如何对几何习题拓展变式
例说立体几何中的变式教学

2 1 年第 1 01 2期
例说 立体几 何 中 的变 式 教学
宋 咏梅
( 江苏省溧 阳市第三中学 ,1 30 230)
“ 变式 教 学 ” 是课 堂 教 学 中学 生 获 取 知识 的 重 要 途径 之一 , 有 着 变 式 潜 能 的 问 题 中, 以多 角 在 可 度 、 方位地 折射 出该 问题 的内涵. 全 通过 变式 教学 有 意 识地 引导 学 生从 “ ” 变 的现 象 中 发现 “ 变 ” 不 的本
.
‘
.
多次变革, 但却没有删去, 以说明这一例题蕴含 着 足 丰 富的 立体 几何 中点 、 面、 线、 角及距 离等知 识 , 尤其 是在 立体 几何 中重要 的点 、 、 线 面的载体—— 三棱 锥
中体 现 的更 突 出.因此 , 怎样 才能 最大 限度 地发挥 该 题 的功 能呢? 下 面通 过 这 道例 题 的 变式教 学设 计 , 使 其例 题功 能发 挥到 最 大.
.
‘ .
Rt PAE Rt P a a A . AE =A ‘ . AO =AO.’ Rt AOE ̄ Rt AOF. . . A A
‘ . .
Rt AO Rt A . a E a D ‘ 曰( = C D. . A
‘ .
‘
反 思 : 于这 一例题 , 中立体 几何 的教 材 经过 对 高
时也 引 出 另 一 个 变 式 :
1 改 变 条 件 , 掘 内在 联 系 挖
变 式 1 经 过 一个角 的顶点 引这 个 角所 在 平 面 的斜射 线 , 它 和 已知角两 边 的夹角为 锐角且 相等. 设 求 证 这 条 斜 射 线 在 平 面 内 的 射 影 是 这 个 角 的平 分 线. 证 法 同题 目一样 , 用全 等 力
巧用“复制、粘贴法”解决几何变式题

巧用“复制、粘贴法”解决几何变式题摘要:几何变式题一直是学生比较害怕的题型,文章通过三个例题的分析,让学生感受“复制、粘贴法”在几何变式题中的应用,从而得到推理能力的提升.培养和发展学生的数学推理能力不仅是数学学科价值的体现,同时也是“核心素养”的基础性条件.关键词:几何变式题、解法研究、核心素养初中阶段尤其是基础不好的学生对于几何压轴题往往都有畏难情绪,一看到冗长的题目,连题目都还没看清,就开始打退堂鼓,更不用说好好思考并解决了.现在我来介绍一类几何压轴题,并没有那么难“对付”,相信你能从中得到一点启发.接下来我从几个题目入手讲解如何用“复制、粘贴法”解决几何变式题.1.点的移动带来的变式例1.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为_________.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.此题是2019年抚顺的中考题,是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、直角三角形的性质以及分类讨论等知识;此题综合性强,证明三角形全等是解题的关键.第1、2小题的区别在于点E是否为CD的中点,学生可以通过测量图1与图2中的BP、QC、EC的长度,初步猜想这三条线段都存在BP+QC=EC。
由于正方形的四边相等,只要满足PQ=DE即可证明猜想,线段EG又是由线段EP绕点E顺时针旋转90°得到的,可得EP=EG,只要证明△PEQ≌△EGD即可完成,证明过程如下:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,由旋转的性质得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,又∵∠EPQ+∠PEC=90°,∠PEC+∠GED=90°,∴∠EPQ=∠GED,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;第1、2小题的解题过程是一模一样的,完全可以用“复制、粘贴”的方式来完成证明。
变式教学在解析几何中的应用

问题 的最简捷的方法 , 而提高解题能力. 从
知圆的方程是 + r, y : 求经过 圆上一点 M(。 ,
Y) o 的切 线 的方 程. 教学 中 , 引 导学生解 答 , 出切 线 方 程 为 :O 先 得 XX
+Y Y =F o 2
,
3 注意 问题衔接 。 改造条件或 结论
例 3 高中《 数学 》 第二册 ( ) l9页第 7 上 第 1 题 : 抛物 线 y = 过 2 的焦 点 的一 条 直 线 和 此 抛 物
当合理的变式能营造一种生动活泼、 宽松 自由的氛 围. 开拓 学生 的 视 野 , 发 学 生 的 思 维 , 助 于 培 能 激 有 养学生 的探索精神与创新意识. 同时 , 学生可以多层 次 、 视角 、 方 位 地认 识 数 学 问题 . 文 笔 者 将通 广 全 本 过“ 解析几何 ” 教学中的几个具体例题 , 谈谈变式教 学 中问 题 的选 择 与变 式认 识.
