西安交通大学附属中学航天学校九年级数学下册第四单元《投影与视图》测试卷(包含答案解析)

合集下载

九年级数学下册第四单元《投影与视图》测试卷(含答案解析)

九年级数学下册第四单元《投影与视图》测试卷(含答案解析)

一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm23.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时6.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.7.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个11.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.12.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题13.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.14.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.15.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.18.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.19.如图为一个长方体,则该几何体主视图的面积为______cm2.20.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.三、解答题21.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.22.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.23.如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.26.如图是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B .【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm 2, 故答案为:D .【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.3.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.4.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.7.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.8.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.11.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.12.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.二、填空题13.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x 时碟子的高度为2+15(x ﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x 时,碟子的高度为2+1.5(x ﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm ).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.14.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 15.24【解析】【分析】过点C 作CE ⊥BD 与点E 可得四边形CABE 是矩形知CE=AB=40AC=BE=1在Rt △CDE 中DE=tan30°•CE 求出DE 的长由DB=DE+EB 可得答案【详解】如图过点C 作解析:24【解析】【分析】过点C 作CE ⊥BD 与点E ,可得四边形CABE 是矩形,知CE =AB =40,AC =BE =1.在Rt △CDE 中DE =tan30°•CE 求出DE 的长,由DB =DE +EB 可得答案.【详解】如图,过点C 作CE ⊥BD 与点E .在Rt△CDE中,∠DCE=30°,CE=AB=40,则DE=tan30°•CE33=⨯40≈23,而EB=AC=1,∴BD=DE+EB=23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.16.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.10【解析】试题解析:10【解析】试题如图所示,作DH⊥AB与H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH = 45°,所以△ADH为等腰直角三角形,所以AH=DH=8 m,所以AB=AH+BH=8+2=10 m.所以本题的正确答案应为10米.18.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知解析:12结合主视图和俯视图分别求出a,b的值,随之即可解答.【详解】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,所以a+b=12.【点睛】本题考查组合体的三视图,熟悉掌握根据图像获取信息是解题关键.19.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.20.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.三、解答题21.(1)①见解析;②见解析;③见解析;(2)见解析【分析】(1)①根据线段的定义画图即可;②根据网格特点和平行线的定义画图即可;③根据网格特点和垂线的定义画图即可;(2)主视图有3列,左侧一列有3层,中间一列有2层,右侧一列有1层;【详解】(1)①如图所示;②如图所示;③如图所示;(2)如图所示,【点睛】本题考查了线段、平行线、垂线的画法,以及三视图的画法,熟练掌握三视图的画法是解答本题的关键.22.32【分析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解:根据该几何体的三视图知道其是一个六棱柱,设正六边形的中心为O ,连接OA 、OB ,作OD ⊥AB 于D ,由图可知其高为12cm ,底面半径为5cm ,∴侧面积为6×5×12=360cm 2,∵∠AOB=360°÷6=60°,∴△AOB 是等边三角形,∴AB=5cm ,OD=sin60°×OA=53cm , ∴密封纸盒2个底面的面积为:153********⨯⨯⨯⨯= cm 2, ∴其全面积为:(753+360)cm 2.【点睛】 本题考查了由三视图判断几何体,等边三角形的判定与性质,正六边形的性质,以及解直角三角形的知识,解题的关键是正确的判定几何体.23.(1)见解析;(2)10m【分析】(1)根据平行投影作图即可;(2)根据同一时刻,不同物体的物高和影长成比例计算即可;【详解】(1)如图所示:EF 即为所求;(2)∵AB =5m ,某一时刻AB 在阳光下的投影BC =3m ,EF =6m ,∴AB BC =DE EF ,则53=6DE , 解得:DE =10,答:DE的长为10m.【点睛】本题主要考查了平行投影,相似三角形的性质,准确分析计算是解题的关键.24.见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.25.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.26.(1)逐渐变短;(2)详见解析;(3)167【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA 并延长交直线BO 于点E,则线段BE 即为小亮站在AB 处的影子 (3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即 ∴x=5.8米当OD=6米时,设小亮的影长是y 米,∴DF CD DF OD OP =+ ∴1.66 5.8y y =+ y=167(米) 即小亮的影长是167米。

九年级数学投影与视图测试题(后附答案)

九年级数学投影与视图测试题(后附答案)

九年级数学投影与视图测试题(后附答案)(时限:100分钟 满分:100分)班级 ____________ 姓名 _________________ 总分 ____________________ 一、 — 题共12小题,每小题2分,共24 分)1. 平行投影中光线是( )A.平行的B.聚成一点的 C 不平行的D.向四面八方发散的 2. 木棒长为1.2m ,则它的正投影的长一定()A.大于1.2mB.小于1.2mC 等于1.2mD.小于或等于 1.2m3. 如图是一根电线杆在一天中不同时刻的影长图,试按一天中时间先后顺序排列,正A.①②③④B.④①③② C ④②③① D.④③②①4.下图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是()6. 如图是某几何体的三视图及相关数据,则判断正确的是(C.72cmD.192cmA. a >C B. b >C C. 4a 2+ b 2= c 2D. a 2+ b 2= c 2)A.24cmAB C D7. 如图是由一些相同的小正方体构成的几何体的三视图,则这个几何体的小正方体的 个数是(9•一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底边长10.下列投影一定不会改变厶 ABC 的形状和大小的是( )A.中心投影B.平行投影 C 正投影。

