高一数学必修一 1.1.1集合练习题

合集下载

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)
故选:A
3.已知 , ,且 ,则( )
A. B. C. D.
答案:B
解析:根据集合的包含关系可求得 的取值范围.
详解:
, ,且 , .
故选:B.
4.能够组成集合的是( )
A.与2非常数接近的全体实数
B.很著名的科学家的全体
C.某教室内的全体桌子
D.与无理数π相差很小的数
答案:C
解析:由集合中元素的特征:确定性、互异性、无序性,进行判断即可
1.1 集合的概念
一、单选题
1.已知集合 ,集合 ,若 ,则实数 的值是( )
A.0B. C.0或 D.0或
答案:C
解析:计算 ,考虑 , , 三种情况,计算得到答案.
详解:
, ,
当 时, , ;当 时, , ;当 时, .
即 或 或 .
故选:C.
2.已知 小于 的自然数},则( )
A. B. C. D.
故答案为:
2.已知 ,则实数 的值是_________.
答案:-1
解析:试题分析:
考点:元素互异性
【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.
3.已知集合 ,则实数 的取值范围为__________.
答案:
解析:根据题意得 ,解不等式即可得答案
点睛:
本题考查了一元二次不等式的解法,属于基础题.
7.设集合 , ,则下列关系中正确的是( )
A. B. C. D.
答案:C
解析:根据元素与集合之间的关系,即可求出结果.
详解:
由题意可知, ,所以 ,故选C.
点睛:
本题主要考查了元素与集合之间的关系.

高中数学必修一全册同步练习含参考答案

高中数学必修一全册同步练习含参考答案

高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。

高中数学必修一人教A版1.1 集合的概念练习(含解析)(10)

高中数学必修一人教A版1.1 集合的概念练习(含解析)(10)

1.1 集合的概念一、单选题1.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃2.已知集合{}1,A x x x Z =≤∈,则满足条件BA 的集合B 的个数为( ) A .3 B .4C .7D .83.已知集合{}14A x Z x =∈-<<,则集合A 的非空子集个数是( )A .7B .8C .15D .16 4.集合{,,}a b c 的真子集共有( )个 A .5 B .6C .7D .8 5.下列表示正确的是 A .0∈N B .27∈NC .–3∈ND .π∈Q 6.设集合{|21,},5A x x k k Z a ==+∈=,则有( ) A .a A ∈ B .a A -∈ C .{}a A ∈ D .{}a A ⊇7.下列关于空集∅的叙述:①0∈∅;②{}∅∈∅;③{}0∅=.正确的个数为( )A .0B .1C .2D .3 85R ;②14Q ∉;③1.5Z ∈.其中正确的个数是( )A .1B .2C .3D .09.方程组2219x y x y +=-=⎧⎨⎩的解集是( ) A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-二、填空题 1.如果有一集合含有两个元素:x ,2x x -,则实数x 的取值范围是________.2.已知集合A =0, 1}, B =2{,2}a a ,其中a R ∈, 我们把集合1212{|,,}x x x x x A x B =+∈∈记作A +B ,若集合A +B 中的最大元素是21a +,则a 的取值范围是______.3.一元二次方程x 2+4x+3=0的解集为________(用列举法)4.已知集合2{|320,,}A x ax x x R a R =-+=∈∈,若集合A 中只有一个元素,则实数a 的取值为______ .5.若不等式组120161x x a-≥⎧⎨+⎩的解集中的元素有且仅有有限个数,则a =________. 三、解答题 1.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示什么?集合C ,D 之间有什么关系?2.已知集合2{|210}A x ax x =∈++=R ,其中a ∈R .(1)若12A ∈,用列举法表示集合A ;(2)若集合A 中有且仅有一个元素,求a 的值组成的集合B .3.用列举法表示下列集合.(1)x|x 2-2x -8=0}.(2)x|x 为不大于10的正偶数}.(3)a|1≤a<5,a∈N}.(4)169A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭∣ (5)(x ,y)|x∈1,2},y∈1,2}}.参考答案一、单选题1.B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B2.C解析:先确定集合A 中元素,再由真子集个数的计算公式,即可得出结果.详解: 因为{}{}1,101A x x x Z =≤∈=-,,,所以满足条件B A 的集合B 的个数为3217-=,故选:C .3.C解析:利用列举法表示集合A ,确定集合A 中元素的个数,进而可求得集合A 的非空子集个数.详解:{}{}140,1,2,3A x Z x =∈-<<=,集合A 中共4个元素,因此,集合A 的非空子集个数是42115-=.故选:C.4.C解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:C5.A解析:根据自然数集以及有理数集的含义判断数与集合关系. 详解:N表示自然数集,在A中,0∈N,故A正确;在B中,27N∉,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误.故选A.点睛:本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.6.A解析:5221a==⨯+,结合集合A,即可得出结果.详解:5221a A==⨯+∈.故选:A点睛:本题考查元素和集合的关系,考查学生对基本概念的理解,属于基础题.7.B解析:直接根据∅中没有任何中元素,∅是{}∅的元素,且是{}0的真子集即可判断.详解:∵∅中没有任何中元素,0∉∅,故①错误;{}∅∈∅,故②正确;{}0≠∅,故③错误.故正确的只有②.故选:B.点睛:本题考查命题真假的判断,考查元素与集合、空集和单元素集合{}0关系等基础知识,是基础题.8.A解析:根据元素和常用数集之间的关系,直接判定,即可得出结果.详解:R R,即①正确;Q 为有理数集,故14Q ∈,即②错; Z 为整数集,故1.5Z ∉,即③错;故,正确的个数为1个.故选:A.点睛:本题主要考查元素与集合之间关系的判定,属于基础题型.9.D解析:解出方程组的解,然后用集合表示.详解:因为()()229x y x y x y -==+-,将1x y +=代入得,得9x y -=.210x y x y x ++-==,解得5x =.代入得4y =-.所以方程组2219x y x y +=⎧⎨-=⎩的解集(){}5,4-. 故选:D.点睛: 本题考查集合的表示,考查用列举法表示方程组解的集合,注意解的表示形式,属于基础题.二、填空题1.0x ≠且2x ≠解析:根据集合的元素的互异性列出不等式,解之即得.详解:由集合元素的互异性可得2x x x -≠,解得0x ≠且2x ≠.故答案为:0x ≠且2x ≠.2.(0, 2)解析:只要解不等式2121a a +<+即得.详解:由题意2121a a +<+,解得02a <<,即a 的取值范围是(0,2).故答案为(0,2).点睛:本题考查集合的创新问题,解题中需要理解新概念,转化为旧知识.如本题转化为解不等式2121a a +<+.3.{}1,3--解析:求出方程的解,用列举法表示出即可.详解:由2430x x ++=解得1x =-或3-,2430x x +∴+=的解集为{}1,3--.故答案为:{}1,3--.点睛:本题考查列举法表示集合,属于基础题.4.0或98解析:由题意,集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论,即可得到答案.详解:因为集合2A {x |ax 3x 20,x R,a R}=-+=∈∈有且只有一个元素,当a 0=时,2ax 3x 20-+=只有一个解2x 3=,当a 0≠时,一元二次方程有重根,即98a 0=-=即9a 8=.所以实数a 0=或98.点睛:本题主要考查了集合中元素个数的判定与应用,其中根据题意把集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论求解是解答的关键,着重考查了转化思想,及分类讨论数学思想的应用.5.2018解析:若不等式组120161x x a -≥⎧⎨+⎩的解集中有且仅有有限个数,则12017a -=,进而得到答案. 详解:解12016x -≥得:2017x ≥,解1x a +≤得:1x a ≤-,若12017a -<,则不等式的解集为空集,不满足条件;若12017a -=,则不等式的解集有且只有一个元素,满足条件,此时2018a =;若12017a ->,则不等式的解集为无限集,不满足条件;综上可得:2018a =,故答案为:2018点睛:本题主要考查集合中元素的个数,同时考查了不等式组的解法,属于简单题.三、解答题1.D C解析:集合表示两条直线的交点,解得交点得到集合关系.详解:集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示直线21x y -=与直线45x y +=交点的集合, 即{(1,1)}D =. D C点睛:本题考查了集合表示的意义,集合的包含关系,意在考查学生对于集合的理解和掌握.2.(1) 11,42A ⎧⎫=-⎨⎬⎩⎭(2) {0,1}B = 解析:(1)由题,将12x =代入方程中,进而得到8a =-,再解得方程,并用列举法表示解的集合即可;(2)当0a =时,解得12x =-,即为一个解,当0a ≠时,令0∆=,求解即可详解:(1)∵12A ∈, ∴12是方程2210ax x ++=的根, ∴21121022a ⎛⎫⨯+⨯+= ⎪⎝⎭,解得8a =-, ∴方程为28210x x -++=, ∴112x =,214x =-,此时11,42A ⎧⎫=-⎨⎬⎩⎭(2)若0a =,则方程为210x +=,解得12x =-,此时A 中仅有一个元素,符合题意;若0a ≠,A 中仅有一个元素,那440a ∆=-=,即1a =,方程有两个相等的实根,即121x x ==- ∴所求集合{0,1}B =点睛:本题考查列举法表示集合, 考查由元素的个数求参数,考查分类讨论的思想,考查解方程,属于中档题.3.(1){4,-2};(2){2,4,6,8,10};(3){1,2,3,4};(4){1,5,7,8};(5){(1,1),(1,2),(2,1),(2,2)}解析:根据题意,列举出集合中所有的元素,即可求得结果.详解:(1)2280x x--=,解得4x=或2-,故x|x2-2x-8=0}={4,-2};(2)x|x为不大于10的正偶数}={2,4,6,8,10};(3)a|1≤a<5,a∈N},故1,2,3,4a=,则a|1≤a<5,a∈N}={1,2,3,4};(4)169A x N Nx⎧⎫=∈∈⎨⎬-⎩⎭∣={1,5,7,8};(5)(x,y)|x∈1,2},y∈1,2}}={(1,1),(1,2),(2,1),(2,2)}点睛:本题考查用列举法表示集合,属简单题.。