MN的 内分点 或端 点.
1 利用 问题 系列 。 识辩 问题本 质
例 1 ( 曲线 第一 定义 的教 学) 双 曲线 概 念 双 在 教 学 中 , 于第 一 定义 : 平 面 内 与 两定 点 F , 的 对 “
令 Q分 的 比为 A 则 A≥O或 A不存在 ( , Q
() | 时 , 1当 i I = A不存在 ;
( ) 绝对值” 3 将“ 去掉 , 其余条件不变 , 点的轨迹 是什么? () 4 若令“ 常数” 等于零 , 其余条件不变, 点的轨 迹是什么?( 让学生认识定义中的常数应大于零 )
通 过以上变式问题 的讨论和探索 , 学生对双 曲
浅谈初中数学课文例题的变式拓展训练

浅谈初中数学课文例题的变式拓展训练初中数学课文是我们学习数学知识的重要教材,在实际的学习过程中,我们除了要掌握课文中所讲的内容,还要多运用套路和技巧,多做题,不断拓展自己的思维和能力,才能真正地掌握数学知识。
本文将从初中数学课文中例题的变式拓展训练方面入手,为大家介绍一些实用的方法和技巧。
1. 基本运算法则的练习课本中的基本运算法则,如加减乘除、多项式展开、整式乘法等,是我们数学学习的基础。
所以,在练习这些题目时,我们需要注重掌握基本的意义和规律。
例如,在乘法分配律的练习中,可以通过以下题目进行拓展:(1) $2(x+y)=2x+2y$,则 $5(x+y)=$通过类似的题目,我们可以巩固乘法分配律的知识,同时提高计算速度和准确度。
2. 图形的拓展和应用在初中数学中,图形的认识和分析是非常重要的一部分。
在课文中,我们可以学习到关于点、直线、角度、圆等方面的知识,通过不断地实践和应用,可以帮助我们更加深入地理解这些概念,进而掌握相关的技巧。
(1)如图,在正方形 $ABCD$ 中,$BF$ 平分 $\angle ABD$,证明 $BF=BD$。
通过对这些题目的分析和思考,我们不仅可以掌握正方形的性质,还可以拓展到其他多边形的性质,进一步提高自己的图形分析能力。
3. 立体图形及其应用在初中数学中,我们不仅需要掌握平面图形的知识,还需要了解立体图形,尤其是对于几何体的计算及其应用。
(1)已知正方体 $ABCDA_1B_1C_1D_1$ 的棱长为 $a$,求它的体积和表面积。
通过以上题目的练习,我们可以掌握立体图形的基本计算公式,同时培养立体图形的观察和分析能力。
总之,初中数学课文例题的变式拓展训练可以帮助我们更好地掌握数学知识和技巧,提高自己的思维和能力。
在实际的学习过程中,我们要注重思维的多元化,多角度地去分析问题,不断拓展自己的思考范围和解题技巧。
立体几何中利用图形变式解题

也说立体几何中利用图形变式解题在解答立体几何问题时,许多学生常因空间想象能力差、空间概念模糊,导致计算、论证等方面出现障碍。
但若能注意到几何图形的变式及应用,则可以化难为易。
下面就常见的几种利用图形变式解题的方法予以归纳,以飨读者。
一 空间图形平面化在立体几何解题时,为了解题目的需要,常把空间图形变式为平面图形。
利用平面化后的图形与空间的关系,对比、寻觅图中“变”与“不变”的位置关系与元素,常可以巧妙地解决一些问题。
常见的平面化的方法有:(1)展开直观图在解决一些几何体表面上的最短问题时,常采用“以直代曲”,展开直观图形,使空间问题平面化的方法。
例:长方体1AC 中,AB 15,4, 3.BC CC ===现有一只小虫从A 点出发沿长方体表面爬行到达1C 点,求小虫爬行的最短路程,并指 出与最短路线相对的路线的条数。