.当厶ABC 平行投影面时的平行投影主视图 B. 5左视图 C. 6A. 4个8.将一个几何体放在桌子上,它的三视图如下,这个几何体是(俯视图D. 7个主视图A.三棱体B ∙长方体C 正方体D 球体A. 3,2√B. 2,2√C. 3, 2D. 2,311.已知一个物体由X 个相同的正方体堆成,值是()它的主视图和左视图如图, 那么X 的最大A. 13B. 12C. 11D.1012.下面左图表示一个由相同小立方块搭成的几何体的俯视图,位置上小立方块的个数,则该几何体的主视图为(小正方形中的数字表示 )俯视图 分别为(主视图左视图俯视图A B C D2420.如图,水平放置的长方体的底面是边长为则长方体的体积等于 __________ .2和4的矩形,它的左视图的面积为 6,、填空题:(本大题共8小题,每小题3分,共24分)13. 在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 _________.(填序号)14. 由一些大小相同的小正方体组成的几何体三视图如图所示,那么,组成这个几何体的小正方体有 ____________ 块•主视图左视图 俯视图15. 正方形ABCD 的边长为3,以直线AB 为轴旋转一周,所得几何体的左视图的周长 是 ___________ .16. 如图是一个几何体的三视图,其中主视图、左视图、都是腰为13cm ,底为IOcm的等腰三角形,则这个几何体的表面积为 ____________ .17. 一个圆锥的轴截面平行于投影面, 已知圆锥的正投影是边长为a 的等边三角形,则圆锥的体积是 __________ .18. 某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的 影长为5m ,则该旗杆的高度为 ____________ m. 19. 如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是 ________________ (把下图中正确和立体图形的序号都填在横线上)③ ④三、解答题:(本大题共52分)21. ( 7分)圆形餐桌正上方有一个灯泡 A ,灯泡A 照射到餐桌后在地面上形成阴影已知餐桌的半径为 0∙4m 、高为1m ,灯泡距地面2.5m,求地面上阴影部分的面积A22. ( 7分)一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积∙23. (8分)某班一位学生要过生日了,为了筹备生日聚会,班主任准备让学生自己动 手制作生日礼帽.如图所示,是礼帽的三视图,请计算制作一个这样的生日礼帽需 要纸板的面积为多少?30cm4 20cm *一24. ( 8分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度 之和是一个定值.俯视图25. (8分)如图,花丛中有一路灯杆 AB ,在灯光下,小丽在D 点处的影长DE = 3米, 沿BD 方向行走到达 G 点,DG = 5米,这时小丽的影长 GH = 5米.如果小丽的身高 为1.7米,求路灯杆 AB 的高度(精确到0.1米)26. ( 7分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂 上颜色部分的面积.27. ( 7分)观察下列由棱长为 1的小立方体摆成的图形•寻找规律,如图①中共有 1个小立方体,其中1个看得见,0个看不见;如图②共有 8个立方体,其中7个看 得见,1个看不见;如图③中,共有 27个小立方体,其中19个看得见,8个看不照此规律,请你判断第⑥个图中有多少个小立方块,有多少个看不见?③a同理BN = b -^FB.a• MB + BN = (DB + FB)=常数(定值) b-a、选择题:参考答案:1.A ;2.D ;3.B ;4.B ;5.B ;6.D ;7.B ;8.A ;9.C ; 二、填空题:10.D ; 11.C ; 12.C ;13.②;14.5; 15.18 π; 16.90 ∏cm2; 17. n ;18.15 ; 19.①、②、 ④;20.24 ;三、解答题:21.解:如图所示, DE// BC 设底面半径为 可得22.解: 23.解:0.4 =1.5=解得•••底面面积为:该几何体的形状是直四棱柱 .由三视图可知:棱柱底面菱形的对角线长分别为5•菱形的边长为-Cm5•棱柱的测面积=2× 8× 4 = 80 (cm 2)由三视图可知,该几何体是圆锥体 其中,底面直径是 20cm ,高为 30cm. 则圆锥的母线长为 圆锥的表面积为1S=1× 20 π× 4cm 、3cm ,=100 π√10 ( cm 2)•制作生日礼帽需要纸板 100 ∏√0 (cm 2).24.解:如图所示,CD EF 为路灯高度,BM 、BN 为该人前后的两个影子 AB 为该人高度,∙∙∙ AB // CDMB a DM = bMB _ a DB b-aa即MB=b-TDB.F√102+ 302= 10√∣0cm25. 解:如图所示,∙∙∙ CD// AB26. 解:从前、后、左、右看该物体均为 6个正方形,从上面看有9个正方形,所以被涂上颜色部分的面积为6 × 100 × 4+ 900= 3300.27. 解:照此规律,第⑥个图形中有 216个小立方块,有125个小立方块看不见CD 3 X BE1.7 3 x-1.7BD 1.75 x-1.7BG ②得3BD1.7 3—C C 1.7—3—2 1∙75E G15∙∙∙.∙. X ≈ 6.①5 同理BD + 55 BD + 5x-1.72。

