直线CD与⊙O相切于点C,∴OC⊥CD.∴∠OCA+∠DCA=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又∵在⊙O中,OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴∠DCA+∠DAC=90°,则∠ADC=90°,即AD⊥DC;(2)连接BC.∵AB为圆O的直径,∴∠ACB=90°,∴∠ADC=∠ACB=90°,又∵AC平分∠DAB,∴∠DAC=∠OAC,∴△ADC∽△ACB,∴,即,则.22.(12分)某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件.(1)若生产第3级产品,则每天产量为85件,每件利润为10元;(2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式;(3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.【解答】解:(1)每天产量95﹣5(3﹣1)=85,每件的利润为6+2×(3﹣1)=10,故答案为:85,10;(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x级别,提高的级别是(x﹣1)档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10),(3)由题意可得:﹣10x2+180x+400=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).答:该产品的质量级别为第6级.23.(12分)如图,已知抛物线y=x2﹣3x﹣与x轴交于A、B两点.(1)点A的坐标是(﹣,0),点B的坐标是(,0),抛物线的对称轴是直线x=;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b<0)与x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.【解答】解:(1)∵抛物线y=x2﹣3x﹣与x轴交于A、B两点.∴0=x2﹣3x﹣,解得x1=﹣,x2=,∴A(﹣,0),B(,0),∴抛物线的对称轴是x==.故答案为:(﹣,0),(,0),;(2)如图①,由(1)知,AB=4,∵CD:AB=3:4,∴CD=3,∵y=x2﹣3x﹣向上平移m个单位,∴C(0,0),D(3,0),∴y=x2﹣3x,∴m=;(3)∵直线y=2x+b(b<0)与x、y轴分别交于点E、F.∴E(﹣,0),F(0,b),∴OE=﹣,OF=﹣b,∴=,①当∠PFE=90°时,如图②,作EM⊥x轴,交PF于M,作GM⊥y轴于G,则四边形MGOE是矩形,∴MG=OE,EM=OG,∵∠EFO+∠MFG=90°,∠EFO+∠FEO=90°,∴∠MFG=∠FEO,∵∠EOF=∠MGF=90°,∴△EOF∽△FGM,∴==,∵MG=﹣,∴FG=﹣,∴OG=﹣b﹣=﹣b,∴M(﹣b,b),∵把x=﹣b代入y=x2﹣3x,得y=b,∴M在抛物线上,∴M即为P1点,设P(x,x2﹣3x),∴=﹣,解得x1=0(舍去),x2=,∴P1(,﹣),∴E(,0),F(0,﹣1),∴直线P1F的解析式为y=﹣x﹣1,∴,解得或;∴P(,﹣)或(2,﹣2);②当∠PEF=90°时,∴PE⊥EF,∴设直线PE的解析式为y=﹣x+n,∵E(,0),∴0=﹣×+n,解得n=,∴直线PE的解析式为y=﹣x+,∴P1(,﹣),P2(,﹣),P3(2,﹣2),P4(,﹣).24.(14分)定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD中,对角线AC,BD相交于点O.①如图1,若BD=CO,求tan∠BCD的值.②如图2,若∠DAC=∠BCD=72°,求AD:CD的值.(3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.【解答】解:(1)性质:①筝形有一组对角相等;②筝形有一条对角线垂直平分另一条对角线;③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.证明如下:性质①如图1,已知AD=AB,CD=CB,求证:∠ADC=∠ABC,证明:在△ADC与△ABC中,,∴△ADC≌△ABC,∴∠ADC=∠ABC;判定②如图1,已知AC是四边形ABCD的对角线,AC平分∠DAB和∠DCB,求证:四边形ABCD是筝形,证明:∵AC平分∠DAB和∠DCB,∴∠DAC=∠BAC,∠DCA=∠BCA,在△ADC与△ABC中,,∴△ADC≌△ABC,∴AD=AB,BC=CD,∴四边形ABCD是筝形.(2)①设OC=2OD=2OB=a,则CD=BD=a,=CD•CB sin∠BCD=BD•CD,∵S△BCD∴(a)2sin∠BCD=×2a×2a,可得:sin∠BCD=,即tan∠BCD=,②如图2,作∠BDC的平分线交AC于点E.∵∠BCD=72°,∴∠2=∠BCD=36°,∵∠DAC=72°,∴∠ADC=72°,∠1=36°∴△DAE∽△CDA∴,DC=AC,AE=AC﹣CE=CD﹣AD即:,去分母得:AD2+CD•AD﹣CD2=0,解得,(舍去),∴AD:CD=;(3)∵如果△AOD中,一个内角是另一个内角的2倍,①当∠AOD=2∠DAO,由折叠的性质得DB⊥AE,AO=OE,∴∠DAO=45°,∴AD=OD,AO=OD∵阴影部分图形的面积等于四边形ABED的面积,∴AE=CE,OC=3AO=3OD,∴CD==,∴==1:,②当∠DAO=2∠ADO,∴∠DAO=60°,∠AD0=30°,∴AD=OD,AO=,∵AE=CE,OC=3AO=OD,∴CD==2OD,∴==1:,③当∠ADO=2∠DAO,∴∠ADO=60°,∠DAO=30°,∴AD=2OD,AO=OD,∵AE=CE,OC=3AO=3OD,∴CD==2OD,∴==1:,综上所述:如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,的值为:1:,1:,1:.。
中考数学——2015浙江中考汇编

2015年浙江省中考试卷汇编浙江省杭州市2015年中考数学试卷 (2)浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省宁波市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省衢州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省绍兴市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省台州市黄岩区2015年中考第一次模拟考试数学试卷

(第6题)台州市黄岩区2015年中考一模数学试卷温馨提示:1.全卷共6页,满分150分,考试时间120分钟.2.答案必须写在答题卷相应的位置上,写在试题卷、草稿纸上 无效.3.答题前,请认真阅读答题卷上的《注意事项》,按规定答题. 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符 合题意的正确选项,不选、多选、错选,均不给分) 1.2-的相反数是 ( ▲ ) A .2B .2-C .12D .12-2.用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是( ▲ )AB C D3.小星同学参加体育测试的五次立定跳远的成绩(单位:米)是: 1. 2,1.3,1.2,1.0,1.1.这组数据的众数是 ( ▲ )A .1.0B .1.1C .1.2D .1.3 4.中国航母辽宁舰(如图)是中国人民海军第一艘可以 搭载固定翼飞机的航空母舰,满载排水量为67500吨, 这个数据用科学记数法表示为 ( ▲ ) A .6.75×103吨 B .6.75×104吨C .6.75×105吨D .6.75×10-4吨5.掷一枚质地均匀的硬币10次,则下列说法正确的是 ( ▲ ) A .掷2次必有1次正面朝上 B .必有5次正面朝上 C .可能有5次正面朝上 D .不可能10次正面朝上6.如图,在地面上的点A 处测得树顶B 的仰角α=75º,若AC =6米,则树高BC 为 ( ▲ ) A .6 sin75º米 B . 6cos 75︒米C .6tan 75︒米 D .6 tan75º米7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的 百分率都为x ,那么x 满足的方程是 ( ▲ )A .81)1(1002=+xB . 81)1(1002=-xC .81)21(100=-xD . 811002=x8.已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的 三角形与已知三角形不一定...全等的是( ▲) 第4题A .两个角是α,它们的夹边为4B .三条边长分别是4,5,5C .两条边长分别为4,5,它们的夹角为αD .两条边长是5,一个角是α9.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样 的方法研究函数y=xx 13+,从而得出以下命题: (1)当x >0时,y 的值随着x 的增大而减小;(2)y 的值有可能等于3; (3)当x >0时,y 的值随着x 的增大越来越接近3; (4)当y >0时,0>x 或31-<x . 你认为真命题是 ( ▲ )A .(1)(3)B .(1)(4)C .(1)(3)(4)D .(2)(3)(4) 10.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在圆内,将正方形ABCD 沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C 运动的路径长为 ( ▲ ) A .