解析:如图为长方体侧面展开图,在矩形11ABC D 中,1AC 在矩形11AA C C 中,1AC 依题意,小虫爬行的最短路程为由图知与最短路线对应的路线有两条。
(2) 利用射影法平面化将立体图形中的元素位置影射到某平面中,使之转化为平面图形中的线线、点线关系,常可以达到化简之目的。
例:在正方体1111ABCD A B C D -中,E ,F 分别是1,BB CD 的中点,设12,AA =求11.F A ED V -解析:由于直观图中空间元素之间相互遮掩、交错, 1A 1D 1C 不易寻找问题的突破口。
现利用影射法作图变式,即 1B 向面11ABB A 作垂直射影,则问题转化为在正方形11ABB A中,E 为1BB 中点,G 为AB 中点,○1求证:1,AE AG ⊥ D C A○2求E 到1A G 距离即EH 的长。
从而迅速找到了解题思路,A B 优化了解题过程。
(3) 利用“隔离”法平面化为了排除直观图中的空间元素之间的干扰因素,可以应用隔离法把要研究的对象从直观图抽出来,在平面内单独研究,可以花繁为简。
一道几何题的变式与拓展

m — n
题的过程变成探索 、发现的过程.将思维 变成流动、活跃 的过程 ,是创新 思维教学 所追求 的更 为重要的 目标 ,它是灵活应用 知识 、创造性地 由已知信息推断隐含信息
B
M H C
变 换 题 型 ,合 理 选 法 ,对 学 生 思 维 的 的等式就是 图 l 4中的等式 ,所 以图 1 8中
图 l 6
灵活性 、敏捷性 的培养具有积极的作用. 变 式 4 () 图 1 1在 8中 ,若 四边 形
I 明】初 中学生 的几何 思维 能力不 说 意一 点 ,0为正 五边形 的 中心 ,点 0到 R C B S是 等腰 梯 形 , = /C:6 。 强 ,无 法 作 出恰 当的 辅 助 线 来 证 明 问题 , 0, 边 的距离 为 1 " 5 ,点 P到 AB C、C R 、B D、 S=n C=m,点 P在梯形 内,且 点 P 本题对创新 能力提 出了较高的要求,学生 ,B D 、E 的 距 离 分 别 为 h,h,h,h, 到 四边 B E A 。 3 R、Js c、c R 、s I 的距 离分 别 为 可 以通 过 模 仿 来 创 新 .
一
从这个 角度引导学 生进行思维 拓展 ,
、
引 导 学 生 反 思题 设 的条 件 、结 论 就 可 以得 到 原 题 的 变式 问题 1 .
学生熟悉 的一个基本问题 ,谈一谈如何引 和解题策 略 变式 1 如果将图 1中的等边 AA D B 导学生对一个几何图形进行旋转变化 、条 条件 :此题的基本条件是有公共顶点 固定 ,将 等边 △A C绕点 A按 逆时针 旋 E 件变化 ,使之形成新的几何 问题. 的两个等边三角形. 转到 图 2的位置. 基本题 ( 原题 ) :如 图 l ,△AB D和 , ) 结 论 : △A E B aAD ,B =DC C E ,
化归与转化思想视角下几何问题的变式与探究

若存在, 请求出I I 若不存在, 尸 请说明理由. 并判
断在棱锥体内部这样 的点存在吗?
变式意图 借助固有的研究思路 ,代数与几何交
2 1 年 第 3期 02
福 建 中学数 学
5
汇 ,将平 面 的“ 距 问题” 等 拓展 到 空 间 .