人教高一数学必修一习题全集

人教高一数学必修一习题全集

同步训练数学必修一人教A版1、下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《同步训练》的所有书 C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星2、下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .43、集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个4、给出以下四个对象,其中能构成集合的有( )①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A .1个B .2个C .3个D .4个5、若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6、下列各组集合,表示相等集合的是( )①M ={(3,2)},N ={(2,3)};②M ={3,2},N ={2,3};③M ={(1,2)},N ={1,2}. A .① B .②C .③ D .以上都不对7、若所有形如a +2b (a ∈Q 、b ∈Q)的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M8、已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z.其中正确的个数为________.8、解、③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 9、对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________.10、若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值组成的集合中元素的个数为________.11、 已知由l ,x ,x 2,三个实数构成一个集合,求x 应满足的条件. 12、试选择适当的方法表示下列集合:(1)由方程x 2 – 9 = 0的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数y = x + 3与 y = –2x + 6的图象的交点组成的集合; (4)不等式4x – 5<3的解集. 13、(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集; ②{1,–3,5,–7,…,–39,41}. 14、用列举法把下列集合表示出来: (1)A = {x ∈N |99x -∈N};(2)B = {99x-∈N | x ∈N };(3)C = { y = y = – x 2 + 6,x ∈N ,y ∈N };(4)D = {(x ,y ) | y = –x 2 +6,x ∈N };(5)E = {x |pq= x ,p + q = 5,p ∈N ,q ∈N*}.15、 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合A .–3∈A ,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合A .1、对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5}D .{x |x =4s -3,s ∈N *,且s ≤5}2、集合P ={x |x =2k ,k ∈Z},M ={x |x =2k +1,k ∈Z},S ={x |x =4k +1,k ∈Z},a ∈P ,b ∈M ,设c =a +b ,则有( )A .c ∈PB .c ∈MC .c ∈SD .以上都不对3、定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .64、集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合5、设集合M ={x ∈R|x ≤33},a =26,则( )A .a ∉MB .a ∈MC .{a }∈MD .{a |a =26}∈M6、下列命题正确的有( )(1)很小的实数可以构成集合; (2)集合{y |y =x 2-1}与集合{(x ,y )|y=x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个7、下列集合中,不同于另外三个集合的是( )A .{0}B .{y |y 2=0}C .{x |x =0}D .{x =0}8、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20 9、已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则用列举法表示集合C =____________. 10、由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.11、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N|4x -3∈Z ,试用列举法表示集合A =________. 12、集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________.13、 用适当的方法表示下列集合:(1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);(3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .14、已知集合A ={x ∈R|ax 2+2x +1=0},其中a ∈R.若1是集合A 中的一个元素,请用列举法表示集合A .15、已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.1.1.2集合间的基本关系1、下列六个关系式,其中正确的有( )①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A.6个B.5个 C.4个 D.3个及3个以下2、已知集合A,B,若A不是B的子集,则下列命题中正确的是( )A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈A C.存在a0,满足a0∈A,a0∉BD.存在a0,满足a0∈A,a0∈B3、设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是( )A.a≥2 B.a≤1 C.a≥1 D.a≤24、如果A={x|x>-1},那么( )A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A5、已知集合A={x|-1<x<2},B={x|0<x<1},则( )A.A>B B.A B C.B A D.A⊆B6、定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于( )A.A B.B C.{2} D.{1,7,9}7、以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x +2=0},N={y|y2-3y+2=0}.其中表示相等的集合有( )A.2组 B.3组 C.4组 D.5组8、定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是( )A.4 B.8 C.16 D.329、设B={1,2},A={x|x⊆B},则A与B的关系是( )A.A⊆B B.B⊆A C.A∈B D.B∈A10、能满足关系{a,b}⊆{a,b,c,d,e}的集合的数目是()A.8个B.6个C.4个D.3个11、设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1},则A、B间的关系为________.12、设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.13、已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________.14、已知A = {0,1}且B = {x |x A⊆},求B.15、设集合A = {x–y,x + y,xy},B = {x2 + y2,x2–y2,0},且A = B,求实数x和y的值及集合A、B.16、设A = {x | x2– 8x + 15 = 0},B = {x | ax– 1 = 0},若B A⊆,求实数a组成的集合,并写出它的所有非空真子集.1、若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=( )A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1}2、已知集合M={1,2,3},N={2,3,4}则( )A.M⊆N B.N⊆M C.M∩N={2,3} D.M∪N={1,4}3、已知集合M={y|y=x2},N={y|x=y2},则M∩N=( )A.{(0,0),(1,1)} B.{0,1} C.{y|y≥0} D.{y|0≤y≤1}4、下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是( )A.1 B.2 C.3 D.45、设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6} C.{4,7} D.{5,8}6、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.47、已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于( )A.{2} B.{1,2} C.{2,3} D.{1,2,3}8、若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于( )A.{x|2<x≤3} B.{x|x≥1} C.{x|2≤x<3} D.{x|x>2}9、设集合S={x|x>5或x<-1},T={x|a<x<a+8},S∪T=R,则a的取值范围是( )A.-3<a<-1 B.-3≤a≤-1 C.a≤-3或a≥-1 D.a<-3或a>-110、已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.11、已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.12、满足条件{1,3}∪M={1,3,5}的集合M的个数是________.13、若集合A={x|x≤2},B={x|x≥a},且满足A∩B={2},则实数a=________.14、已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.15、已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B.16、设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.17、已知集合A = {–1,a2 + 1,a2– 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.18、集合A = {x | –1<x<1},B = {x | x<a},(1)若A∩B = ,求a的取值范围;(2)若A ∪B = {x | x<1},求a的取值范围.19、设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.1、已知集合U={1,3,5,7,9},A={1,5,7},则∁UA=( )A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2、集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁RB)=( )A.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}3、已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A.