π22B .()π12+C .()π22+D .π⎪⎭⎫⎝⎛+1232二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:a 2﹣9= ▲ . 12.在函数2-=x y 中,自变量x 的取值范围是 ▲ .13.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= ▲ 度.14.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸取一个小球然后放回,再随机地摸出一个小球,则两次取出的小球的标号相同的概率是 ▲ .15.已知函数222---=k x kx y 的图象与坐标轴...有两个交点,则k 的值 为 ▲ .16.如图,点O 为弧AB 所在圆的圆心,OA ⊥OB ,点P 在弧AB 上,AP 的延长线与OB的延长线交于点C ,过点C 作CD ⊥OP 于D .若OP=3,PD=1,则OC= ▲ . 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12 分,第24题14分,共80分)17.(1)计算:0)12(45sin 2--︒; (2)化简:2)2()2)(1(-++-x x x .ABCD 第10题第13题 PO DC BA 第16题18.图①、图②均为7×6的正方形网格,点A 、B 、C 在格点上.(1)在图①中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形, 使其为轴对称图形.(画一个即可)(2)在图②中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形, 使其为中心对称图形.(画一个即可)19.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如图1、图2所示:解答下列问题: (1)求a 和b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的 直线b x y +=交x 轴于点B . (1)求k 和b 的值; (2)求△OAB 的面积.21.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平 分∠DAB .(1)求证:AD ⊥CD ;(2)若AD =2,AC =5,求AB 的长.· (第21题)ABCDO(第20题)图222.某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件. (1)若生产第3级产品,则每天产量为 ▲ 件,每件利润为 ▲ 元;(2)若生产第x 级产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(3)若生产第x 级的产品一天的总利润为1120元,求该产品的质量等级.23.如图,已知抛物线4732--=x x y 与x 轴交于A 、B 两点. (1)点A 的坐标是 ▲ ,点B 的坐标是 ▲ ,抛物线的对称轴是直线 ▲ ; (2)将抛物线向上平移m 个单位,与x 轴交于C 、D 两点(点C 在点D 的左边).若CD :AB=3:4,求m 的值;(3)点P 是(2)中平移后的抛物线上y 轴右侧部分的点,直线y=2x+b (b <0)与 x 、y 轴分别交于点E 、F .若以EF 为直角边 的三角形PEF 与△OEF 相似,直接写出点P 的坐标.24. 定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD 中,对角线AC ,BD 相交于点O . ①如图1,若BD=CO ,求tan ∠BCD 的值. ②如图2,若∠DAC=∠BCD=72º,求AD :CD 的值.(3)如图3,把△ABD 沿着对角线BD 翻折,A 点落在对角线AC 上的E 点.如果△AOD 中,一个内角是另一个内角的2倍,且阴影部 分图形的面积等于四边形ABED 的面积,直接写出CDAD的值.AC第23题图1图3数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11. (3)(3)a a +- 12.2x ≥ 13. 20 14. 4115. 0或-1或-2 16. 23三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解: (1)0)12(45sin 2--︒解:原式=21-……………………………………2分1- ……………………………………2分(2)2)2()2)(1(-++-x x x解:原式=222244x x x x x +--+-+ …………………2分 = 2232x x -+ ………………………2分18. 解:(1)略 ……………………4分(2)略 ……………………4分 19.解:(1)a=30 ……………………2分b=24 ……………………2分(2) 300120361000=⨯……………………4分 20.解:(1)把x =2,y =5代入ky x=,得 k =2×5=10 ……………2分把x =2,y =5代入b x y +=,得 3=b …………2分 (2)3+=x y∴当y =0时,x =-3,∴OB=3 ……………1分S ∴=5321⨯⨯=7.5 ……………3分21.(1)证:连接OC∵OA=OC∴∠OAC=∠OCA ………………1分∵AC 平分∠DAB ∴∠OAC=∠DAC ∴∠OCA=∠DAC∴AD ∥OC …………………2分∵直线CD 与⊙O 相切 ∴OC ⊥CD …………………1分 ∴AD ⊥CD ………………1分 (2) 连接CB∵AB 是⊙O 直径∴∠ACB=090 …………………1分 由(1)知AD ⊥CD ∴∠ADC=090∴∠ADC=∠ACB ∵∠DAC=∠CAB∴△DAC ∽△CAB …………………2分 ∴ABACAC DA =∴AB552=…………………1分 ∴AB=2.5 …………………1分22.解:(1)10 85…………………2分(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x 级别,提高的级别是(x ﹣1)档. ∴y =[6+2(x ﹣1)][95﹣5(x ﹣1)],即y =﹣10x 2+180x +400(其中x 是正整数,且1≤x ≤10)…………………5分(3)由题意可得:﹣10x 2+180x +400=1120· ABC D(第21题)O· ABCD(第21题) O整理得:x 2﹣18x +72=0 解得:x 1=6,x 2=12(舍去).答:该产品的质量级别为第6级.…………………5分23.解:(1)A (-21,0), B (27,0) 23=x …………………………3分(2)由(1)知,AB=4 ∵CD:AB=3:4 ∴CD=3∵个单位向上平移m x x y 4732--=∴C (0,0), D(3,0) …………………………3分x x y 32-=∴∴47=m …………………………2分 (3)⎪⎭⎫⎝⎛-45,21、⎪⎭⎫⎝⎛-1611,411、 ()2,2-、⎪⎭⎫ ⎝⎛-2526,513……4分24.(1)性质:①筝形有一组对角相等;…………………………………………… 1分②筝形有一条对角线垂直平分另一条对角线; ③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.……………………………1分证明略…………………………………………………………………………………4分 (2)①解:设OC=2OD=2OB=a ,则CD=BD ,第23(3)题第23(2)BCD 211S =CD CBsin 2211)sin 2222BCD BD COBCD a a ∆⋅∠=⋅∴∠=⨯⨯可得:sin ∠BCD=45,即:tan ∠BCD=43.…………………………………………2分 ②作∠BCD 的平分线交AC 于点E . ∵∠BCD=72º, ∴∠2=12∠BCD=36º, ∵∠DAC=72º, ∴∠ADC=72º,∠1=36º ∴△DAE ∽△CDA ∴AD DCAE DA=, DC=AC,AE=AC-CE=CD-AD即:AD CDCD AD AD=-,去分母得:AD 2+CD·AD-CD 2=0,解得AD =,AD=(舍去),∴AD :CD分 ③或或分AC。
浙江省台州市仙居县2015届中考数学模拟试卷(三)含答案解析