2022九年级下册数学 投影与视图 测试题

2022九年级下册数学 投影与视图 测试题
24.如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3 m,沿BD方向行走到达G点,DG=5 m,这时大华的影长GH=4 m如果大华的身高为2 m,求路灯杆AB的高度.
人教版九年级数学下册 第二十九章 投影与视图 测试题
一、选择题(每小题4分,共40分)
1.下列各种现象属于中心投影现象的是()
(2)画出它的任意一种表面展开图;
(3)若主视图是长方形,其长为 ,俯视图是等边三角形,其边长为 ,求这个几何体 侧面积.
22.如图所示,(1)根据物体的三视图描述物体的形状;(2)要给物体的表面全部涂上防腐材料,根据图中数据计算需要涂上防腐材料的面积.(精确到1 cm2,π≈3.14)
23.为解决楼房之间 挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米. ≈1.732, ≈1.414)
A. B. C. D.
【答案】B
【解析】
【详解】解:∵球的主视图、左视图、俯视图都是圆,
∴主视图、左视图、俯视图都相同的是B,
故选B.
8.如图所示,所给的三视图表示的几何体是()
A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱
【答案】D
【解析】
【详解】解:∵左视图和俯视图都是长方形,
∴此几何体为柱体,
∵主视图是一个三角形,
∴此几何体为正三棱柱.
故选D.
9.如图是一个几何体的三视图,则该几何体的侧面积是( )
A.2 πB.10π
C.20πD.4 π

西安交通大学附属中学分校九年级数学下册第四单元《投影与视图》测试(包含答案解析)

西安交通大学附属中学分校九年级数学下册第四单元《投影与视图》测试(包含答案解析)

一、选择题1.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.2.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶3.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个4.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个5.如图,该几何体的俯视图是()A.B.C.D.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A .主视图B .左视图C .俯视图D .主视图和左视图 7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A .6个B .7个C .8个D .9个9.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 10.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是( )A.0个B.1个C.4个D.3个11.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:912.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.二、填空题13.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.14.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为_____.15.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.17.张三和李四并排站立在阳光下,张三身高1.80米,他的影长2.0米,李四比张三矮9厘米,此时李四的影长是___米.18.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG 中,12,18EF cm EG cm ==,45EFG ∠=︒,则AB 的长为_____cm .参考答案19.如图,在A 时测得旗杆的影长是4米,B 时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.20.写出两个三视图形状都一样的几何体:__________、__________.三、解答题21.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.22.如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.23.如图是由6个棱长为1的小正方体组成的简单几何体.(1)请在方格纸中分别画出该几何体的主视图、左视图和俯视图;(2)该几何体的表面积(含下底面)为.(直接写出结果)24.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).25.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.26.如图是由一些大小相同的小正方体组合成的简单几何体.(1)请在下面方格中分别画出它的三个视图;(2)如果在这个几何体上再添加一些正方体,并保持主视图和左视图不变,最多可以再添加块小正方体.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据主视图的概念即可求解.【详解】A.是左视图.故该选项错误;B.不是主视图.故该选项错误;C.是俯视图.故该选项错误;D.是主视图.故该选项正确.故选:D【点睛】此题主要考查组合体的三视图,正确理解每种视图的概念是解题的关键.2.A解析:A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,故选:A.【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.3.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.4.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.5.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.7.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.8.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.9.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.10.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.11.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.12.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF 的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得A B20'=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π解析:90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.【详解】解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为90π.15.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.16.54【解析】试题解析:54【解析】试题由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.17.19【分析】设李四的影长是x米利用同一时刻影长与物体的高度成正比得到然后解方程即可【详解】解:设李四的影长是x米根据题意得解得x=19答:李四的影长是19米故答案为:19【点睛】此题主要考查了平行投解析:1.9【分析】设李四的影长是x米,利用同一时刻影长与物体的高度成正比得到2.01.800.09 1.80x=-,然后解方程即可.【详解】解:设李四的影长是x米,根据题意得2.0 1.800.09 1.80x=-,解得x=1.9.答:李四的影长是1.9米.故答案为:1.9【点睛】此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.18.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图解析:【分析】作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=2EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.19.8【分析】如图∠CPD=90°QC=4mQD=9m 利用等角的余角相等得到∠QPC=∠D 则可判断Rt △PCQ ∽Rt △DPQ 然后利用相似比可计算出PQ 【详解】解:如图∠CPD=90°QC=4mQD=16解析:8【分析】如图,∠CPD=90°,QC=4m ,QD=9m ,利用等角的余角相等得到∠QPC=∠D ,则可判断Rt △PCQ ∽Rt △DPQ ,然后利用相似比可计算出PQ .【详解】解:如图,∠CPD=90°,QC=4m ,QD=16m ,∵PQ ⊥CD ,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.20.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相解析:球;正方体.【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.三、解答题21.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.22.(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判定与性质. 23.(1)图见解析;(2)26【分析】(1)根据该几何体画出三视图即可;(2)将这个几何体前后左右上下,共六个面的面积计算出来,求和即可得到该几何体表面积.【详解】解:(1)根据该几何体画出三视图即可,(2)将这个几何体前后左右上下,共六个面的面积计算出来,求和即可得到该几何体表面积,S =S =4后前,S =S =4右左,S =S =5下上,∴S =(4+4+5)2=26 表,答:该几何体表面积为26.【点睛】本题主要考察了物体的三视图的画法及表面积的计算,解题的关键在于正确画出该几何体的三视图,并依据三视图求出表面积.24.【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.25.(1)14个;(2)见解析;(3)33cm2【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.26.(1)如图所示见解析;(2)最多可以再添加3块小正方体.【分析】(1)左视图有2列,每列小正方数形数目分别为3,1,俯视图有4列,每列小正方形数目分别为2,1,1,1.据此可画出图形.(2)保持主视图和左视图不变,可以在第1排空余位置添加3个,最多添加3个小正方体.【详解】(1)如图所示:(2)若保持主视图和左视图不变,最多可以再添加3块小正方体.【点睛】考查了作三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.。