{-1,2} B.{-1,0} C.{0,1} D.{1,2}4、已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁UB)等于( )A.{2} B.{5} C.{3,4} D.{2,3,4,5}5、已知全集U={0,1,2},且∁UA={2},则A=( )A.{0} B.{1} C.∅ D.{0,1}6、设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( ) A.3个 B.4个 C.5个 D.6个7、已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )A.M∩N={4,6} B.M∪N=U C.(∁U N)∪M=U D.(∁UM)∩N=N8、已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为( )A.1 B.2 C.3 D.49、已知全集U=A∪B中有m个元素,(∁U A)∪(∁UB)中有n个元素.若A∩B非空,则A∩B的元素个数为( )A.mn B.m+n C.n-m D.m-n10、已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁UA={x|2≤x≤5},则a=________.11、设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁UC)=________.12、已知全集U={2,3,a2-a-1},A={2,3},若∁UA={1},则实数a的值是________.13、设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UA)∩B=∅,求实数m的取值范围为________.14、已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥52},求A∩B,(∁UB)∪P,(A∩B)∩(∁UP).15、已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁U A)={2},A∩(∁UB)={4},U=R,求实数a,b的值.16、已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁RB,求实数a的取值范围.1.1.4集合的全集与补集1、填空(1)若S = {2,3,4},A = {4,3},则∁S A = .(2)若S = {三角形},B = {锐角三角形},则∁S B = .(3)若S = {1,2,4,8},A =∅,则∁S A =(4)若U = {1,3,a2 + 3a + 1},A = {1,3},∁U A = {5},则a .(5)已知A = {0,2,4},∁U A = {–1,1},∁U B = {–1,0,2},求B = .(6)设全集U = {2,3,m2 + 2m– 3},A = {|m + 1| ,2},∁U A = {5},求m.(7)设全集U = {1,2,3,4},A = {x | x2– 5x + m = 0,x∈U},求∁U A、m.2、已知A = {0,2,4,6},∁S A = {–1,–3,1,3},∁S B = {–1,0,2},用列举法写出集合B.3、已知全集S = {1,3,x3 + 3x2 + 2x},A = {1,|2x– 1|},如果∁S A = {0},则这样的实数x 是否存在?若存在,求出x;若不存在,请说明理由.4、已知集合S = {x | 1<x≤7},A = {x | 2≤x<5},B = {x | 3≤x<7}. 求:(1)(∁S A)∩(∁S B);(2)∁S (A∪B);(3)(∁S A)∪(∁S B);(4)∁S (A∩B).5、若集合S = {小于10的正整数},A S⊆,且(∁S A)∩B = {1,9},A∩B = {2},(∁S A)∩⊆,B S(∁S B) = {4,6,8},求A和B.1.2.1函数的概念1、下列(1)、(20、(3)是否满足函数定义(1) 若物体以速度v 作匀速直线运动,则物体通过的距离S 与经过的时间t 的关系是S = vt . (2) 某水库的存水量Q 与水深h (指最深处的水深)如下表:水深h (米) 0 5 10 15 20 25存水量Q (立方)0 20 40 90 160 275 (3) 设时间为t ,气温为T (℃),自动测温仪测得某地某日从凌晨0点到半夜24点的温度曲线如下图.2、 函数y = f (x )表示( )A .y 等于f 与x D .对于不同的x ,y 值也不同3、 下列四种说法中,不正确的是( )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素4、 已知f (x ) = x 2 + 4x + 5,则f (2) = ,f (–1) = .5、 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( )20 15 10 5 06 12 18 24℃1.2.1函数的概念(第二课时函数的三要素)1、求下列函数的定义域.(1)1()2f x x =-;(2)()32f x x =+;(3)1()12f x x x=++-.2、(1)已知f (x ) = 2x + 3,求f (1),f (a ),f (m + n ),f [f (x )].(2)①已知f (x ) = x 2 + 1,则f (3x + 2) = ;②已知f (x ) = 2x 3 – 1,则f (–x ) = .(3)已知函数f (x ) =1,(0),(0)0,(0)x x x x π+>⎧⎪=⎨⎪<⎩,则f {f [f (–1)]} = .(4)在函数f (x ) =22,(1),(12)2,(2)x x x x x x +≤-⎧⎪-<<⎨⎪≥⎩中,若f (x ) = 3,则x 的值是( )A .1B .1或32C .±333、 求下列函数的定义域(1)2112y x =-+; (2)224x y x -=-; (3)1||y x x =+;(4)142y x x =--; (5)214||3y x x --; (6)3y ax =-a 为常数). 4、(1)已知函数f (x )的定义域为(0, 1),求f (x 2)的定义域.(2)已知函数f (2x + 1)的定义域为(0, 1),求f (x )的定义域.(3)已知函数f (x + 1)的定义域为[–2, 3],求f (2x 2 – 2)的定义域.1.2.2函数的表示法(一)1、某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场销售与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(注:市场售价和种植成本的单位:元/102kg,时间单位:天)(1)写出图一表示的市场售价间接函数关系P = f (t). 写出图二表示的种植成本与时间的函数关系式Q = g (t).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?2、下图中可作为函数y = f (x)的图象是()3、函数||x=+的图象为下图中的()y xx4、作出下列函数的图象:(1)y = |x– 1| + 2 |x– 2|;(2)y = |x2– 4x + 3|.1.2.2函数的表示法(二)求函数解析式1、(1)已知f (x )是一次函数,且f [f (x )] = 4x – 1,求f (x )及f (2);(2)已知21(1)1xf xx +=-,求f (x )的解析式;(3)已知12()f x +f (x ) = x (x ≠0),求f (x )的解析式;(4)已知3f (x 5) + f (–x 5) = 4x ,求f (x )的解析式.2、 设f (x )是R 上的函数,且满足f (0) = 1,并且对任意实数x ,y ,有f (x – y ) = f (x ) – y (2x – y + 1),求f (x )的表达式.3、 已知f (x )为二次函数,且f (x +1)+f (x –1) = 2x 2–4x , 求f (x )的表达式.4、用长为l 的铁丝变成下部为矩形,上部为半圆形的框架如图所示,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出其定义域.5、 经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g (t ) =110933t -+(t ∈N*,0<t ≤100),在前40天内价格为f (t ) =14t + 22(t ∈N*,0≤t ≤40),在后60天内价格为1()522f t t =-+(t ∈N*,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).2xD C1.3.1第一课时 函数的单调性1、函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定2、函数f (x )在R 上是增函数,若a +b ≤0,则有( )A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )3.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x 1-x+2.其中在(-∞,0)上为减函数的是( )A .①B .④C .①④D .①②④ 4、函数y =-x 2的单调减区间是( )A .[0,+∞) B.(-∞,0] C .(-∞,0) D .(-∞,+∞) 5、若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( ) A .单调递增B .单调递减C .先减后增D .无法判断6、已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上 7、设函数f (x )在(-∞,+∞)上为减函数,则( )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 8、下列四个函数在(-∞,0)上为增函数的是( )①y =|x |;②y =|x |x ;③y =-x 2|x |;④y =x +x|x |.A .①②B .②③C .③④D .①④ 9、下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个10、若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 11、若函数y =-b x在(0,+∞)上是减函数,则b 的取值范围是________.12、已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.13、y =-(x -3)|x |的递增区间是________. 14、若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.15、已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.16、设函数y=f(x)=ax+1x+2在区间(-2,+∞)上单调递增,求a的取值范围.17、(1)请根据下图描述某装配线的生产率与生产线上工人数量间的关系.(2)整个上午(8∶00~12∶00)天气越来越暖,中午时分(12∶00~13∶00)一场暴风雨使天气骤然凉爽了许多. 暴风雨过后,天气转暖,直到太阳落山(18∶00)才又开始转凉. 画出这一天8∶00~20∶00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.(3)根据下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数.18、证明函数f (x) = –2x +1在R上是减函数.19、证明函数f (x) =1x在(0,+∞)上是减函数.1.3.1. 第二课时 函数的最大(小)值1、函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2 2、函数y =x +1-x -1的值域为( )A .(-∞, 2 ]B .(0, 2 ]C .