拉氏变换习题集1 (1)(1)
7.2拉氏变换的性质

高等数学
主讲人 宋从芝
7.2 拉氏变换的性质
本讲概要
➢拉氏变换的性质 ➢例题
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] =a1L [f1(t) ] + a2L[f2(t)] = a1F1(p) + a2F2(p)
可以先求各函数的象函数再进行计算。
性质2(平移性质) 若L[ f (t)]=F(p) ,则 L[eat f (t)] = F(p-a)
此性质说明,像原函数乘以 eat 等于其像函数做位移a。
例2 求
性质3(延滞性质) 若L[ f (t)]=F(p) ,则 L[f (t-a)] = e-at F(p)
常用函数的拉氏变换
例1 求函数 解
的拉氏变换 .
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] = a1F1(p) + a2F2(p)
根据拉氏变换的线性性质,求函数乘以常数的 象函数以及求几个函数相加减的结果的象函数时,
L f (n) (t) pn F( p) pn1 f (0) pn2 f (0) L f (n1) (0)
零初始条件下:f (0) f (0) L f (n1) (0) 0
L f (n) (t) pn F( p)
性质5(积分性质) 若L[ f (t)]=F(p)(p≠0) , 且f (t)连续,则
t0 t
L
拉普拉斯变换 (1)

傅里叶变换的概念
1.傅里叶级数 定理8.1 设 fT (t ) 是以 T 为周期的实函数,且在
T T 2 , 2 T T 2 , 2
上满足狄氏条件,即在一个周期
上满足:
(1)连续或只有有限个第一类间断点; (2)只有有限个极值点.
则在连续点处有
a0 f T (t ) (an cos nw0 t bn sin nw0 t ) 2 n1
3.微分性质
(1)导函数的像函数
设 L( f (t )) F ( s), 则有 L( f (t )) sF ( s) f (0)
'
对于高阶导数有
L( f (t )) s F ( s) s
( n) n
n1
f (0) s
n 2
f (0)
( n1)
'
f
(0)
此性质可用来求解微分方程组的初值问题
2 2
4.积分性质 (1)积分的像函数
设L( f (t )) F ( s),则有
L(
t 0
1 f ( t )dt) F ( s ) s
一般地, 有
L( dt dt
0 0 t t t 0
1 f ( t )dt) n F ( s ) s
(2)像函数的积分
设L( f (t )) F ( s),则有
sint st 0 t e dt arc cot s sint 如果令 s 0,则有 0 dt t 2
例题启示:
在拉 普拉斯 变换 及其一 些性 质中取 为某 些 特定 值,可以 用来求 些函 一 数的广 义积 分.
0
拉普拉斯变换、复频域分析习题课

拉普拉斯变换、复频域分析习题课1. 求下列函数的拉氏变换。
(1)1at e-- (2)sin 2cos t t + (3)2t te - (4)sin(2)t e t -(5)(12)t t e -+ (11)1()t t e e αββα---- (13)(2)(1)t te u t --- (15)()ta t e f a-,设已知[()]()L f t F s = 解:(1)11[1]()at a L e s s a s s a --=-=++ (2)2221221[sin 2cos ]111s s L t t s s s ++=+=+++ (3)221[](2)t L te s -=+ (4)22[sin(2)](1)4t L e t s -=++ (5)23[(12)](1)ts L t e s -++=+ (11)11111[()]()()()t t L e e s s s s αββαβααβαβ---=+=--++++ (13)由于(2)(1)(1)(1)[(1)](1)t t t teu t e t e e u t -------=-+- (15)[()](1)ta t L e f aF as a-=+2求下列函数的拉氏变换,注意阶跃函数的跳变时间。
(1)()(2)tf t e u t -=- (2)(2)()(2)t f t e u t --=- (3)(2)()()t f t e u t --= (4)()sin(2)(1)f t t u t =-(5)()(1)[(1)(2)]f t t u t u t =----解:(1)因为(2)2()(2)t f t ee u t ---=-,所以 222(1)11[()]11s s L f t e e e s s ---+==++ (2)21[()]1s L f t e s -=+ (3)因为2()()t f t e e u t -=,所以2[()]1e Lf t s =+ (4) ()sin[2(1)2](1) {sin[2(1)]cos 2cos[2(1)]sin 2}(1)f t t u t t t u t =-+-=-+-- 2222cos 2sin 22cos 2sin 2[()]()444s s s s L f t e e s s s --+=+=+++ (5)()(1)(1)(2)(2)(2)f t t u t t u t u t =-------222221111[()][1(1)]s s s s s L f t e e e s e e s s s s-----=--=-+ 3求下列函数的拉普拉斯逆变换。
(完整版)典型常见函数拉氏变换表