新人教版初中数学九年级数学下册第四单元《投影与视图》测试卷(含答案解析)(5)

新人教版初中数学九年级数学下册第四单元《投影与视图》测试卷(含答案解析)(5)

一、选择题1.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.282.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.3.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.34.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶5.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.486.如图,该几何体的俯视图是()A.B.C.D.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.9.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.10.如图,水杯的俯视图是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.二、填空题13.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.14.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.15.如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是_______.16.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.17.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.18.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.19.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.20.张三和李四并排站立在阳光下,张三身高1.80米,他的影长2.0米,李四比张三矮9厘米,此时李四的影长是___米.三、解答题21.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.22.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).23.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.24.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图①是从哪个方向看该几何体得到的平面图形?(将正确答案填入图①下面的空中)(2)请在给出的方格纸中分别画出从其它两个方向看得到的平面图形.25.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体:(1)图中有_____个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图和左视图.26.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D从6个方向数正方形的个数,再加上层中间的两个表面,从而得到几何体的表面积.【详解】它的表面积=5+5+5+5+3+3+2=28.故选:D.【点睛】本题考查了几何体的表面积:几何体的表面积=侧面积+底面积(上、下底的面积和).2.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.3.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.4.A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,故选:A.【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.5.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 6.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.7.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.8.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.10.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.11.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有共需正方体2+1+1=4.故选B.12.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A .正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B .圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C .圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D .球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B .【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.二、填空题13.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多 解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.14.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.15.4【解析】【分析】根据从正面看可得该几何体有2层再分别根据从左面看从上面看判断该几何体有几行几列以及正方体的具体摆放即可解答【详解】观察三视图可得这个几何体有两层底下一层是一行三列有3个正方体上面一解析:4【解析】【分析】根据“从正面看”可得该几何体有2层,再分别根据“从左面看”、“从上面看”,判断该几何体有几行、几列以及正方体的具体摆放,即可解答.【详解】观察三视图,可得这个几何体有两层,底下一层是一行三列有3个正方体,上面一层最右边有一个正方体,故搭成这个几何体的小正方体的个数为3+1=4个.故答案为4.【点睛】本题考查对三视图的理解应用以及空间想象能力,可从主视图分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后的位置,综合上述分析出小立方体的个数. 16.14【解析】试题解析:14【解析】试题根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.17.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.18.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.19.12【分析】在同一时刻物体的实际高度和影长成比例据此列方程即可解答【详解】解:由题意得∴16:12=旗杆的高度:9∴旗杆的高度为12m故答案为:12解析:12【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:由题意得∴1.6:1.2=旗杆的高度:9.∴旗杆的高度为12m.故答案为:12.20.19【分析】设李四的影长是x米利用同一时刻影长与物体的高度成正比得到然后解方程即可【详解】解:设李四的影长是x米根据题意得解得x=19答:李四的影长是19米故答案为:19【点睛】此题主要考查了平行投解析:1.9【分析】设李四的影长是x米,利用同一时刻影长与物体的高度成正比得到2.01.800.09 1.80x=-,然后解方程即可.【详解】解:设李四的影长是x米,根据题意得2.0 1.800.09 1.80x=-,解得x=1.9.答:李四的影长是1.9米.故答案为:1.9【点睛】此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.三、解答题21.(1)①见解析;②见解析;③见解析;(2)见解析【分析】(1)①根据线段的定义画图即可;②根据网格特点和平行线的定义画图即可;③根据网格特点和垂线的定义画图即可;(2)主视图有3列,左侧一列有3层,中间一列有2层,右侧一列有1层;【详解】(1)①如图所示;②如图所示;③如图所示;(2)如图所示,【点睛】本题考查了线段、平行线、垂线的画法,以及三视图的画法,熟练掌握三视图的画法是解答本题的关键.22.(1)见解析;(2)18【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,1,1,从左面看有2列,每列小正方形数目分别为2,1,从上面看有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.(2)将正面看的图形、左面看的图形的面积相加乘以2再加上从上面看的图形面积即可得.【详解】(1)如图所示:(2)从正面看,有4个面,从后面看有4个面,从上面看,有4个面,从左面看,有3个面,从右面看,有3个面,∵不包括底面积+⨯+=.∴这个几何体的表面积为:(43)2418【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,考察空间想象能力,在计算表面积时要与从三个方向看所得图形联系起来.23.(1)截面可能是三角形,四边形,五边形,六边形;(2)图形见详解.【分析】(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.由此截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形共有四种情况;(2)画出从正面,从左面看到的图形即可.主视图从左往右3列正方形的个数依次为3,4,2;左视图从左往右2列正方形的个数依次为4,2.【详解】解:(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.截面可能是三角形,四边形,五边形,六边形;(2)这个几何体的主视图、左视图如图所示:【点睛】本题考查了正方体的基本构成、用一个面去截几何体、三视图等知识.锻炼学生的空间想象能力是解题的关键.24.(1)从左面看;(2)从正面、上面看,图见解析【分析】(1)根据几何体的三视图判断即可;(2)根据几何体的三视图画法即可求解.【详解】解:(1)(从左面看)(2)(从正面看)(从上面看)【点睛】此题主要考查几何体的三视图,提高空间想象能力是解题关键.25.(1)7,(2)见解析.【分析】(1)根据几何体有2层,将2层的小正方体的个数相加即可;(2)主视图有3列,每列小正方数形数目分别为1,2,1;左视图有3列,每列小正方形数目分别为2,1,1;据此可画出图形.【详解】解:(1)由图可得,图中有7个小正方体;故答案为:7;(2)如图所示:【点睛】本题考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.26.2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可【详解】解:如图,过点N 作ND ⊥PQ 于D ,则DN=PM ,∴△ABC ∽△QDN ,AB QD BC DN∴=. ∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米, 2 1.21.6AB DN QD BC ⨯===1.5(米), ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点睛】此题考查相似三角形的应用和平行投影,解题关键在于掌握运算法则。