2015年浙江省台州市仙居县下各二中中考数学模拟试卷(三)一、选择题(本大题共6小题,每小题5分,共30分)1.某公司去年的营业额为四亿零七百万元,这个数据用科学记数法可表示为()A.4.07×107元B.4.07×108元C.4.07×109元D.4.07×1010元2.如图所示的几何体的俯视图是()A.B.C.D.3.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,是中心对称图形的概率是()A.B.C.D.4.若+(y+1)2=0,则x﹣y的值为()A.﹣1 B.1 C.2 D.35.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣26.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题(本大题共4小题,每小题5分,共20分)7.若不等式(2﹣a)x>2的解集是x<,则a的取值范围是.8.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m=.9.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.10.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为.三、解答题(本大题共5小题,每小题10分,共50分)11.解方程:.12.为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?13.如图,据热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.14.已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=,BC=2,求⊙O的半径.15.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)若抛物线上有一点B(3,m),在二次函数的对称轴上找到一点P,使PA+PB最小,求点P 的坐标.2015年浙江省台州市仙居县下各二中中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共6小题,每小题5分,共30分)1.某公司去年的营业额为四亿零七百万元,这个数据用科学记数法可表示为()A.4.07×107元B.4.07×108元C.4.07×109元D.4.07×1010元【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:四亿零七百万=4 0700 0000=4.07×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个有直径的圆环,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.3.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,是中心对称图形的概率是()A.B.C.D.【考点】概率公式;中心对称图形.【分析】由在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,其中是中心对称图形的有线段、平行四边形、正方形和圆,直接利用概率公式求解即可求得答案.【解答】解:∵在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,其中是中心对称图形的有线段、平行四边形、正方形和圆,∴在看不见图形的情况下随机摸出1张,是中心对称图形的概率是:=.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.若+(y+1)2=0,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质可求出x、y的值,将它们代入x﹣y中进行计算即可.【解答】解:由题意得,x﹣1=0,y+1=0,则x=1,y=﹣1,则x﹣y=2.故选:C.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.5.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.【点评】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(本大题共4小题,每小题5分,共20分)7.若不等式(2﹣a)x>2的解集是x<,则a的取值范围是a>2.【考点】解一元一次不等式.【专题】探究型.【分析】先根据不等式(2﹣a)x>2的解集是x<得出关于a的不等式,求出a的取值范围即可.【解答】解:∵不等式(2﹣a)x>2的解集是x<,∴2﹣a<0,解得,a>2.故答案为:a>2.【点评】本题考查的是解一元一次不等式,数知不等式的基本性质是解答此题的关键.8.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m=25或16.【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【专题】分类讨论.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=,也考查了三角形三边的关系.9.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.【考点】正方形的性质.【分析】根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.【解答】解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.【点评】本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.10.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为.【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故答案为:.【点评】本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.三、解答题(本大题共5小题,每小题10分,共50分)11.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察两个分母可知,公分母为x﹣2,去分母,转化为整式方程求解,结果要检验.【解答】解:去分母,得5+(x﹣2)=﹣(x﹣1),去括号,得5+x﹣2=﹣x+1,移项,得x+x=1+2﹣5,合并,得2x=﹣2,化系数为1,得x=﹣1,检验:当x=﹣1时,x﹣2≠0,∴原方程的解为x=﹣1.【点评】本题考查了分式方程的解法.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.12.为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=20;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)先算出C组里的人数,根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数.(2)全市所以司机的人数×支持选项B的人数的百分比可求出结果.(3)根据(2)算出的支持B的人数,以及随机选择100名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少.【解答】解:(1)69÷23%﹣60﹣69﹣36﹣45=90(人).C选项的频数为90,m%=60÷(69÷23%)=20%.所以m=20;故答案为:20;(2)支持选项B的人数大约为:5000×23%=1150.答:该市支持选项B的司机大约有1150人;(3)∵总人数=5000×23%=1150人,∴小李被选中的概率是:=.答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.13.如图,据热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【解答】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×=40m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=40+120=160m.【点评】本题主要考查了解直角三角形的应用﹣仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.14.已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=,BC=2,求⊙O的半径.【考点】切线的判定与性质.【专题】计算题.【分析】(1)连接OB,由OC=OB,PA=PB,利用等边对等角得到两对角相等,再利用弦切角等于夹弧所对的圆周角得到一对角相等,等量代换得到四个角都相等,由∠ABC为直角,得到∠OBC 与∠OBA互余,等量代换得到∠OBA与∠PBA互余,即OB垂直于BP,即可确定出BP为圆的切线;(2)设圆的半径为r,则AC=2r,在直角三角形ABC中,由AC与BC,利用勾股定理表示出AB,由(1)得到三角形PAB与三角形OCB相似,由相似得比例,将各自的值代入列出关于r的方程,求出方程的解得到r的值,即为圆的半径.【解答】(1)证明:连接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,∵AP为圆O的切线,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,∴∠OBC+∠OBA=90°,∴∠PBA+∠OBA=90°,即∠PBO=90°,则BP为圆O的切线;(2)解:设圆的半径为r,则AC=2r,在Rt△ABC中,AC=2r,BC=2,根据勾股定理得:AB==2,∵∠PAB=∠C,∠PBA=∠OBC,∴△PAB∽△OCB,∴=,即=,解得:r=2.则圆的半径为2.【点评】此题考查了切线的判定与性质,相似三角形的判定与性质,等腰三角形的性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.15.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)若抛物线上有一点B(3,m),在二次函数的对称轴上找到一点P,使PA+PB最小,求点P 的坐标.【考点】轴对称-最短路线问题;待定系数法求二次函数解析式.【分析】(1)直接利用待定系数法求一次函数解析式得出即可;(2)首先求出B点坐标,进而得出P点位置,再利用OB所在直线解析式求出P点坐标即可.【解答】解:(1)∵抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0),∴,解得:,∴此抛物线的解析式为:y=x2﹣2x;(2)∵抛物线上有一点B(3,m),∴m=9﹣2×3=3,∴B(3,3),当y=0则0=x2﹣2x,解得:x1=0,x2=2,∴A(2,0),连接OB,交对称轴于点P,抛物线对称轴为;x=﹣=1,∵直线BO的解析式为:y=x,x=1,则y=1,∴P(1,1),此时PA+PB最小.【点评】此题主要考查了待定系数法求一次函数解析式以及利用轴对称求最短路径,得出B点坐标是解题关键.。