t 0
s
lim f (t) lim sF (s)
t
s0
L
d dt
f
(t)
SF(s)
f
(0)
L
d
2f dt
(t
2
)
S 2F(s)
Sf (0)
f
(0)
f (0 ) lim f (t) lim sF (s)
t 0
s
lim f (t) lim sF (s)
t
s0
Lf (t)g(t)= F sGs
18
1
t n 1-2
e -nt sinn 1-2
1 e -nt sin(n 1-2 t-
) 1-2
19
=
arctan
1-2
1
s2+2ns+n2
s
s2+2ns+n2
典型时间函数的拉普拉斯变换
序号
原函数 f(t) (t >0)
1- 1 e -nt sin(n 1-2 t +
) 1-2
20
1-2
= arctan
典型常见函数 拉氏变换表
典型常见函数拉氏变换表
序号 1
原函数 f(t) (t >0)
1 (单位阶跃函数)
象函数 F(s)=L[f(t)]
1 s
2
(t) (单位脉冲函数)
1
3
K (常数)
K s
4
t (单位斜坡函数)
1 s2
典型常见时间函数拉氏变换表
序号 5 6 7 8
原函数 f(t) (t >0)
t n (n=1, 2, …) e -at
拉氏变换习题解答

s +
2bs e es
伈
。
} 一
e
s
耳
-
= - ·
1 (l -
s
= - tanh .1 -e-2bs s 2
e-fo )
2
l
—
bs
习题二
I.. 求下列函数的拉氏变换 式
( I)
f (t) = t 2 + 3t + 2
f(t)=(t -1)切
(2) J(t) = l-te'
t (4) 八) = — sin at
-
(s .l )
(S +
3 3 =- - e S S
+
1 e s 2 $
(
) .1
e
($
“ +L 2
、)
· 1
g 工户
十
工
工
子
孚
2
1
2
2
. I
$
+.1
订,
-
=- - - e 2s s
3
3
卫~l
s +1
2
e
竺
2
o>
& u·(1)J= fo.,,,[e2'+ sou)
I
k" dt =f "'e2'e-"dt +sI。f(t)产dt
(3)
2a
<s) f (t) = tcosat
(6) f (t) = 5sin 2t-3cos2t
-4-
(7 ) 八) = e-21
sin 6t
<8)
/
(t) = e-4' cos 4t
拉氏变换习题课

at
F (1) 2 ( w )
1 F ( u( t )) ( w ) iw F ( ( t )) 1
F (e ) 2 ( w a )
te- 3tsi 4 由积分性质,L n2tdt 0 1 1 4 s+ 3 - 3t = L te si n2t 2 2 s s s+ 3 + 4
t
1 利用象函数的微分性质,有
sinkt ∞ L = s L sinkt ds= t ∞ k s∞ π s s s s2 + k 2 ds= arctan k |s = 2 - arctan k = arccotk
p100 2.求下列函数的Lapl ace逆变换:
2 F s =
s
s- a s- b
1 a b a - b s- a s- b b aeat - bebt 1 s- b = a - b
st
解:A 部分分式法 : F s = 1 1 L F s = a- b L
e- 3tsin2t ∞ e- 3tsin2t ds 2L = s L t ∞ 2 s+ 3 = ds= arccot 2 2 s (s+ 3) + 4 2
3
f t tL
-1
F s dt s 1 1 -1 2 2 s - 1
bs a
s F ( )) a
复变函数拉氏变换部分习题解答分析(复拉)(精品)