变式五 试一试 , 若是从旋转、最短路线、 概率、 线性规划等角度 出发 ,本题还可 以设计出什么样 的 数学 问题 ? 变式意图 探究与立体几何有 关的知识 交汇方 式 ,换 一 个角 度重新 审 视空 间几 何体 .
变式三 若 A =1 ( B , 其余不变) 点 ,在线段 A , C
上 ,求 A E D F周长 的最小 值 .
变式设计与探究,其遵循的原则是一定 开 放度 的
变式意图 怎样 利用空 间图形 的几何性 质探究
最值 问题 ?
变式意图 在没有现成 的三线强两垂直 的情况 下 ,如何建立空间坐标系解题?
变式二 改 E为线段 B C的一动点 ,试求 A E与 D B夹角余 弦值 的取值 范 围 . 变式意图 如何选择参变量写出点的坐标 ,并构
造 函数模 型求 函数 的值 域?
1 . 3空间几何问题的变式设计原则 在化归与转化思想视角下进行空间几何问题的
领域 .” 本文拟以几何问题为例,探讨在化归与转化 思想视角下进行问题的变式与探究的原则和方法 . 1 空间几何问题 的变式与探究 1 . 间几何 问题 的特点分析 1空 空间几何问题的特点是题干的信息多,空间点、 线 、面 的位 置 关 系复 杂 ,图形抽 象 ,单 个例 题 一 般
教 师能 够拿 出一个 有 意义 的但 不 太复 杂 的题 目,去 帮 助学 生发掘 问题 的各 个方 面 ,使 得通 过 这道 题 , 就好 像 通 过一 道 门户 ,把 学 生引入 一 个完整 的理论
浅谈初中数学教材几何习题的变式教学

浅谈初中数学教材几何习题的变式教学摘要:初中数学具有较强的抽象性和逻辑性,必须让学生深入理解知识的本质,才能够提高学生学习效果,实现知识的迁移运用。
习题变式教学有助于学生深入理解知识本质,落实一题多解、多题一法。
为强化初中几何教学效果,本文通过文献法和经验法对几何习题变式教学进行了研究,从变式教学的意义和策略两方面展开详细研究,以供参考。
关键词:初中数学;几何习题;变式研究引言:随着教育教学改革的深入,提升学生的核心素养变得愈发重要。
在这样的教育背景下,教师应该注重教学模式的优化,提高学生学习自主性,让学生在学习知识、训练技能的过程中,核心素养能够得到提升。
几何习题变式教学在核心素养培养上具有积极作用,赋予了学生更多的思考空间,在一定程度上加强了学生对几何基础知识的理解,能够促使学生深度学习,进行几何习题的探索。
基于此,教师应当注重初中数学教材几何习题的变式教学,以提高学生学习效果。
一、初中数学教材几何习题变式教学的意义在初中数学几何教学中,教师进行习题变式教学对学生核心素养的提升具有积极意义。
在传统的几何教学中,关于结合概念等知识学生习惯死记硬背,这样的学习模式下,学生的思维十分固定,只能解决标准化习题。
当题目出现一定的变形时,很多学生就会不知所措,主要原因在于不能理解知识的本质。
教师通过几何习题变式教学,可以让学生通过不同的习题深入感知几何概念,提高学生举一反三的能力。
除此之外,几何习题变式教学强调以学生为中心,引导学生主动进行知识的探索和分析,有助于学生学习兴趣的提升,强化学习效果。
二、初中数学教材几何习题变式教学的策略(一)注重习题典型资源的收集与分析从近几年中考数学几何习题上分析,很多题目源于教材中的习题,对教材中的习题进行了变式,难度并不大。
但是从学生们做题的实际情况上看,教材中涉及的几何题目,大部分学生都能够进行正确解答,但是对于中考的变式题目,很多学生在做题中出现了问题。
基于此,教师在进行教材中几何习题教学的过程中,不应该局限在教材题目中,应该适当进行习题变式,让学生以递进的形式进行习题练习,以此来促使学生深入理解知识的本质,对几何变形题有深刻的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何对几何习题拓展变式“变式”原为心理学上的名词,其含义是变换材料的出现形式。
在教学中的所谓变式,即是指对数学概念、定义、定理、公式,以及问题背景不同角度、不同层次、不同情形、不同背景的变化,使其面目不一,而本质特征不变。
在数学教学中,可以充分利用变式,有意识地把教学过程施行为数学思维活动的过程,充分调动和展示学生的思维过程,让学生积极、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。
通过变式练习,可以使学生在全面、深刻的理解和掌握知识的同时,思维品质也获得良好的发展。
通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,因而能产生主动参与的动力,保持其参与教学过程的兴趣和热情。
通过变式训练,可以帮助学生提出问题、分析问题、解决问题,搞清问题的内涵和外延,提高数学能力。