2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。
2015年台州市中考数学试卷及答案
2015年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x -B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8cmB.C.5.5cmD.1cm9.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF与四边形CGOH 的周长之差为12时,AE 的值为( ) A.6.5 B.6 C.5.5 D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号)16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中1a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y (1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2015年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)a a a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a = 时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,(第22题)∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小,所以⎩⎨⎧-==.246,39a b a ………………1分(第23题图1)M(第23题图2)解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分(3)45521+≤≤x . ……………………………………………………2分 24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分 (2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAG NE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE ∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMF BEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D .(第24题图3)(第24题图2)∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN . ∴ca ab bc +=-. ∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。
2015年浙江省台州市中考一模数学试卷(解析版)
2015年浙江省台州市中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣82.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105 3.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2 8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+39.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=.12.(5分)已知函数y=,则自变量x的取值范围是.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件,使△AEF≌△BCD.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为天.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB 为等腰三角形,则点P的坐标为.三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.18.(8分)解不等式组并在所给的数轴上表示出其解集.19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.2015年浙江省台州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣8【解答】解:原式=﹣(4×2)=﹣8,故选:D.2.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105【解答】解:将275.3万用科学记数法表示为:2.753×106.故选:B.3.(4分)如图所示的几何体的左视图是()A.B.C.D.【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选:D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°【解答】解:∵∠1=50°,∴∠3=90°﹣50=40°,∵直线a∥直线b,∴∠2=∠3=40°,故选:B.5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离【解答】解:∵两圆的半径分别为3和8,∴半径和为:11,半径差为7,∵圆心距为10,∴两圆的位置关系是:相交.故选:B.6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.【解答】解:由数周上表示的不等式的解集:﹣1<x≤2,故D符合题意;故选:D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2【解答】解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选:B.8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.9.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个【解答】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=r,∴EF=2EN=r,∴S四边形AEBF :S扇形BEMF=(×r×2r):(πr2)=3:π,故④正确;综上所述,结论正确的是①②③④共4个.故选:C.10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)【解答】解:设OA=a,∵∠AOB=60°,∴AB=a,∴B(a,a),∵点C是OB边的中点,∴C(,),∵点C在反比例函数y=上,∴=,解得a=2,∵点D在反比例函数y=上,∴当x=2时,y=,∴D(2,).故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).12.(5分)已知函数y=,则自变量x的取值范围是x>1.【解答】解:由题意得,x﹣1>0,解得x>1.故答案为:x>1.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件AF=DB,使△AEF≌△BCD.【解答】解:AF=DB,理由是:∵AE∥BC,∴∠A=∠B,在△AEF和△BCD中∴△AEF≌△BCD(SAS),故答案为:AF=DB.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为292天.【解答】解:该城市在一年中空气质量达到良以上(含良)的天数为:2+6+9+7=24,×365=292天.故答案为:292.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=2.【解答】解:∵∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,∴∠DFF′=90°,θ=∠FDF′=60°,在Rt△FDF′中,∠DFF'=90°,∠FDF′=60°,∴∠DF′F=30°,∴n==2;故答案为:2.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为(,),(,﹣),(2,﹣2)或(2,2).【解答】解:∵矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),∴OA=4,OB=4,∵点P关于直线y=kx(k>0)与点A对称,∴OP=OA=4,∵△POB为等腰三角形∴BP=BO,OP=PB,OB=OP(不成立,因为OA=4,OB=4)当BP=BO=4时,如图,作PH⊥OB,BG⊥OP垂足分别为H、G,∴OG=PG=OP=2∴BG==2∵×OP×BG=×OB×PH即4×2=4×PH∴PH=∴OH==,∴点P坐标为(,),(,﹣),当OP=PB=4时,如图,作PF⊥OB垂足为F∴OF=FB=OB=2∴PF==2∴点P坐标为(2,2),(2,﹣2);综上所知点P坐标为(,),(,﹣),(2,﹣2)或(2,2).故答案为:(,),(,﹣),(2,﹣2)或(2,2).