得z =
+ iy =
1 u+iv
=
u u2 +v 2
−
v i. u2 +v 2
v 又由 y = 1 得 − u2 + = 1, u2 + v 2 + v = 0. v2 π 3
4.求角形域 0 < arg(z ) < 解 arg(w) = arg(¯ z ), 解 将x = 一 判断题
z +¯ z 2 ,y
作业卷(二) 1.若 f ′ (z ) 在区域 D 内处处为零, 则 f (z ) 在 D 内必恒为常数. √ . 在 D 内 f ′ (z ) = ux + ivx ≡ 0, ux = vx = 0. 从而 vy = ux = 0, uy = −vx = 0. 综上结论成立. 2.若 u(x, y ) 和 v (x, y ) 可导,则 f (z ) = u + iv 也可导. 1
= 0, 1, 2, z = −3,
3 2
±
3 2
√
3i.
4.复变函数 w =
z −2 z +1
的实部 u(x, y ) =
, 虚部 v (x, y ) =
x2 −x+y 2 −2 , (x+1)2 +y 2 π 4
. v (x, y ) = .
3y . (x+1)2 +y 2
分析:将 z = x + iy 代入, 分离实部、虚部, 得 u(x, y ) = 5.设 z1 = 2i, z2 = 1 − i, 则 Arg(z1 z2 ) = 分析: arg(z1 ) = π , arg(z2 ) = − π 4 , Arg(z1 z2 ) = √ 2 6.复数 z = − 12 − 2i 的三角表示式为 分析: 4[cos(− 5 6 π) + i sin(− 5 6 π )], 4e
拉氏变换详解