(人教版)西安市九年级数学下册第四单元《投影与视图》检测卷(包含答案解析)

(人教版)西安市九年级数学下册第四单元《投影与视图》检测卷(包含答案解析)

一、选择题1.下面四个几何体中,俯视图为四边形的是()A.B.C.D.2.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)3.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.4.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.5.如图所示的几何体,它的左视图是()A.B.C.D.6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.7.如图,水杯的俯视图是()A.B.C.D.8.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个9.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:910.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.11.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.12.如图所示的几何体的俯视图为( )A.B.C.D.二、填空题13.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.14.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.15.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.18.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.19.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.20.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题21.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示.请你画出从左面看到的这个几何体的形状图的可能结果(要求画出不少于三种形状图).22.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).23.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为________.(2)该几何体的主视图如图所示,请按照主视图的阴影方式在下面的方格纸中分别画出它的左视图和俯视图.24.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.25.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)26.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.2.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.3.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.A解析:A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是上下两个矩形,矩形的公共边是虚线.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.D解析:D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.8.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.9.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.10.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.11.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.12.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.14.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题解析:4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D 作DC ⊥AB 于点C ,连接AE ,由题意可得:DE=BC=1m ,BE=1.5m ,∵一根长为1m 的竹竿的影长是0.5m ,∴AC=2CD=3m ,故AB=3+1=4(m ).故答案为4m .【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.15.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.16.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.18.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.19.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.20.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题21.见解析【分析】根据俯视图可得底面有5个小正方体,结合主视图可得第二层“田”字上可能有2个或3个或4个或5个,进而可得答案.【详解】解:可能有以下三种情况.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.22.(1)见解析;(2)18【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,1,1,从左面看有2列,每列小正方形数目分别为2,1,从上面看有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.(2)将正面看的图形、左面看的图形的面积相加乘以2再加上从上面看的图形面积即可得.【详解】(1)如图所示:(2)从正面看,有4个面,从后面看有4个面,从上面看,有4个面,从左面看,有3个面,从右面看,有3个面,∵不包括底面积∴这个几何体的表面积为:(43)2418+⨯+=.【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,考察空间想象能力,在计算表面积时要与从三个方向看所得图形联系起来.23.(1)226cm ;(2)见解析【分析】(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.【详解】(1)该几何体的表面积(含下底面)为:(623242)11S =⨯+⨯+⨯⨯⨯226cm =, 故答案为26 cm 2;(2)如图所示.左视图 俯视图【点睛】此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题的关键. 24.(1)如图所示. 见解析;(2)5.【分析】(1)由已知条件可知,主视图有4列,每列小正方体数目分别为1,2,3,1左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每列小正方数形数目分别为2,1,1,1据此可画出图形.(2)根据三视图投影间的关系确定即可.【详解】(1)如图所示.(2)可在最底层第一列第一行加2个,第二列第一行加1个,第四列第一行加2个,共5个.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.解决本题的关键是熟练掌握三视图的投影规律.25.见详解【分析】几何体的主视图有3列,每列小正方形数目分别为3,2,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1.即可画出三视图.【详解】解:如图所示:【点睛】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.26.40048【分析】根据三视图得到几何体上半部分是圆柱,下半部分是长方体,分别计算体积相加即可解题.【详解】解:由几何体的主视图和俯视图,可以想象出该几何体由两部分组成:上部是一个圆柱,底面直径是20cm ,高是32cm ;下部是一个长方体,长、宽、高分别是30cm ,25cm ,40cm ,所以该几何体的体积为23203.14()3230254040048(cm )2⨯⨯+⨯⨯=. 【点睛】主视图是在物体正面从前向后观察物体得到的图形;俯视图是站在物体的正面从上向下观察物体得到的图形;左视图是在物体正面从左向右观察到的图形,掌握三视图的定义是解题关键.。