“变式训练”的实质是根据学生的心理特点在设计问题的过程中,创设认知和技能的最近发展区,诱发学生通过探索、求异的思维活动,发展能力。
对习题的变式可以从以下几种不同的角度进行:一、一题多解、一题多变、一题多思、多题一法……1、一题多解,培养思维的发散性一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。
这方面的例子很多,尤其是几何证明题。
例如:已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。
练习:把此题适当变式:在△ABC中,AB=AC,∠BAC=90°OA=4,OB=6,OC=2求∠AOC的度数。
变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?2、一题多变,培养思维的灵活性一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的B CAB COAB CO形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。
一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。
例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)求证:AN=BM(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。
问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。
探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗? 探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗?探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗? 探索五:A 、B 、C 三点不在一条直线上时,△ACM 和△BCN 分别变为正方形ACME 和正方形BCNF ,其它条件不变,AN=BM 成立吗?这样教学,不仅提高了学生运用所学知识解决数学问题的能力,而且培养了学生的创新能力,发展了学生的求异思维。
MACB练习:(1)如图,在△ABC 中,AB=AC ,点P 是BC 边上任意一点,PE ⊥AB 于E ,PF ⊥AC 于F ,BD ⊥AC 于D 求证:BD=PE+PF变式1:△ABC 变为等边三角形变式2:P 在△ABC 内 变式3:P 在△ABC 外(2)轴对称:已知直线l 及同侧两点A 、B ,试在直线l 上选一点C ,使点C 到点A 、B 的距离和最小。
BC PP CBBCABCG变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家; 方案2:小华由家先去姥姥家,再去河边;变式2:已知: AB 、AC 表示两条交叉的小河, P 点是河水化验室, 现想从P 点出发,先到AB 河取点水样, 然后再到AC 河取点水样, 最后回到P 处化验河水, 怎么走路程最短呢?实验员小王说:“我从P 点笔直向A 走, 同时取好两河水样再原路返回, 这样走, 路最近。
”化验员小吴否定了小王的路线, 提出了自己的想法, 请同学们想一想, 小吴走怎样的路线?小华家河流ABAl变式3:变式4:如图,在定直线XY 外有一点P ,试于XY 上求两点A 、B,使PA+PB 为最短,而AB 等于定长a.aXY·PXY· ·P /a aBA PAB CBABPBCAD B C变式5:如图,在河的两侧有A 、B 两个村庄,现要在河上修一座桥,规定桥必须与河岸垂直,要使A 村到B 村的路程最短,问桥应修在何处?(河宽为定长为m)解:(1)过B 作BC ⊥a,且使BC = m; (2)连接AC 交b 于P;(3)过点P 作PQ ⊥a,垂足为点Q,那么PQ 就是桥的位置.(3)如图,公路MN 和PQ 在P 点处交汇,且∠QPN=30°点A 处有一所中学,AP=160米,假设拖拉机行驶时,周围100米内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪音的影响,请说明理由,若影响,求出影响时间。
(拖拉机的速度是12米/秒)变式1:如图,A 城气象台测得台风中心在A 城正西方300千米处,以107千A ··Ba bMPAQNa b·BA ·C PQ·P //米/时的速度向北偏东60°的BF 方向移动,距台风中心200千米的范围内是受台风影响的区域。