[2,+∞)D .[0,+∞)3、函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1 C .2 D .以上都不对4、函数f (x )=x 2在[0,1]上的最小值是( )A .1B .0 C.14D .不存在5、函数f (x )=⎩⎨⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对 6、函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1 D .不存在7、函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13 D .-128、某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元9、已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 10、已知x ,y ∈R +,且满足x 3+y4=1.则xy 的最大值为________.11、函数y =2x 2+2,x ∈N *的最小值是________.12、已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.13、函数f (x )=x x +2在区间[2,4]上的最大值为________;最小值为________.14、已知函数f (x )=⎩⎪⎨⎪⎧x 2-12≤x ≤11x1<x ≤2,求f (x )的最大、最小值.15、某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?16、求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.17、已知函数f (x ) = x 2 – 2x – 3,若x [t ,t +2]时,求函数f (x )的最值.18、、甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,已知汽车每小时的运输成本(单位:元)由可变部分和固 定部分组成,可变部分与速度x (km / h)的平方成正比,比例系数为a ,固定部分为b 元,请问,是不是汽车的行驶速度越快,其全程成本越小?如果不是,那么为了使全程运输成本最小,汽车应以多大的速度行驶?19、 已知函数f (x ) =22x x ax++,x ∈[1,+∞).(Ⅰ)当a =12时,求函数f (x )的最小值;(Ⅱ)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.20、 已知函数f (x )对任意x ,y R ,总有f (x ) + f ( y ) = f (x + y ),且当x >0时,f (x )<0,f (1) =23-.(1)求证f (x )是R 上的减函数;(2)求f (x )在[–3,3]上的最大值和最小值.1.3.2 函数的奇偶性(第一课时)1、下列命题中,真命题是( )A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数2、奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为( )A.10 B.-10 C.-15 D.153.f(x)=x3+1x的图象关于( )A.原点对称 B.y轴对称 C.y=x对称D.y=-x对称4、函数f(x)=x的奇偶性为( )A.奇函数B.偶函数 C.既是奇函数又是偶函数D.非奇非偶函数5、下列函数为偶函数的是( )A.f(x)=|x|+x B.f(x)=x2+1xC.f(x)=x2+x D.f(x)=|x|x26、设f(x)是R上的任意函数,则下列叙述正确的是( )A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数7、已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx( ) A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数 D.是非奇非偶函数8、奇函数y=f(x)(x∈R)的图象必过点( )A.(a,f(-a)) B.(-a,f(a)) C.(-a,-f(a)) D.(a,f(1a ))9、f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时( )A.f(x)≤2 B.f(x)≥2 C.f(x)≤-2 D.f(x)∈R10、如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.11、若函数f(x)=(x+1)(x-a)为偶函数,则a=________.12、下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x ∈R)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.13、①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.14、判断下列函数的奇偶性:(1)f(x)=(x-1) 1+x1-x;(2)f(x)=⎩⎨⎧x2+x x<0-x2+x x>0.15、判断函数f(x)=1-x2|x+2|-2的奇偶性.16、若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.试判断f(x)的奇偶性.17、如果f (0) = a≠0,函数f (x)可以是奇函数吗?可以是偶函数吗?为什么?18、如果函数f (x)、g (x)为定义域相同的偶函数,试问F (x) =f (x) + g (x)是不是偶函数?是不是奇函数?为什么?19、如图,给出了奇函数y = f (x)的局总图象,求f (– 4).20、如图,给出了偶函数y = f (x)的局部图象,试比较f (1)与 f (3)21、判断下列函数的奇偶性:(1)f (x(2)f (x) =2||1xx+.22、(1)设f (x)是偶函数,g (x)是奇函数,且f (x) + g (x) =11x+,求函数f (x),g (x)的解析式;(2)设函数f (x)是定义在(–∞,0)∪(0,+∞)上的奇函数,又f (x)在(0,+∞)上是减函数,且f (x)<0,试判断函数F (x) =1()f x在(–∞,0)上的单调性,并给出证明.1.3.2 函数的奇偶性 (第二课时)1、若函数f(x)=x 3(x ∈R),则函数y =f(-x)在其定义域上是( )A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数 2、定义在R 上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得( ) A .a<b B .a>b C .|a|<|b| D .0≤a<b 或a>b≥03.已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x 2-2x ,则f(x)在R 上的表达式是( ) A .y =x(x -2) B .y =x(|x|+2) C .y =|x|(x -2) D .y =x(|x|-2)4、已知f(x)=ax 3+bx -4,其中a ,b 为常数,若f(-2)=2,则f(2)的值等于( ) A .-2 B .-4 C .-6 D .-105、若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f(-32)与f(a 2+2a +52)的大小关系是( )A .f(-32)>f(a 2+2a +52)B .f(-32)<f(a 2+2a +52)C .f(-32)≥f(a 2+2a +52)D .f(-32)≤f(a 2+2a +52)6、若f(x),g(x)都是奇函数,F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,则F(x)在 (-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-37、若函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( )A .f(3)+f(4)>0B .f(-3)-f(-2)<0C .f(-2)+f(-5)<5D .f(4)-f(-1)>08、已知定义在R 上的奇函数f(x),当x >0时,f(x)=x 2+|x|-1,那么x <0时,f(x)的解析式为f(x)=( )A .x 2-|x|+1B .-x 2+|x|+1C .-x 2-|x|-1D .-x 2-|x|+19、定义在R 上的偶函数f(x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2) 10、函数f(x)=x 3+a x ,f(1)=3,则f(-1)=________.11、若函数f(x)=(k -2)x 2+(k -1)x +3是偶函数,则f(x)的递减区间是________.12、若f(x)是偶函数,当x ∈[0,+∞)时f(x)=x -1,则f(x -1)<0的解集是________.13、函数f(x)是定义在R 上的奇函数,且它是减函数,若实数a ,b 满足f(a)+f(b)>0,则a +b________0(填“>”、“<”或“=”).14、已知函数f(x)=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.15、设函数f(x)在R 上是偶函数,在区间(-∞,0)上递增,且f(2a 2+a +1)<f(2a 2-2a +3),求a 的取值范围.16、已知f(x)为偶函数,g(x)为奇函数,且满足f(x)+g(x)=1x -1,求f(x),g(x).第一章 集合与函数概念测试卷1.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个2.若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是 ( ) A.11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B.{}23x x << C. 122x x ⎧⎫-<<⎨⎬⎩⎭D.112x x ⎧⎫-<<-⎨⎬⎩⎭3.已知全集U =A B 中有m 个元素,()()U U A B 中有n 个元素.若A B 非空,则A B 的元素个数为( )A .mnB .m n +C .n m -D .m n -4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( )A. 在1t 时刻,甲车在乙车前面B. 1t 时刻后,甲车在乙车后面C. 在0t 时刻,两车的位置相同D. 0t 时刻后,乙车在甲车前面5.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A. 0B. 21C. 1D. 256.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x 2+x-6=0},则P∩Q 等于( ) A.{1,2,3} B.{2,3} C.{1,2} D.{2}7.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}8.若P={x|y=x 2},Q={(x,y)|y=x 2,x∈R},则必有( ) A.P∩Q=∅ B.P Q C.P=Q D.P Q 9.设集合M={x| x>1},P={x| x 2-6x+9=0},则下列关系中正确的是( ) A.M=P B.P M C.M P D.M∩P=R10.定义集合A 与B 的运算A*B={x|x∈A 或x∈B,且x ∉A∩B},则(A*B)*A 等于( ) A.A∩B B.A∪B C.A D.B11.函数f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,则函数g(x)=xx f )(在区间(1,+∞)上一定A.有最小值B.有最大值C.是减函数D.是增函数 ( ) 12.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .13. 函数()f x 对任意正实数,x y 。