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。

九年级数学下册《投影与视图》单元测试卷(附答案解析)

九年级数学下册《投影与视图》单元测试卷(附答案解析)

九年级数学下册《投影与视图》单元测试卷(附答案解析)一、单选题1.“皮影戏”是我国一种历史悠久的民间艺术,下列关于它的说法正确的是()A. 皮影戏的原理是利用平行投影将剪影投射到屏幕上B. 屏幕上人物的身高与相应人物剪影的身高相同C. 屏幕上影像的周长与相应剪影的周长之比等于对应点到光源的距离之比D. 表演时,也可以利用阳光把剪影投射到屏幕上2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A. ①②B. ②③C. ①④D. ②④3.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是()A. 3√6mB. 3√3mC. 4√3mD. √6m4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A. B.C. D.5.如图所示的几何体的左视图是()A. B.C. D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长7.下列图形中,主视图和左视图一样的是()A. B.C. D.8.图中三视图对应的几何体是()A. B.C. D.9.图中几何体的俯视图是()A. B. C. D.10.人离窗子越远,向外眺望时此人的盲区是()A. 变大B. 变小C. 不变D. 无法确定二、填空题11.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形 ______ 相似.(填“可能”或“不可能”).12.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.13.圆柱的主视图是长方形,左视图是______形,俯视图是______形.14.画三种视图时,对应部分的长度要________,而且通常把俯视图画在主视图________面,把左视图画在主视图________面.15.许多影院的座位做成阶梯形,目的是____(请用数学知识回答).16.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的表面积为______.17.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是 ______.18.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(−10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是______.19.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有 ______个.三、解答题20.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.(1)当小明向前走到点N处时,刚好看不到景观塔BD,请在图中作出点N,不必写作法;(2)请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)21.已知小明和树的高与影长,试找出点光源和旗杆的影长.22.明明与亮亮在借助两堵残墙玩捉迷藏游戏,若明明站在如图所示位置时,亮亮在哪个范围内活动是安全的?请在图(1)的俯视图(2)中画出亮亮的活动范围.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?24.补全下面物体的三视图.25.一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹);(2)若此零件底面圆的半径r=2cm,高ℎ=3cm,求此零件的表面积.26.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.(√3≈1.73,sin37°≈0.60,cos37°≈0.800,tan37°≈0.75,结果精确到0.1m)参考答案和解析1.【答案】C;【解析】解:A.“皮影戏”是根据中心投影将剪影投射到屏幕上,因此选项A不符合题意;B.由中心投影的性质可知幕上人物的身高与相应人物剪影的身高成比例,因此选项B不符合题意;C.由中心投影的性质可知屏幕上影像的周长与相应剪影的周长之比等于相似比,即等于对应点到光源的距离之比,因此选项C符合题意;D.表演时,不可以利用阳光把剪影投射到屏幕上,因此选项D不符合题意;故选:C.根据中心投影的意义和性质,逐项进行判断即可,同时注意与平行投影的区别与联系.此题主要考查的是中心投影的性质,注意中心投影与平行投影的区别,利用生活中的“皮影戏”体现光的中心投影性质,这是光投影在生活中的应用,平时多观察,多思考.2.【答案】D;【解析】本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:∵正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,∴正确答案为D.故选D.3.【答案】A;【解析】解:连接AC,∵∠APC=60°,∴∠PAC=∠PCA=60°,∵ABCD是边长为6m的正方形,∴AC=6√2,OC=3√2∴PC=6√2,∴PO=3√6,故选:A.先根据题意进行连接AC,再根据“锥体”面图的“锥角”是60°得出△PAC是等边三角形,再根据它的计算方法和正方形的特点分别进行计算,即可求出答案.此题主要考查了中心投影和圆锥的计算,解答该题的关键是根据等边三角形和正方形的计算方法进行计算.4.【答案】D;【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选:D.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.该题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.【答案】B;【解析】解:从左边看,是一列两个矩形.故选:B.根据左视图是从左边看得到的图形,可得答案.此题主要考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】B;【解析】【试题解析】该题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.小亮由A处径直走到路灯下,他的影子由长变短,再从路灯下走到B处,他的影子则由短变长.解:根据中心投影的特点,知小亮由A处走到路灯下,他的影子由长变短,由路灯下走到B处,他的影子由短变长.故选B.7.【答案】D;【解析】解:A.主视图和左视图不相同,故本选项不合题意;B.主视图和左视图不相同,故本选项不合题意;C.主视图和左视图不相同,故本选项不合题意;D.主视图和左视图相同,故本选项符合题意;故选:D.根据各个几何体的主视图和左视图进行判定即可.此题主要考查简单几何体的三视图,掌握各种几何体的三视图的形状是正确判断的关键.8.【答案】B;【解析】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度不相同,从俯视图推出上面是圆柱体,直径小于下面柱体的宽.由此可以判断对应的几何体是选项B.故选:B.由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此观察图形即可得出结论.此题主要考查了三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9.【答案】D;【解析】解:从上面看可得到三个矩形左右排在一起,中间的较大,故选:D.找到从上面看所得到的图形即可.该题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.