三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.【解答】解:原式=2﹣3+3=3﹣.18.(8分)解不等式组并在所给的数轴上表示出其解集.【解答】解:解不等式3x﹣1<2(x+1),得x<3解不等式≥1,得x≥﹣1∴不等式组的解集为﹣1≤x<3.在数轴上表示解集如图:19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.【解答】证明:∵Rt△ABE与Rt△DCF关于直线m对称,∴AB=CD,∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=90°,∴平行四边形ABCD是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?【解答】解:(1)根据题意得:=200(人),则B组的人数是:200﹣70﹣40﹣30﹣10=50(人),补图如下:(2)根据题意得:×6000=4800(人),答:体育成绩为优秀的学生人数有4800人.21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?【解答】解:(1)设第一次每本笔记本的进价为x元.根据题意得,,解得x=4,经检验x=4是原方程的解.答:第一次每本笔记本的进价为4元;(2)第一次买进笔记本150本,第二次买进笔记本120本,共270本.设每本笔记本的售价为y元,根据题意得,270y﹣600×2≥420,∴y≥6,答:每本笔记本的售价至少为6元.22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?【解答】解:(1)设S1=k1t,代入点(1,100)解得k1=100,所以S1=100t;S2=k2t+b,代入点(1,280)、(4.5,0)得,,解得k2=﹣80,b=360所以S2=﹣80t+360;(2)由题意得100t=﹣80t+360解得t=2,当t=2时,两车相遇;(3)由S2=﹣80t+360可知从永康到某景区路程为360km,李明的速度100km/h,李明到达景区时的时间t=360÷100=3.6小时,当t=3.6时,王红离永康S2=﹣80t+360=72千米.23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.【解答】解:(1)把B(1,0)代入抛物线y=ax2﹣x+2,得a﹣+2=0,解得a=﹣.所以y=﹣x2﹣x+2,当x=0时,y=2,所以抛物线与y轴交点C的坐标为(0,2).当y=0时,﹣x2﹣x+2=0,解得x1=1,x2=﹣3,所以抛物线与x轴的另一个交点A的坐标为(﹣3,0);(2)过P点作PE⊥y轴于E,过点Q作QF⊥x轴于F.∵四边形ACPQ是正方形,∴AC=CP=AQ,∠QAC=∠ACP=90°,∴∠ACO+∠PCE=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠OAC=∠PCE,在△AOC与△PCE中,,∴△AOC≌△PCE(AAS),∴PE=OC=2,CE=AO=3,∴OE=OC+CE=5,∴点P的坐标为(﹣2,5).同理△AOC≌△QF A,∴QF=AO=3,AF=OC=2,∴OF=AF+OA=5,∴点Q的坐标为(﹣5,3);(3)设直线PQ的解析式为y=kx+b把P(﹣2,5),Q(﹣5,3)代入y=kx+b得解,得.∴,∴当x=0时,∴直线PQ与y轴的交点Q′,∴点Q(﹣5,3)运动到点Q′.∴向右平移了5个单位长度,向上平移了个单位长度.∵抛物线的顶点为∴运动后的抛物线的顶点坐标为(4,6).24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.【解答】解:(1)∵A(3,5),B(3,1),∴直线AB的方程为x=3,∵抛物线y=x2+kx+5的对称轴为x=﹣,∴﹣=3,∴k=﹣6,∴y=x2﹣6x+5,令y=0,x2﹣6x+5=0,解得x1=1,x2=5,∴抛物线与x轴的交点坐标为(1,0),(5,0);(2)设AB与x轴交于点Q.∵A(3,5),B(3,1),C(7,5),∴AB=AC=4,BC==4,∴∠BAC=90°,∠ACB=∠ABC=45°.①当点P在AB上运动时,0≤t≤2,∵P A=2t,A(3,5),∴PQ=AQ﹣AP=5﹣2t,∴此时点P的坐标(3,5﹣2t);②当点P在BC上运动时,2<t≤4,如图,过点P作PD⊥x轴于点D,PE⊥AB于点E.∵PB=2(t﹣2),∴PE=BE=2(t﹣2)=2t﹣4,∴OD=OQ+QD=OQ+PE=3+2t﹣4=2t﹣1,PD=EQ=BE+BQ=2t﹣4+1=2t﹣3,∴此时点P的坐标(2t﹣1,2t﹣3);③当点P在CA上运动时,4<t≤6时,∵CP=2(t﹣4)=2t﹣8,∴点P的横坐标=OQ+AP=OQ+AC﹣CP=3+4﹣(2t﹣8)=15﹣2t,点P的纵坐标=AQ=5,∴点P的坐标(15﹣2t,5);(3)设经过t秒时,点P运动到点Q,即第一次刚好进入区域M,由题意,得(2+1)t=5,解得t=,即当t=时,点P第一次刚好进入区域M;设抛物线与x轴的交点坐标为G(1,0),F(5,0),则QG=QF=2.分两种情况:①当点P在AB和BC上运动,从点P运动到Q点开始进入区域M,到运动到F点离开区域M.当△ABC平移到△A′B′C′的位置时,点P运动到F点,∵△PQB′是等腰直角三角形,∴QB′=PQ=2,∴t==1+2=3,∴≤t≤3;②当点P在CA上运动,从点P运动到F点开始进入区域M,一直到A点.当△ABC平移到△A″B″C″的位置时,点P运动到F点,∵A″P=QF=2,∴C″P=A″C″﹣A″P=4﹣2=2,∴t=4+=5,∴5≤t≤6.综上所述,符合条件的t值是≤t≤3或5≤t≤6.。
浙江省11市2015年中考数学试题分类解析汇编 专题11 四边形问题
专题11:四边形问题1. (2015年浙江湖州3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是【】A. CD+DF=4B.233CD DF-=- C.234BC AB+=+ D.2BC AB-=【答案】A.【考点】折叠问题;正方形的判定和性质;矩形的判定和性质;折叠对称的性质;全等三角形的判定和性质;切线的性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,过点O分别作AD、AB、BC的垂线,垂足分别是N、P、M,OE与AC交于点S.则四边形BMO P是正方形,四边形ANOP是矩形.∵⊙O的半径长为1,∴1BP BM OM===.设,,CD x BC y DF z===,由折叠知,OG=DG,∵090OMG GCD∠=∠=,OG⊥DG,∴090OGM DGC GDC∠=-∠=∠.∴()OMG GCD AAS∆∆≌.∴1,CG OM MG CD x====.∴112y BC BM MG CG x x==++=++=+,即2y x=+①.又∵⊙O是△ABC的内切圆,∴()()112AC AS CS AP CM x y x y=+=+=-+-=+-∵222AC AB BC=+,即()2222x y x y+-=+②.联立①②,解得1333xy⎧=+⎪⎨=+⎪⎩.由折叠知,OF DF z==,又1313,33123ON MN OM NF AD AN DF z z =-=+-==--=+--=+- , ∵222OF ON NF =+,即()()222323z z =++-,解得43z =-.∴A. 54CD DF x z +=+=≠,选项结论不成立;B.233CD DF x z -=-=-,选项结论成立; C.234BC AB y x +=+=+,选项结论成立; D. 2BC AB y x -=-=,选项结论成立. 故选A.2. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A.26B. 2C. 3D. 2 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=. 不妨设正方形ABCD 的边长为2,则AC 22=. ∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,3AE AC cos EAC 226=⋅∠=⋅=, 1CE AC sin EAC 2222=⋅∠=⋅=.在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴12CM CE sin EAC 222=⋅∠=⋅=. 易知GCH ∆是等腰直角三角形,∴GF 2CM 2==. 又∵AEF ∆是等边三角形,∴EF AE 6==.∴EF 63GH 2==. 故选C.3. (2015年浙江宁波4分) 如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为【 】A. BE=DFB. BF=DEC. AE=CFD. ∠1=∠2 【答案】C.【考点】平行四边形的性质;全等三角形的判定.【分析】根据平行四边形的性质和全等三角形的判定对各选项进行分析,作出判断:∵四边形是平行四边形,∴AB ∥CD ,AB=CD .∴∠ABE =∠CDF. 若添加BE=DF ,则根据SAS 可判定△ABE ≌△CDF ;若添加BF=DE ,由等量减等量差相等得BE=DF ,则根据SAS 可判定△ABE ≌△CDF ; 若添加AE=CF ,是AAS 不可判定△ABE ≌△CDF ; 若添加∠1=∠2,则根据ASA 可判定△ABE ≌△CDF . 故选C.4. (2015年浙江衢州3分)如图,在ABCD 中,已知12,8,AD cm AB cm AE == 平分BAD ∠交BC 于点E ,则CE 的长等于【 】A. 8cmB. 6cmC. 4cmD. 2cm【答案】C .【考点】平行四边形的性质;等腰三角形的判定和性质.