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。

高一数学(必修一)第一章《1.1.1集合的含义与表示》练习题

高一数学(必修一)第一章《1.1.1集合的含义与表示》练习题

一、选择题之答禄夫天创作
创作时间:二零二一年六月三十日
1.给出下列表述:①联合国常任理事国 ; ②充沛接近
2的实数的全体;③方程210x x +-= 的实数根; ④全国著名的高等院校.以上能构成集合的是( )
A 、①③
B 、①②
C 、①③④
D 、①②③④
{}2,1,12--x x 中的x 不能取的值是( )
A 、2
B 、3
C 、4
D 、5
3.下列集合中暗示同一集合的是( )
A 、(){}{})3,2(,2,3==N M
B 、(){}{}2,1,2,1==N M
C 、{(,)|1},{|1}M x y x y N y x y =+==+=
D 、{3,2},{2,3}M N ==
二、填空题
.
{}1,3,132+-∈-m m m , 则m=________________.
7.(1)方程组⎩⎨⎧=-=+52y x y x 的解集用列举法暗示为____________.用
描述法暗示为___________.(2)两边长分别为3, 5的三角形中,
第三条边可取的整数的集合用列举法暗示为__________, 用描述法暗示为______________. 三、解答题
合:
(1){|7,,};x x y x N y N +++=∈∈
(2){(,)|7,,};x y x y x N y N +++=∈∈
(3)
2{|1,23,}y y x x x Z =--<<∈ 1.1.1 集合的含义与暗示
附件1:律师事务所反盗版维权声明
附件2:独家资源交换签约学校名录(放年夜检查) 学校名录拜会: 创作时间:二零二一年六月三十日。

人教A版高中数学必修一1.1 集合的概念专练(含解析)(158)

人教A版高中数学必修一1.1 集合的概念专练(含解析)(158)