称为拉氏反变换。记为 L1[ F (s)] 。
由F(s)可按下式求出
f
(t)
L1[F (s)]
1
2
j
C j
C j
F (s)est ds(t
0)
式中C是实常数,而且大于F(s)所有极点的 实部。
直接按上式求原函数太复杂,一般都用查 拉氏变换表的方法求拉氏反变换,但F(s)必 须是一种能直接查到的原函数的形式。 12
2.常用函数的拉氏变换
数学知识回顾
(1)例1.求阶跃函数f(t)=A·1(t)的拉氏变换。
F (s) Ae st dt
A e st
A
0
s
0
s
1
单位阶跃函数f(t)=1(t)的拉氏变换为 s 。
(2)例2.求单位脉冲函数f(t)=δ(t)的拉氏变换。
lim lim
F (s) (t)est dt
3
证:根据拉氏变换的定义有
L[
f
(t)]
0
f
(t)est dt
s
0
f
(t)est dt
f
(t )e st
0
sF(s) f (0)
原函数二阶导数的拉氏变换
L[ f (t)] sL[ f (t)] f (0) s[sF (s) f (0)] f (0)
则象函数及其自变量都增加(或减小)同
样倍数。即:L[ f ( t )] aF (as)
证:
a L[ f ( t )] f ( t )est dt
a 0a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此r1Leabharlann t2 3et
1 3
e3t
u
t
r2
t
1 3
et
1 3
e3t
u
t
拉普拉斯变换应用
12.已知
r"(t) 5r' (t) 6r(t) 2e' (t) 8e(t),(t) etu(t),r(0 ) 3,r '(0 ) 2
dt
s2 1
s2 1
t d costu(t) d ( s2 ) 2s
dt
ds s2 1 (s2 1)2
5
拉普拉斯变换
4. 求函数 sin tu(t ) 的拉氏变换
解:
sin tu(t ) sin(t )u(t )
sin tu(t ) 1 es
s2 1
6
拉普拉斯变换
a. 解:
t cos t
t cos cost t sin sin t
s cos s2 2
'
s2
sin 2
'
s2 2 cos 2s sin
s2 2 2
4
拉普拉斯变换
3. 求函数 t d cos tu(t) 的拉氏变换 dt
解:
cos tu(t)
s s2 1
d costu(t) s s f (0 ) s2
2r1 (t )
r2
(t )
e(t )
r1 (t )
dr2 (t) dt
2r2 (t)
0
解:对方程组两边应用单边拉式变换得
sR1 s r1(0 ) 2R1 s R2 s 1 s
R1
s
sR2
s
r2
(0
)
2
R2
s
0
解得 R1 s 2 3s 1 s 1 1 3s 3 R2 s 1 3s 1 s 1 1 3s 3
f t
1
o
1
2t
拉普拉斯变换
6.
已知
f (t) sin 0t
0 s2 02
求下列的拉普拉斯变换:
(1)f (t t0 )
(2) f (t t0 )u(t)
(3)f (t)u(t t0 )
(4)f (t t0 )u(t t0 )
解:(1)和(2)的单边拉氏变换相同
L[sin 0 (t t0 )] L[sin 0t cos0t0 cos0t sin 0t0 ]
s 2s
2
的原函数
f
t
解: 将F(s)的分母因式分解为 s2 2s 2 (s 1 j)(s 1 j)
F(s)
s2
s 2s
2
(s
1
s j)(s
1
j)
s
k1 1
j
s
k2 1
j
k1
lim (s
s1 j
1
j)F(s)
lim
s1 j
s
s 1
j
1 2
j
k2
lim (s 1
s1 j
j)F (s)
lim
s1 j
F(s)
s2
4s 5 5s
6
(s
4s 5 2)(s
3)
s
k1 2
k2 s3
k1
lim (s
s2
2)F
(s)
lim
s2
4s 5 s3
3
k2
lim (s
s3
3)F (s)
lim
s3
4s 5 s2
7
查表可求得原函数为 f (t) 3e2t 7e3t
14
拉普拉斯反变换
10.求Fs
s2
t
dF s
ds
Lx(t t0) X (s)est0
,ROC不变 ,ROC不变
F s L tu t 1 L t 1u t 1 u t 1
L
tu
t
d
1 s
ds
1 s2
∴
L
t
1 u
t
1
1 s2
es
∴
F
s
1 s
1 s2
e
s
ROC:Res 0
3
拉普拉斯变换
2. 求函数 t cos(t ) 的拉氏变换
2
2 estd t
2 t estd t
s0
1
1
1 s
test
1 s
e st
1 0
2
1 s
e st
2
1
1 s
test
1 s
e st
2 1
1 s
e
s
1 s
e
s
1 s
2 s
e2s es
1 s
2 e2s
es
1 s
e2s
1 s
es
1 s2
1 es
2
ROC:整个s平面
8
拉普拉斯变换
0
cos
0t0 s sin s2 02
0t0
拉普拉斯变换
(3)L
f
(t)u(t
t 0
)
Lsin
tu(t 0
t 0
)
t0 sin
test 0
dt
1 t0 2 j
e e ( s j0 )t
( s j0 )t
dt est0
cos( t ) ssin( t )
0
00
00
s2 2
0
(4)L f
(t
t )u(t 0
t ) 0
Lsin (t 0
t )u(t 0
t ) 0
est0
s2
0
2
0
拉普拉斯反变换
7.求 解:
1 2eas 的拉普拉斯逆变换。 s 1
1 2eas s 1
1 2 eas s 1 s 1
f (t) etu(t) 2e(ta)u(t a)
5. 求如图9-2(a)所示的三角脉冲函数 f t 的拉氏变换
t,
f t 2 t,
0,
0 t 1 1 t 2 其他
ft
1
o
1
2t
9-2(a)
7
拉普拉斯变换
a. 解:利用定义
F s f t estd t
1t estd t 2 2 t estd t
0
1
1
1
td
e st
b. 解:利用线性叠加和时移性质求解
由于 f t tu t 2t 1u t 1 t 2u t 2
L
tu
t
1 s2
L f t t0 F s est0
L
t
t0 u t
t0
1 s2
e st0
因此
F
s
1 s2
1 2 es e2s
1 s2
1 es
2
ROC:整个s平面
ROC: Res 0
s s 1
j
1 2
j
查表可求得原函数为
f (t) 1 j e(1 j)t 1 j e(1 j)t et (cost sin t)
2
2
15
拉普拉斯变换应用
11.用拉普拉斯变换分析法求系统的响应 r1 t 和 r2 t 。
已知
r1 0 2,r2 0 1,et u t
dr1(t) dt
拉普拉斯变换习题
1
拉普拉斯变换
1. 求函数 f t tu t 1 的拉氏变换
a. 解:利用定义
F s f t estdt tu t 1 estdt
1
test dt
1 s
test
1 s
est
1
1 s
1 s2
es
ROC: Res 0
2
拉普拉斯变换
b. 解:利用性质 及
L
tf
12
拉普拉斯反变换
s
8.求 s2 3 2 的拉普拉斯逆变换。
解:
3 sin 3t
s2 3
'
s2
3
3
2 3s s2 3 2
t sin 3t
s 2
s
32
t 2
sin 3
3t u(t)
13
拉普拉斯反变换
9.求
F
s
s2
4s 5 5s
的原函数 6
f t
解: 将F(s)的分母因式分解为 s2 5s 6 (s 2)(s 3)