【答案】A;【解析】解:如图:AB为窗子,EF∥AB,过AB的直线CD,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.故选:A.11.【答案】可能;【解析】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.此题主要考查了相似三角形的应用及中心投影的知识,解答该题的关键是了解中心投影是由点光源发出的光线形成的投影.12.【答案】3;【解析】解:如图,作PF⊥CD于点F,∵AB//CD,∴△PAB∽△PCD,PE⊥AB,∴△PAB∽△PCD,∴ABCD =PEPF,即:1.54.5=1PF,解得PF=3.故答案为:3.易得△PAB∽△PCD,利用相似三角形对应边的比等于对应高的比可得AB与CD间的距离.考查相似三角形的应用;用到的知识点为:相似三角形对应边的比等于对应高的比.13.【答案】长方圆;【解析】解:圆柱的主视图是长方形,左视图是长方形,俯视图是圆形.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.此题主要考查了几何体的三视图的判断.14.【答案】相等;下;右;【解析】这道题主要考查三视图的画法,熟练掌握物体的长、宽、高与三种视图的关系是解答该题的关键,首先正确理解:主视图,左视图,俯视图分别是从物体正面,左面和上面看所得到的图形,然后再从几何体的长、宽、高三个方面分析从不同的角度所观察到物体的情况,进而作出解答.解:在画三种视图时,对应部分的长度要相等,而且通常把俯视图画在主视图下面,把左视图画在主视图右面.故答案为相等;下;右.15.【答案】减少观众的盲区(看不见的地方),使得每人都能看到屏幕;【解析】解:结合盲区的定义,我们可以知道影院的座位做成阶梯形是为了然后面的观众有更大的视野从而减少盲区,使得没人都能看到屏幕,因此影院的座位做成阶梯形的原因是减少观众的盲区(看不见的地方),使得每人都能看到屏幕.故答案为:减少观众的盲区(看不见的地方),使得每人都能看到屏幕.16.【答案】(18+2√3)c m2;【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为√3cm,三棱柱的高×2×√3=18+2√3(cm2).为3,所以,其表面积为3×2×3+2×12故答案为(18+2√3)cm2.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.17.【答案】22;【解析】解:∵由主视图得出长方体的长是3,宽是1,这个几何体的体积是6,∴设高为ℎ,则1×3×ℎ=6,解得:ℎ=2,∴它的表面积是:1×3×2+3×2×2+1×2×2=22.故答案为:22.根据主视图与左视图得出长方体的长和宽,再利用图形的体积得出它的高,进而得出表面积.此题主要考查了利用三视图判断几何体的长和宽,得出图形的高是解题关键.18.【答案】0<y≤2.5;【解析】解:过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH:DH=0.5:5,因此三角形CDF中,CF=DF⋅tan∠BDH=1因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y⩽2.5.如图,本题所求的就是OC的值,过D作DF⊥OC于F,交BE于H,利用三角函数可求出.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.【答案】5;【解析】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成,故答案为:5.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.20.【答案】解:(1)如图,点N 即为所求.(2)由题意得,BE=5×5=25(米),BD=5×6=30(米),在Rt △ACM 中,∵∠M=30°,AC=10米,∴AM=10√3(米),在Rt △BEM 中,∵∠M=30°,BE=25米,∴BM=25√3(米),∴AB=BM-AM=25√3-10√3=15√3(米),∵AC ∥BD ,∴△ACN ∽△BDN ,∴AC BD =NA NB =1030=13,设NA=x 米,则NB=(x+15√3)米, x+15√3=13, 解得,x=15√33, ∴MN=MA-NA=10√3-15√32=5√32(米), 答:小明再向前走5√32米刚好看不到景观塔BD .;【解析】 (1)连接DC 并延长交BM 于点N.(2)利用直角三角形的边角关系和相似三角形的性质进行解答即可.此题主要考查直角三角形的边角关系,相似三角形的判断和性质,连接和掌握直角三角形的边角关系、相似三角形的性质是解决问题的前提.21.【答案】解:如图:连接AB、CD并延长交与点O,点O即为点光源,EG为旗杆的影子.;【解析】首先根据小明的身高和影长与树的高度和影长确定点光源,然后由过点光源和旗杆的顶部确定旗杆的影长即可.此题主要考查了中心投影的知识,中心投影是由点光源发出的,确定了点光源是解决本题的关键.22.【答案】解:阴影部分A、B为亮亮活动的范围.;【解析】亮亮活动的安全范围其实就是明明的盲区,因此画亮亮的活动范围只要画出明明的盲区就行了.本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.23.【答案】解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,∴BG=4.4m,DH=6.4m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG:FH=BG:DH,即FG•DH=FH•BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.;【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.24.【答案】解:如图示,.;【解析】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.25.【答案】(1)左视图与主视图形状相同,有作垂线(直角)的痕迹(作法不唯一).(2)两个底面积:2πr2×3=6π(c m2);4+2r)×3=(3π+4)×3=9π+12(c m2);侧面积:(2πr×34表面积:15π+12(c m2).;【解析】(1)由削去了占底面圆的四分之一部分的柱体易得主视图和左视图相同,可先画一条线段等于主视图中大长方形的长,然后分别做两个端点的垂线及线段的垂直平分线,在两端点的垂线上分别截取主视图的高连接即可得到几何体的左视图;(2)此零件的表面积=两个底面积+侧面积,把相关数值代入即可求解.解决本题的关键是得到零件全面积的等量关系,注意侧面积的展开图应为一个长方形,长方形的长为四分之三圆的周长+半径长.26.【答案】解:在Rt△CDN中,,∵tan30°=CDDN∴CD=tan30°•DN=5√3,∵∠CBD=∠EMB=37°,√3,∴BD=CD÷tan37°=203√3∴BN=DN+BD=15+203,在Rt△ABN中,tan30°=ABBN∴AB=tan30°•BN≈15.3,√3)≈19.9在Rt△MNB中,MN=BN•tan37°=0.75(15+203∴树高AB是15.3米,楼房MN的高度是19.9米.;【解析】,得到CD=tan30°⋅DN=5√3于是得到BD=CD=5√3,在RtΔCDN中,由于tan30°=CDDN在RtΔABN中,根据三角函数的定义即可得到结论;该题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.92.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.63.