1.1 集合的概念一、单选题1.下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数 答案:B解析:根据集合定义与性质一一判断即可. 详解:A 中对象不确定,故错;B 中对象可以组成集合;C 中视力比较好的对象不确定,故错;D 中相差很小的对象不确定,故错. 故选:B2.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-= B .{(-1,3)} C .{3,-1} D .{-1,3}答案:B解析:由题意知,集合A 代表点集,解方程组即可求解. 详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)}, 故选:B.3.已知集合{1}A x Nx k =∈<<∣,集合A 中至少有3个元素,则( ) A .3k > B .3k ≥ C .4k > D .4k ≥答案:C解析:由集合A 中至少有3个元素,即可得到k 的取值范围. 详解:解:{1}A x Nx k =∈<<∣且集合A 中至少有3个元素,4k ∴>.故选:C.4.设数集31{|},{|}43M x m x m N x n x n =≤≤+=-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{|}x a x b ≤≤的“长度”,那么集合M∩N 的“长度”的最小值是 A .13B .23C .112D .512答案:C 详解:试题分析:根据题意,M 的长度为34,N 的长度为13,当集合M∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M∩N 的长度的最小值是31114312+-=,故选C . 考点:新定义;集合运算5.已知集合{|21,}A x x m m ==-∈Z ,{|2,}B x x n n ==∈Z ,且123,,x x A x B ∈∈,则下列判断不正确的是( ) A .12x x A ⋅∈ B .23x x B ⋅∈ C .12x x B +∈ D .123x x x A ++∈答案:D解析:集合A 表示奇数集,集合B 表示偶数集,所以12,x x 是奇数,3x 是偶数,奇数加奇数为偶数可判断D 选项错误. 详解:集合A 表示奇数集,集合B 表示偶数集, ∴12,x x 是奇数,3x 是偶数,∴12x x ⋅为奇数,23x x ⋅为偶数,12x x +为偶数,123x x x ++为偶数. 故选:D 点睛:本题考查元素与集合的关系,解题的关键是充分运用奇数、偶数相加或相乘的性质,属于基础题.6.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为A .12- B .0或12C .1-D .1-或12-答案:D解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解. 详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解,当10,1a a +==-时,方程为220,1x x -+==,满足题意; 当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-, 所以1a =-或12a =-. 故选:D. 点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题. 7.下列关系正确的是( ) A .3∈y|y=x 2+π,x∈R} B .(a ,b)}=(b ,a)} C .(x ,y)|x 2-y 2=1}(x ,y)|(x 2-y 2)2=1} D .x∈R|x 2-2=0}=答案:C解析:试题分析:2{y |y x x R}{y |y }ππ∈≥=+,=, ∵3<π,∴23{y |y x π∉=+}. (a ,b)}与(b ,a)}中元素不相同, ∴(a,b)}与(b ,a)}不一定相等.(x ,y)|(x 2-y 2)2=1}=(x ,y)|x 2-y 2=1或x 2-y 2=-1}, ∴C 是正确的.x∈R|x 2-2=0}=2,-2}≠.考点:元素与集合、集合与集合的关系 点评:此类问题要先确定集合,再进行判断. 8.集合3,x ,x 2–2x}中,x 应满足的条件是( ) A .x≠–1B .x≠0C .x≠–1且x≠0且x≠3D .x≠–1或x≠0或x≠3答案:C解析:利用集合元素的互异性求解. 详解:集合3,x ,x 2–2x}中,x 2–2x≠3,且x 2–2x≠x,且x≠3, 解得x≠3且x≠–1且x≠0, 故选:C .9.下列关系中*102Q R N Z π∈∈∈①,③④,正确的个数是( ) A .1 B .2 C .3 D .4答案:B解析:根据元素与集合的关系进行判断. 详解:解:对于①:12是一个有理数,Q 是有理数集,12Q ∴∈;故①正确.R 是实数集;R ;故②正确.对③:0是一个自然数,但不是正整数,*N 是正整数集,*0N ∴∉;故③错误. 对于④:π是实数但不是整数,Z 是整数集,Z π∴∉; 故④错误; 故正确的有2个 故选:B . 点睛:本题主要考查元素与集合的关系,属于基础题 10.下列四个集合中,不同于另外三个的是( ) A .{}2y y = B .{}2x = C .{}2D .{}2440x x x -+=答案:B解析:选项A ,C ,D 中元素都是实数2,而选项B 中元素为等式2x =,即可得到答案. 详解:对选项A ,{}{}22y y ==,元素为实数2; 对选项B ,{}2x =,元素为等式2x =; 对选项C ,{}2,元素为实数2;对选项D ,{}{}24402x x x -+==,元素为实数2.故选:B 点睛:本题主要考查集合的概念,属于简单题. 二、填空题1.已知集合A=1,2,3,4,5,6,7},则集合{|,,,}2x B x x a b a A b A N +==⨯∈∈∈中元素的个数为_____.答案:15解析:试题分析:B 表示任取的两个元素a ,b (a ,b 可以相同)之积为偶数的集合,又1×6=2×3,3×4=2×6,1×4=2×2,所以集合B 的元素的个数为11124333315C C C C ++-=.故答案是:15.考点: 元素与集合关系的判断.2.已知集合{}2|210,A x ax x x R =++=∈的子集只有两个,则a 的值为 .答案:0或1 详解:因为集合{}2|210,A x ax x x R =++=∈的子集只有两个,所以中只有一个元素,0a =合题意, 4401a a ∆=-=⇒=,所以.3.2{|420}A x ax x =-+=至多有一个元素,则a 的取值范围是___________.答案:{|2a a 或0}a =解析:由集合A 为方程的解集,根据集合A 中至多有一个元素,转化为方程至多有一个解求解. 详解:当0a =时,方程2420ax x -+=,即为12x =,1{}2A =,符合题意; 当0a ≠时,因为2420ax x -+=至多有一个解, 所以△1680a =-, 解得2a ,综上,a 的取值范围为:2a 或0a =. 故答案为:{|2a a 或0}a =. 点睛:本题主要考查集合元素的个数以及方程的解,还考查了分类讨论思想,属于基础题. 4.用描述法表示被4除余3的正整数集合:______.答案:x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式. 详解:设该数为x ,则该数x 满足x =4n+3,n∈N; ∴所求的正整数集合为x|x =4n+3,n∈N}. 故答案为:x|x =4n+3,n∈N}. 点睛:本题主要考查集合的表示方法,属于基础题.5.数集{}22,a a a -中a 的取值范围是___________()a ∈R .答案:(,0)(0,3)(3,)-∞⋃⋃+∞解析:由集合的互异性可得22a a a ≠-,计算可得a 不能取得的取值,再表示出a 的取值范围即可. 详解:由集合的互异性可知,22(3)0a a a a a ≠-⇒-≠,所以0a ≠且3a ≠, 故(,0)(0,3)(3,)a ∈-∞⋃⋃+∞. 故答案为:(,0)(0,3)(3,)-∞⋃⋃+∞. 点睛:本题主要考查集合中元素的互异性,最后的答案可以写成集合或者区间的形式. 三、解答题1.已知集合A =x∈R|ax 2+2x +1=0},其中a∈R.若1是集合A 中的一个元素,请用列举法表示集合A.答案:1,13A ⎧⎫=-⎨⎬⎩⎭解析:把1代入方程求得a ,然后再解方程得解集. 详解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a×12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =-13,1}.故答案为:1,13⎧⎫-⎨⎬⎩⎭.点睛:本题考查集合的概念,属于简单题. 2.已知3,⎛⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==. 点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解. 3.已知集合{|37},{|210}A x x B x x =≤<=<<,求()()R R ()(),,R R A B A B A B A B ⋃⋂⋂⋃,.答案:(){|2R A B x x ⋃=≤或10},(){|3R x A B x x ⋂=<或7}x ,(){|23R A B x x ⋂=<<或710}x <,(){|2R A B x x ⋃=或37x <或10}x解析:直接根据交集,并集和补集的运算法则得到答案. 详解:{|210},{|37}A B x x A B x x ⋃=<<⋂=≤<,{|3RA x x =<或 7}x ≥,{|2RB x x =≤或10}x ≥,(){|2R A B x x ∴⋃=≤或10},(){|3R x A B x x ≥⋂=<或7}x ≥,(){|23R A B x x ⋂=<<或710}x ≤<,(){|2R A B x x ⋃=≤或37x ≤<或10}x ≥.点睛:本题考查了交并补的混合运算,意在考查学生的计算能力. 4.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(A,B 是两个不同定点); (2){|3}P PO cm =(O 是定点)答案:(1)线段AB 的垂直平分线;(2)以点O 为圆心,3cm 长为半径的圆. 解析:(1)PA PB =指平面内到,A B 距离相等的点的集合; (2)3PO cm =指平面内到定点O 的距离为3cm 的点的集合. 详解:(1) PA PB =指平面内到,A B 距离相等的点的集合,这样的点在线段AB 的垂直平分线上,即集合的点组成的图形是线段AB 的垂直平分线;(2) 3PO cm =指平面内到定点O 的距离为3cm 的点的集合,这样的点在以O 为圆心,以3cm 为半径的圆上,即集合的点组成的图形是以点O 为圆心,3cm 长为半径的圆. 点睛:本题考查描述法表示集合,是基础题. 5.用区间表示下列的集合{|12}x x -<≤ 1{|}6x x -≤<- {|7}x x < {}|3x x ≥ {} 5|2x x ≤≤答案:(12]-,;[61)-,;(7)-∞,;[3)+∞,;[2]5, 解析:由集合的意义及区间的定义直接写出每个集合的区间表达形式. 详解:{|12}x x -<≤的区间表达为(12]-,; 1{|}6x x -≤<-的区间表达为[61)-,; {|7}x x <的区间表达为(7)-∞,; {}|3x x ≥的区间表达为[3)+∞, ; {} 5|2x x ≤≤的区间表达为[2]5,. 点睛:本题考查集合与区间的转换,属于基础题.。