(1)问A 城是否受到台风影响?为什么?(2)若A 城受到台风影响,那么A 城受到台风影响的时间多长?变式2:据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现在以15千米/时的速度沿北偏东30°方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。
(1)该城市是否会受到这次台风影响?请说明理由。
(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力有几级?3、一题多思,培养思维的独创性B牛顿说过:“没有大胆的猜想就做不出伟大的发现。
”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。
例如:如图, 过线段AB的两个端点作射线AM、BN, 使AM∥BN, 请照图思考下列问题, 并证明你的猜想。
(1) ?MAB, ?ABC的平分线AE、BE交于点E, 则?AEB是什么角, 并证之。
(2)过E点任作一条直线交AM于D, 交BN于C, 请问线段DE, CE什么关系, 并证明。
(3)请证明: 无论DC的两个端点在AM、BN上如何移动, 只要DC过点E,AD+ BC是个定值。
1、题型有何特征,解法有何规律?2、题目有哪些证法,其中哪些方法最简便?3、题目的几种证法中,辅助线添置有何规律?4、在题目的解决过程中,解题的关键何在?涉及哪些基础知识?5、在题目的解决过程中,有哪些地方容易发生错误?应注意什么问题?通过一题多思,不但能开阔学生的解题思路,而且启发学生建立了课本例题,习题之间的联系,使学生在做题时做到“遇新题,忆旧题,多思考,善联想、多变换、找规律”。
从而培养了学生的应变能力和创造性思维能力。
4、多题一法,培养思维的深刻性初中数学有很多问题,表面上看相互各异,但实质上结构却是相同的,因而它们可用同一种方法去解答,让学生演作这样的题组并作比较,可使学生透表求里,自觉地从本质上看问题,从而培养思维的深刻性。
例如:(1)一个多边形除一个内角外,其余所有内角和等于2200°,则这个多边形的边数为_____。
(2)一个多边形所有内角与一个外角的和是2380°,则这个多边形的边数为___。
以上两题表面上看不同,实际是同一道题,应注意引导学生进行对比、消化,促使学生对相通的知识归纳成体系。
避免“只见树木不见森林”的现象。
练习:(1)如图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可得到一些线段.(1)请在左图中分别画出长度为26、25、32的线段.(2)已知△ABC的三边长分别为AB=26cm、BC=25cm、AC=32cm,求△ABC的面积.(可以利用右图,也可以用其它方法)6与17+5+10变式:比较大小:2(2)勾股定理:1、如图①,一架梯子长2.5米,顶端A 靠在墙AC 上,梯子下端B 与墙角C 相距1.5米.(1) 这架梯子的顶端距地面多高?(2)如果这架梯子滑动后停留在DE 位置(如图②所示),测得BD 长为0.5米,这时梯子顶端下落多少米?图① 图②变式:梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,那么BD ( )A 、等于1米;B 、大于1米;C 、小于1米;D 、以上结果都不对。
注:把问句略做一下变化,就综合了二次根式的比较大小的知识点。
2、小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答:_______________(填“能”、或“不能”)3、有一个长、宽各2米,高3米且封闭的长方形纸盒,一只昆虫从顶点A 要爬到与A 点相对的顶点B ,那么这只昆虫爬行的最短路程为( )米。
A 、3;B 、4;C 、5;D 、6。
变式1:一个圆柱的高为36,底面圆的半径为5,一只蚂蚁从上底面的点A 处爬到与点A 相对应的下底面点B 处的最端路程是多少?Π值取3。
变式2:如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A A C CB B DEA 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.变式3:如图,沿OA 将圆锥侧面剪开,展开成平面图形是扇形OAB.(1) 扇形的弧AB 的长与圆锥底面圆周的长是怎样的关系?点A 和点B 在圆锥的侧面上是怎样的位置关系?(2) 若角∠AOB=90°,则圆锥底面圆半径r 与扇形OAB 的半径R 之间有怎样的关系?(3) 若点A 在圆锥侧面上运动一圈后又回到原位,则点A 运动的最短路程应该怎样设计?若5.02 x ,且∠AOB=90°,求点A 运动的最短路程。