【分析】∵四边形ABCD 是平行四边形,∴//,AD BC AD BC = .∴DAE AEB ∠=∠.又∵AE 平分BAD ∠,∴DAE EAB ∠=∠. ∴EAB AEB ∠=∠. ∴AB BE =.∵12,8AD cm AB cm == ,∴12,8BC cm BE cm == .∴4CE BC CE cm =-=. 故选C.5. (2015年浙江衢州3分)如图,已知某广场菱形花坛ABCD 的周长是24米,60BAD ∠=︒,则花坛对角线AC 的长等于【 】A. 3B. 6米C. 33D. 3米 【答案】A.【考点】菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】∵菱形花坛ABCD 的周长是24,∴6AB =,BAC CAD ∠=∠,AC BD ⊥.∵60BAD ∠=︒,∴30BAC CAD ∠=∠=︒. ∴32cos 2663AC AD BAC =⋅∠=⨯=. 故选A.6. (2015年浙江台州4分)如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是【 】A.8cmB.52【答案】A.【考点】折叠问题;矩形的性质;勾股定理;实数的大小比较.【分析】∵将长为6cm ,宽为5cm 的长方形纸片折叠一次,∴折痕的长最长的是对角线.∵长为6cm ,宽为5cm ,∴对角线长226561+=(cm ). ∵8cm >61cm ,∴这条折痕的长不可能是8cm. 故选A.7. (2015年浙江台州4分)如图,在菱形ABCD 中,AB=8,点E 、F 分别在AB 、AD 上,且AE=AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为【 】A.6.5B.6C.5.5D.5 【答案】C.【考点】菱形的判定和性质;方程思想的应用.【分析】易知,四边形AEOF 和四边形CGOH 都是菱形,设AE=x ,CG=y ,∵在菱形ABCD 中,AB=8,∴8+=x y ①.∵四边形AEOF 与四边形CGOH 的周长之差为12,∴4412-=x y ②.÷①+②4,211 5.5=⇒=x x ,即AE 的值为5.5.故选C.8. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】A. 29B. 790C. 13D. 16 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用. 【分析】如答图,连接OP 、OQ ,∵DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM 是梯形ABDE 的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122MP r AC BC +=+. 同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C.1. (2015年浙江杭州4分)如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD = ▲【答案】23+或423+.【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM 、BN ,过点N 作NH ⊥BM 于点H , 易证四边形BMDN 是菱形,且∠MBN =∠C =30°.设BN =DN =x ,则NH =12x .根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN =3. ∴CD =23+.如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H , 易证四边形BAEC 是菱形,且∠BCH =30°.设BC =CE =x ,则BH =12x .根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1. 在Rt BCH ∆中,CH =3,∴EH =23-. 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即123CD =-. ∴)()()2234232323CD +==+-+.综上所述,CD =23+或423+.2. (2015年浙江湖州4分)已知正方形ABC 1D 1的边长为1,延长C 1D 1到A 1,以A 1C 1为边向右作正方形A 1C 1C 2D 2,延长C 2D 2到A 2,以A 2C 2为边向右作正方形A 2C 2C 3D 3(如图所示),以此类推⋯,若A 1C 1=2,且点A ,D 2, D 3,⋯,D 10都在同一直线上,则正方形A 9C 9C 10D 10的边长是 ▲【答案】8732.【考点】探索规律题(图形的变化);正方形的性质;相似三角形的判定和性质.【分析】如答图,设AD10与A1C1相交于点E,则121AD E D A E∆∆∽,∴11211AD D ED A A E=.设1A E x=,∵AD1=1,A1C1=2,∴2112,1D A DE x==-.∴11223xxx-=⇒=.易得21322D AE D A D∆∆∽,∴2113222D A A ED A A D=.设32D A y=,则222A D y=-,∴22332yy y=⇒=-即21323222332C CD A--===.同理可得,31414354324233,,22C C C C----==⋅⋅⋅∴正方形A9C9C10D10的边长是9181099273322C C--==.3. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数ky(x0)x=>的图象经过该菱形对角线的交点A,且与边BC交于点F. 若点D的坐标为(6,8),则点F的坐标是▲【答案】8123⎛⎫⎪⎝⎭,.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD的边OB在x轴正半轴上,点D的坐标为(6,8),∴22OD DC OD6810===+=.∴点B的坐标为(10,0),点C的坐标为(16,8).∵菱形的对角线的交点为点A,∴点A的坐标为(8,4).∵反比例函数ky(x0)x=>的图象经过点A,∴k8432=⋅=.∴反比例函数为32yx=.设直线BC的解析式为y mx n=+,∴4m16m n8310m n040n3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩.∴直线BC的解析式为440y x33=-.联立440x12y x33832yy3x⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.∴点F的坐标是8123⎛⎫⎪⎝⎭,.4. (2015年浙江丽水4分)如图,四边形ABCD与四边形AECF都是菱形,点E,F在BD上,已知∠BAD=120°,∠EAF=30°,则AEAB= ▲ .【答案】62+.【考点】菱形的性质;等腰直角三角形和含30度角直角三角形的性质;特殊元素法的应用.【分析】如答图,过点E作EH⊥AB于点H,∵四边形ABCD与四边形AECF都是菱形,∠BAD=120°,∠EAF=30°,∴∠ABE=30°,∠BAE=45°.不妨设2AE=,∴在等腰Rt AEH∆中,1AH EH==;在Rt BEH∆中,3BH=.∴31AB=+. ∴31622ABAE++==.5. (2015年浙江宁波4分)命题“对角线相等的四边形是矩形”是 ▲ 命题(填“真”或“假”) 【答案】假.【考点】命题的真假判定;矩形的判定.【分析】根据矩形的判定,对角线相等的平行四边形才是矩形,而对角线相等的四边形也可能是等腰梯形等,故命题“对角线相等的四边形是矩形”是假命题.6. (2015年浙江宁波4分)如图,在矩形ABCD 中,AB =8,AD =12,过点A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为 ▲【答案】254. 【考点】矩形的性质;垂径定理;勾股定理;方程思想的应用. 【分析】如答图,连接EO 并延长交AD 于点H ,连接AO ,∵四边形ABCD 是矩形,⊙O 与BC 边相切于点E , ∴EH ⊥BC ,即EH ⊥AD. ∴根据垂径定理,AH=DH. ∵AB =8,AD =12,∴AH=6,HE=8.设⊙O 的半径为r ,则AO=r ,8OH r =-.在Rt OAH ∆中,由勾股定理得()22286r r -+=,解得254r =. ∴⊙O 的半径为254. 7. (2015年浙江绍兴5分) 在Rt△A BC 中,∠C=90°,BC=3,AC=4,点P 在以C 为圆心,5为半径的圆上,连结PA ,PB. 若PB=4,则PA 的长为 ▲ 【答案】3或73.【考点】矩形的判定和性质;勾股定理;分类思想的应用. 【分析】如答图,分两种情况:当点P 与点A 在BC 同侧时,BACP 1是矩形,P 1A=BC=3;当点P 与点A 在BC 异侧时,P 2EAP 1是矩形,P 1A=223873+=. ∴PA 的长为3或73.8. (2015年浙江台州5分)如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 ▲【答案】212. 【考点】面动旋转问题;正方形和正六边形的性质;数形结合思想的应用.【分析】如答图,当这个正六边形的中心与点O 重合,两个对点刚好在正方形两边中点,这个六边形的边长最大,此时,这个六边形的边长为12.当顶点E 刚好在正方形对角线AC 的AO 一侧时,AE 的值最小,最小值为2121OA OE 222--=-=.9. (2015年浙江义乌4分)在Rt△ABC 中,∠C=90°,BC=3,AC=4,点P 在以C 为圆心,5为半径的圆上,连结PA ,PB. 若PB=4,则PA 的长为 ▲ 【答案】3或73.【考点】矩形的判定和性质;勾股定理;分类思想的应用. 