人教A版高中数学必修一1.1 集合的概念专练(含解析)(143)

人教A版高中数学必修一1.1 集合的概念专练(含解析)(143)

1.1 集合的概念一、单选题1.下列关系正确的是( )A .{}10,1∉B .{}10,1⊆C .{}10,1∈D .{}{}10,1∈答案:C解析:利用元素与集合的关系逐项判断后可得正确的选项.详解:对于A ,{}10,1∈,故A 错.对于B ,{}10,1∈,故B 错.对于C ,因为1为集合中的元素,故C 正确.对于D ,{}1不是{}0,1中的元素,故D 错.故选:C.2.已知集合22{(,)|}A x y x y x Z y Z =+≤∈∈4,,,则A 中元素的个数为()A .15B .14C .13D .12答案:C解析:根据列举法,确定圆及其内部整点个数即可得出结果.详解:224x y +≤24x ∴≤,x Z ∈2,1,0,1,2x ∴=--,当2x =-时,0y =;当1x =-时,1,0,1y =-;当0x =时,2,1,0,1,2y =--当1x =时,1,0,1y =-;当2x =时,0y =;所以共有13个,故选:C.3.集合x∈N*|x–3<1}用列举法可表示为A .0,1,2,3}B .0,1,2,3,4}C .1,2,3}D .1,2,3,4}答案:C 解析:解不等式求得x 的范围,再用列举法求得对应的集合.详解:由31x -<解得4x <,由于x N *∈,所以1,2,3x =,故集合为{}1,2,3,故选C.点睛:本小题主要考查一元一次不等式的解法,考查列举法表示集合,属于基础题.4.若{}212,x x ∈+,则实数x 的值为 A .1-B .1C .1或1-D .1或3答案:B 解析:分类讨论21x +=或21x =,求出x ,检验即可.详解:因为{}212,x x ∈+,所以21x +=或21x =,所以1x =或1x =-, 当1x =-时,22x x +=,不符合题意,所以1x =-舍去;故以1x =,选B点睛:本题主要考查元素与集合之间的关系,注意集合中元素的互异性,属于基础题型.5.下列各项中,能组成集合的是( )A .高一(3)班的好学生B .嘉兴市所有的老人C .不等于0的实数D .我国著名的数学家答案:C解析:根据集合中的元素具有确定性可得选项.详解:∵对于A 、B 、D 选项中“高一(3)班的好学生”、“嘉兴市所有的老人”、“我国著名的数学家”标准不明确,即元素不确定.∴A、B 、D 选项不能构成集合.故选:C .点睛:本题考查集合的元素的特征之一:确定性,属于基础题.6.下列写法正确的是( )A .∅ {}0B .0 ∅C .{}0∅∈D .0∈∅答案:A解析:根据空集定义、空集为任意非空集合真子集、元素与集合关系、集合与集合之间的关系的表示方法依次判断各个选项即可得到结果.详解:空集是任意非空集合的真子集,故∅ {}0,A 正确;元素与集合关系不能用“包含”符号,B 错误;集合与集合关系不能用“属于”符号,C 错误;空集中不含有任何元素,故0∉∅,D 错误.故选:A点睛:本题考查集合中元素与集合、集合与集合之间的关系的辨析,属于基础题.7.已知集合{|2,},{|22}A x x k k Z B x x ==∈=-≤≤,则A B =( )A .[]1,1-B .[]22-,C .{0,2}D .{2,0,2}-答案:D解析:根据集合的交集的概念及运算,即可求得A B ,得到答案.详解:由题意,集合{|2,},{|22}A x x k k Z B x x ==∈=-≤≤,根据集合的交集的概念及运算,可得{2,0,2}A B =-.故选:D.点睛:本题主要考查了集合的表示方法,以及集合交集的概念及运算,属于基础题.8.以下说法中正确的个数是①0与{}0表示同一个集合;②集合{}3,4M =与(){}3,4N =表示同一个集合; ③集合{}45x x <<不能用列举法表示.A .0B .1C .2D .3答案:B 解析:①中,0表示一个实数,{}0表示同一个集合,可判定不正确;②中,根据集合表示的意义,可判定是不正确的;③中,集合{}45x x <<是一个无限数集,可判定是正确的,即可求解.详解:由题意,可得①中,0表示一个实数,{}0表示同一个集合,所以不正确;对于②中,根据集合的表示方法,可得{}3,4M =表示数集,(){}3,4N =表示点集,所以不正确; 对于③中,集合{}45x x <<是一个无限数集且无规律,不能用列举法表示,所以是正确的. 故选B.点睛:本题主要考查了集合的概念,以及集合的表示方法,其中熟记集合的概念,以及集合的表示方法是解答的关键.9.设集合{1A =,2,3,4},{3B =,4,5,6,7},集合{|M x x B =∈且}x A ∉,则M =( )A .{}1,2B .{}3,4C .{5,6,7}D .{3,4,5,6,7}答案:C解析:直接利用已知{|M x x B =∈且}x A ∉,依次验证元素,即可得到答案.详解:解:因为集合{|M x x B =∈且}x A ∉,所以M 中的元素在B 集合中,但是该元素不在A 集合中,因为{3B =,4,5,6,7},依次检验元素,可得元素5,6,7满足题意,所以{5,6,7}M =.故选:C .点睛:本题主要考查元素与集合的关系,考查集合的新定义与运算,考查学生推理能力,属于基础题.10.把集合{}2450x x x --=用列举法表示为( ) A .{}1,5x x =-= B .{}15x x x =-=或C .{}245=0x x --D .{}1,5-答案:D解析:先解方程,再用列举法表示.详解:24501x x x --=∴=-或5x = 所以{}2450x x x --=={}1,5-故选:D点睛:本题考查列举法,考查基本求解能力,属基础题.二、填空题1.已知非空集合{}|1A x ax ==,则a 的取值范围是____________.答案:0a ≠详解:略2.(上海市黄浦区2018届高三4月模拟(二模))已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是_________.答案:2解析:由题,若32,m -= 则1,m = 此时B 集合不符合元素互异性,故1;m ≠若31,2,m m -==则符合题意;若33,0,m m -==则不符合题意.故答案为23.方程组26x y x y +=⎧⎨-=⎩的解集用列举法表示为__________.答案:(){}4,2-解析:先求出方程组的解,根据列举法,可直接得出结果.详解:由26x y x y +=⎧⎨-=⎩解得42x y =⎧⎨=-⎩, 则方程组26x y x y +=⎧⎨-=⎩的解集用列举法表示为(){}4,2-. 故答案为:(){}4,2-.点睛:本题主要考查列举法表示集合,属于基础题型.4.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.5.用列举法表示集合{}220,x x x x R -=∈为__________________.答案:{}0,2解析:解出集合中的方程,然后用列举法表示出来.详解: 解:{}{}220,0,2x x x x R -=∈=,故答案为{}0,2.点睛:本题考查集合的表示,列举法,是基础题.三、解答题1.用适当的方法表示下列集合:(1)已知集合P =x|x =2n ,0≤n≤2且n∈N};(2)抛物线y =x 2-2x 与x 轴的公共点的集合;(3)直线y =x 上去掉原点的点的集合.答案:答案见解析解析:(1)用列举法即可求得集合的元素;(2)直接用描述法表示公共点的集合;(3)用描述法即可表示.详解:(1)因为02,n n N ≤≤∈,则0,2,4x =,故用列举法表示为:P =0,2,4}.(2)直接用描述法表示为:()22{,|}0y x x x y y ⎧=-⎨=⎩. (3)描述法:(x ,y)|y =x ,x≠0}.点睛:本题考查集合的表示方法,选择适当的方法即可,属简单题.2.已知集合{|1A x x =≤-或}5x ≥,{}22B x a x a =≤≤+.(1)若1a =-,求A B 和A B ;(2)若A B B =,求实数a 的取值范围.答案:(1){}21x x -≤≤-,{|1x x ≤或}5x ≥;(2)(](),32,-∞-⋃+∞.解析:(1)先求出集合B ,再求A B 和A B 得解;(2)由题得B A ⊆,再对集合B 分两种情况讨论得解.详解:(1)若1a =-,则{}21B x x =-≤≤,{}21A B x x ∴⋂=-≤≤-,{|1A B x x ⋃=≤或}5x ≥.(2)A B B =,B A ∴⊆.①若B =∅,则22a a >+,2a ∴>;②若B ≠∅,则2,21a a ⎧⎨+-⎩或2,25,a a ⎧⎨≥⎩3a ∴≤-. 综上,实数a 的取值范围为(](),32,-∞-⋃+∞.点睛:本题主要考查集合的交集、补集运算,考查根据集合的关系求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.已知(){}2210,,A x x p x x R A R +=+++=∈⋂=∅,求实数p 的取值范围.答案:()4,-+∞详解::因为A R +⋂=∅,所以集合A 分两种情况:(1)A 为空集,即方程()2210x p x +++=无解,()2240p ∆=+-<,解得40p -<<;(2)A 非空,即方程()2210x p x +++=有两负根,()21212402010p p x x p x x ⎧∆=+≥⎪+=-+<⎨⎪⋅=>⎩,解得042p p p ≥≥-⎧⎨>-⎩或,即0p ≥, 综上,实数p 的取值范围是()4,-+∞.4.设A 为实数集,且满足条件:若a∈A,则11a-∈A(a≠1). 求证:(1)若2∈A,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.答案:(1)见解析; (2)见解析.解析:(1) 由2∈A 得到-1∈A.由-1∈A 得到12∈A.由12∈A 得到2∈A.即得证.(2)假设a =11a -,则a 2-a +1=0,方程无解,所以集合A 不可能是单元素集. 详解:(1)若a∈A,则11a -∈A. 又∵2∈A,∴112-=-1∈A. ∵-1∈A,∴()111--=12∈A.∵12∈A,∴1112-=2∈A. ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11a -, 即a 2-a +1=0,方程无解. ∴a≠11a-,∴集合A 不可能是单元素集. 点睛:本题主要考查元素与集合的关系,意在考查学生对该知识的掌握水平和分析推理能力.5.用适当方法表示下列集合:(1)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(2﹣2|=0的解集;(3)由二次函数y =3x 2+1图象上所有点组成的集合.答案:(1)1,2,3,12,13,21,31,23,32,123,132,213,231,321,312};(2)1,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭;(3)(x ,y )|y =3x 2+1,x∈R}. 解析:(1)利用列举法求解即可;(2)先解出方程的解,然后利用列举法;(3)利用描述法即可详解:解:(1)当从1,2,3这三个数字中抽出1个数字时,自然数为1,2,3;当抽出2个数字时,可组成自然数12,21,13,31,23,32;当抽出3个数字时,可组成自然数123,132,213,231,321,312.由于元素个数有限,故用列举法表示为1,2,3,12,13,21,31,23,32,123,132,213,231,321,312}.(2)由算术平方根及绝对值的意义,可知:21020x y +=⎧⎨-=⎩,解得122x y ⎧=-⎪⎨⎪=⎩, 因此该方程的解集为(﹣12,2)}.(3)首先此集合应是点集,是二次函数y=3x2+1图象上的所有点,故用描述法可表示为(x,y)|y=3x2+1,x∈R}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1集合 课后练习题
一.选择题
1. 给出下列表述:①联合国常任理事国②充分接近2的实数的全体③方程
x 2+x-1=0的实数根④全国著名的高等院校。

以上能构成集合的是()
A. ①③
B. ①②
C. ①③④
D. ①②③④
2. 集合{ 1-x ,2,12-x }中的x 不能取的值是( )
A. 2
B. 3
C. 4
D. 5
3. 下列集合中,表示同一集合的是( )
A. M={(3,2)},N={(2,3)}
B. M={3,2},N={(3,2)}
C. M={(x,y )∣x+y =1},N={y ∣x+y =1}
D. M={3,2},N={2,3}
二.填空题
1. 若-3∈{ x-1,3x ,x 2+1},则x= 。

2. 方程组 {2
5=+=-y x y x 的解集用列举法表示为 ,用描述法表示为 。

3. 两边长分别为3,5的三角形中,第三条边可取的整数的集合用列举法表示
为 ,用描述法表示为 。

三.解答题
1. 用列举法表示下列集合:
(1) {x ∣x+y =7,x ∈N *,y ∈N *}
(2) {(x,y )∣x+y =7,x ∈
N *,y ∈N *} (3) { y ∣y =x 2-1,-2<x<3,x ∈Z}
2. 设集合B={x ∈N ∣x
+26∈N }. (1) 试判断元素1,元素2与集合B 的关系
(2) 用列举法表示集合B
3. 奇数集A={ x ∣x =2n+1,n ∈Z}可看成是除以2所得余数为1的所有整数的集
合,偶数集B={ x ∣x =2n ,n ∈Z}可看成是除以2所得余数为0的所有整数的集合。

(1) 试分别写出除以3所得余数为i(i=0,1,2)的所有整数的集合;
(2) 判断集合A={ x ∣x =2n+1,n ∈Z}与集合C={ x ∣x =4k ±1,n ∈Z}的关
系。

4. 设集合M={ a ∣a=x 2-y 2
,x ∈Z ,y ∈Z },求证:所有奇数属于集合M 。

参考答案:
一、1.A 2. B 3. D
二、1. -2 -1
2. {(
3.5,-1.5)} {(x,y)|⎪⎩
⎪⎨⎧-==23y 27x } 3. {3,4,5,6,7} {x|2<x<8,x ∈N}
三、
1.
(1){1,2,3,4,5,6}
(2){(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
(3){0,-1,3}
2
(1) 1∈B 2∉B
(2){0,1,4}
3.
(1){x|x=3n,n ∈Z} {x|x=3n+1,n ∈Z} {x|x=3n+2,n ∈Z}
(2)A=B
4.略。

相关文档
最新文档