【分析】如答图,分两种情况:当点P 与点A 在BC 同侧时,BACP 1是矩形,P 1A=BC=3;当点P 与点A 在BC 异侧时,P 2EAP 1是矩形,P 1A=223873+=. ∴PA 的长为3或73.10. (2015年浙江义乌4分)在Rt△ABC 中,∠C=90°,BC=3,AC=4,点P 在以C 为圆心,5为半径的圆上,连结PA ,PB. 若PB=4,则PA 的长为 ▲ 【答案】373【考点】矩形的判定和性质;勾股定理;分类思想的应用.【分析】如答图,分两种情况:当点P 与点A 在BC 同侧时,BACP 1是矩形,P 1A=BC=3;当点P 与点A 在BC 异侧时,P 2EAP 1是矩形,P 1A=223873+=. ∴PA 的长为3或73.11. (2015年浙江义乌4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)=>y x x与此正方形的边有交点,则a 的取值范围是 ▲313≤≤a .【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.【分析】根据题意,当点A 在曲线3(0)=>y x x 上时,a 取得最大值;当点C 在曲线3(0)=>y x x上时,a 取得最小值.当点A 在曲线3(0)=>y x x 上时,2333=⇒=⇒=±a a a a . 当点C 在曲线3(0)=>y x x上时,易得C 点的坐标为()11++a a ,,∴()2311313131+=⇒+=⇒+=±⇒=-±+a a a a a (舍去负值). ∴若曲线3(0)=>y x x与正方形的边有ABCD 交点,a 的取值范围是313-≤≤a .1. (2015年浙江嘉兴8分)如图,正方形ABCD 中,点E ,F 分别在AB ,BC 上,AF =DE ,AF 和DE 相交于点G .(1)观察图形,写出图中所有与∠AED 相等的角; (2)选择图中与∠AED 相等的任意一个角,并加以证明.【答案】解:(1)与∠AED 相等的角有,,DAG AFB CDE ∠∠∠ .(2)选择AED AFB ∠=∠:正方形ABCD 中,090,DAB B AD AB ∠=∠== , 又∵AF =DE ,∴()ADE ABF SAS ∆∆≌.∴AED AFB ∠=∠.【考点】开放型;正方形的性质;平行的性质;全等三角形的判定和性质. 【分析】(1)观察图形,可得 结果.(2)答案不唯一,若选择AED AFB ∠=∠,则由()ADE ABF SAS ∆∆≌可得结论;若选择AED CDE ∠=∠,则由正方形ABCD 得到AB ∥CD ,从而得到结论;,若选择AED DAG ∠=∠,则一方面,由()ADE ABF SAS ∆∆≌可得AED AFB ∠=∠,另一方面,由正方形ABCD 得到AD ∥BC ,得到DAG AFB ∠=∠,进而可得结论2. (2015年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件; (2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB =AD ,∠BAD +∠BCD =90°,AC ,BD 为对角线,2AC AB =.试探究BC ,CD ,BD 的数量关系.【答案】解:(1)DA AB =(答案不唯一).(2)①正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形. ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等. ∴这个四边形是菱形.②∵∠ABC =90°,AB =2,BC =1,∴5AC =∵将Rt △ABC 平移得到'''A B C ,∴''BB AA =,'AB ∥AB ,''2,''1,''5A B AB B C BC A C AC ====== . i )如答图1,当'2AA AB ==时,''2BB AA AB ===; ii )如答图2,当'''5AA A C =''''5BB AA A C ==;iii )如答图3,当'''5A C BC ==''C B 交AB 于点D ,则''C B AB ⊥. ∵'BB 平分ABC ∠,∴01'452ABB ABC ∠==. 设'B D BD x ==,则'1,'2C D x BB x =+= . 在'Rt BC D ∆中,222''BD C D BC +=,∴()()22215x x ++=,解得121,2x x==- (不合题意,舍去).∴'22BB x ==.iv )如答图4,当'2BC AB ==时,同ii )方法,设'B D BD x ==, 可得222''BD C D BC +=,即()22212x x ++=,解得121717,22x x -+--==(不合题意,舍去). ∴142'22BB x -==.综上所述,要使平移后的四边形''ABC A 是“等邻边四边形”,应平移2或5或2或1422-的距离.(3)BC ,CD ,BD 的数量关系为2222BC CD BD +=.如答图5,∵AB AD =,∴将ADC 绕点A 旋转到ABF . ∴ADC ABF ≌.∴,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== .∴,1AC ADBAD CAF AF AB ∠=∠==. ∴ACF ABD ∽.∴2CF ACBD AB==.∴2CF BD =.∵0360BAD ADC BCD ABC ∠+∠∠+∠=+,∴()000036036090270ABC ADC BAD BCD ∠+∠=-∠∠=-=+. ∴0270ABC ABF ∠+∠=.∴090CBF ∠=. ∴()2222222BC CD CF BDBD +===.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用. 【分析】(1)根据定义,添加AB BC =或BC CD =或CD DA =或DA AB =即可(答案不唯一).(2)根据定义,分'2AA AB ==,'''5AA A C ==,'''5A C BC ==,'2BC AB ==四种情况讨论即可.(3)由AB AD =,可将ADC 绕点A 旋转到ABF ,构成全等三角形:ADC ABF ≌,从而得到,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== ,进而证明ACF ABD ∽得到2CF BD =,通过角的转换,证明090CBF ∠=,根据勾股定理即可得出2222BC CD BD +=.3. (2015年浙江金华8分)如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E.(1)求证:DE=AB ;(2)以D 为圆心,DE 为半径作圆弧交AD 于点G ,若BF=FC=1,试求EG 的长.【答案】解:(1)证明:∵DE ⊥AF ,∴∠AED=90°.又∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B=90°. ∴∠DAE=∠AFB ,∠AED=∠B=90°. 又∵AF=AD ,∴△ADE ≌△FAB (AAS ). ∴DE=AB.(2)∵BF=FC=1,∴AD=BC=BF+FC=2.又∵△ADE ≌△FAB ,∴AE=BF=1. ∴在Rt △ADE 中,AE=12AD. ∴∠ADE=30°. 又∵2222AD AE 213-=- ∴n R 3033EG 180ππ⋅⋅==.【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算. 【分析】(1)通过应用AAS 证明△ADE ≌△FAB 即可证明DE=AB.(2)求出∠ADE 和DE 的长即可求得EG 的长.4. (2015年浙江丽水10分)如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N. (1)当F 为BE 中点时,求证:AM=CE ;(2)若2==BFEF BC AB ,求ND AN的值; (3)若n BFEFBC AB ==,当n 为何值时,MN ∥BE ?【答案】解:(1)证明:∵F 为BE 中点,∴BF=EF.∵AB ∥CD ,∴∠MBF=∠CEF ,∠BMF=∠ECF. ∴△BMF ≌△ECF (AAS ).∴MB=CE. ∵AB=CD ,CE=DE ,∴MB=AM. ∴AM=CE. (2)设MB=a ,∵AB ∥CD ,∴△BMF ∽△ECF. ∴EF CEBF MB=. ∵2EF BF =,∴2CEMB =.∴2CE a =. ∴24,3AB CD CE a AM AB MB a ====-= . ∵2ABBC=,∴2BC AD a ==. ∵MN ⊥MC ,∠A=∠ABC=90°,∴△AMN ∽△BCM. ∴AN AM MB BC=,即32AN a a a =.∴331,2222AN a ND a a a ==-= .∴32312aAN ND a ==. (3)设MB=a ,∵AB EFn BC BF==,∴由(2)可得2,BC a CE na == . 当MN ∥BE 时,CM ⊥BE. 可证△MBC ∽△BCE. ∴MB BC BC CE =,即22a aa na=. ∴4n =.∴当4n =时,MN ∥BE.【考点】探究型问题;矩形的性质;全等三角形的判定和性质;相似三角形的判定和性质. 【分析】(1)应用AAS 证明△BMF ≌△ECF 即可易得结论.(2)证明△BMF ∽△ECF 和△AMN ∽△BCM ,应用相似三角形对应边成比例的性质即可得出结果. (3)应用(2)的一结结果,证明△MBC ∽△BCE 即可求得结果.5. (2015年浙江衢州12分)如图,在ABC ∆中,275,9,2ABC AB AC S ∆===,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时, P 、Q 两点同时停止运动. 以PQ 为边作正方形PQEF (P Q E F 、、、按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【答案】解:(1)如答图1,过点B 作BM AC ⊥于点M ,∵279,2ABC AC S ∆== ,12ABC S AC BM ∆=⋅⋅, ∴271922BM =⋅⋅,解得,3BM =. 又∵5,AB = ∴根据勾股定理,得2222534AM AB BM =-=-=.∴3tan 4BM A AM ==. (2)存在.如答图2,过点P 作PN AC ⊥于点N , 经过时间t ,5AP CQ t == ∵3tan 4A =, ∴4,3AN t PN t == .∴99QN AC AN CQ t =--=-.根据勾股定理,得,()()2222223999016281PQ PN NQ t t t t =+=+-=-+,∴22990162810<<5S PQ t t t ⎛⎫==-+ ⎪⎝⎭. ∵90>0a =,且1629229010b a --=-=⨯在t 的取值范围内,∴2244908116281449010ac b S a -⨯⨯-===⨯最小值.∴S 存在最小值?若存在,这个最小值是8110. (3)当914t =或911或1或97秒时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用.【分析】(1)作辅助线“过点B 作BM AC ⊥于点M ”构造直角三角形ABM ,根据已知求出BM 和应用AM 的长,即可根据正切函数定义求出3tan 4BM A AM ==. (2)根据2S PQ =求得S 关于t 的二次函数,应用研究二次函数的最值原理求解即可.(3)分四种情况讨论:①当点E 在HG 上时,如答图3,1914t =;②当点F 在GH 上时,如答图4,2911t =;③当点P 在QH 上(或点E 在QC 上)时,如答图5,31t =;④当点F 在CG 上时,如答图6,197t =.6. (2015年浙江绍兴12分)某校规划在一块长AD 为18m ,宽AB 为13m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM :AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m ,这样能在这些草坪建造花坛。
2015年台州市中考数学试卷及答案
2015年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x - B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8cmB.C.5.5cmD.1cm9.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF与四边形CGOH 的周长之差为12时,AE 的值为( ) A.6.5 B.6 C.5.5 D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号)16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中1a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y (1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2015年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)a a a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a =- 时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,(第22题)∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小,所以⎩⎨⎧-==.246,39a b a ………………1分(第23题图1)M(第23题图2)解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分(3)45521+≤≤x . ……………………………………………………2分 24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分(2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAG NE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMF BEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D .(第24题图3)(第24题图2)∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN . ∴ca ab bc +=-. ∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分 ∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年浙江省台州市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题4分,共40分,请选出各题中符合题意的正确选项,不选、多选、错选,均不得分)
B
4.(4分)(2015•台州)若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图
y=(
2
﹣
7.(4分)(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直
8.(4分)(2015•台州)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕
cm
根据勾股定理对角线长为:≈
9.(4分)(2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()
10.(4分)(2015•台州)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5.”对于甲、乙两人的说法,有下列四个命
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)(2015•台州)不等式2x﹣4≥0的解集是x≥2.
12.(5分)(2015•台州)有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出
的数字是奇数的概率是.
∴从中任意抽出一张,则抽出的数字是奇数的概率是:.
故答案为:.
13.(5分)(2015•台州)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是3.
14.(5分)(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.
则椒江区B处的坐标是(10,8).
BC=8
)
15.(5分)(2015•台州)关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).
16.(5分)(2015•台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD
内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为﹣.
,AC=×=
﹣.
故答案为.
三、解答题(本题有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14,共80分)
17.(8分)(2015•台州)计算:6÷(﹣3)+|﹣1|﹣20150.
18.(8分)(2015•台州)先化简,再求值:﹣,其中a=﹣1.
﹣=.
19.(8分)(2015•台州)如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
20.(8分)(2015•台州)图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.
(2)变量y是x的函数吗?为什么?
(3)根据图中的信息,请写出摩天轮的直径.
21.(10分)(2015•台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)求扇形统计图中m的值和“E”组对应的圆心角度数;
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.
×
)
22.(12分)(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
23.(12分)(2015•台州)如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.
(1)①延长BC交ED于点M,则MD=2,DC=1;
②求y关于x的函数解析式;
(2)当a≤x≤(a>0)时,9a≤y≤6b,求a,b的值;
(3)当1≤y≤3时,请直接写出x的取值范围.
≤(×=9a
,得到
,,当5+
OP=(∵OP=,∴
(
×
a=b=
≤,
≤
x=
x=,而
≤
≤
24.(14分)(2015•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND 和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHC的数量关系,并说明理由.
=;
=,
或
==
DH=HN=
,=b。