下列说法错误的是()A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B.对角线互相垂直的四边形是菱形C.方程x2=x的根是x1=0,x2=1D.对角线相等的平行四边形是矩形4.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个5.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.486.如图,该几何体的俯视图是()A.B.C.D.7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近10.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥11.如图,水杯的俯视图是()A.B.C.D.12.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是() A.B.C.D.二、填空题13.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.14.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)15.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.16.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.17.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______18.如图,一几何体的三视图如图:那么这个几何体是______.19.图中几何体的主视图是().A BC D20.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.三、解答题21.如图是由6个棱长为1的小正方体组成的简单几何体.(1)请在方格纸中分别画出该几何体的主视图、左视图和俯视图;(2)该几何体的表面积(含下底面)为.(直接写出结果)22.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.23.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体:(1)图中有_____个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图和左视图.24.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要个小立方体.25.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.26.用六个小正方体搭成如图的几何体,请画出该几何体从正面,左面,上面看到的图形.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.2.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.3.B解析:B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x2=x的根是x1=0,x2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.4.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.5.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 6.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.7.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.详解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.点睛:考查了中心投影的特点和规律.中心投影的特点是,等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.10.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.11.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.12.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.二、填空题13.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 14.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB 为x ∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线 解析:43【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在Rt ABC 中,设AB 为xtan ∠=AB ACB BC , ∴tan tan 60AB x BC ACB ==∠︒, 同理:tan 30x BD =, ∵两次测量的影长相差8米,∴8tan 30tan 60x x -=︒︒, ∴43x , 则树高为3故答案为:3【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.15.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.16.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.17.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.18.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.19.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C所示故选C考点:几何体的三视图解析:C.【解析】试题分析:根据几何体的三视图知识,几何体的主视图即从正面看到的图形,此几何体从正面看到的图形为上下两层,下面有两个小正方形,上面靠左有一个小正方形,如图C所示.故选C.考点:几何体的三视图.20.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.三、解答题21.(1)图见解析;(2)26【分析】(1)根据该几何体画出三视图即可;(2)将这个几何体前后左右上下,共六个面的面积计算出来,求和即可得到该几何体表面积.【详解】解:(1)根据该几何体画出三视图即可,(2)将这个几何体前后左右上下,共六个面的面积计算出来,求和即可得到该几何体表面积,S =S =4后前,S =S =4右左,S =S =5下上,∴S =(4+4+5)2=26 表,答:该几何体表面积为26.【点睛】本题主要考察了物体的三视图的画法及表面积的计算,解题的关键在于正确画出该几何体的三视图,并依据三视图求出表面积.22.见解析【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.23.(1)7,(2)见解析.【分析】(1)根据几何体有2层,将2层的小正方体的个数相加即可;(2)主视图有3列,每列小正方数形数目分别为1,2,1;左视图有3列,每列小正方形数目分别为2,1,1;据此可画出图形.【详解】解:(1)由图可得,图中有7个小正方体;故答案为:7;(2)如图所示:【点睛】本题考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.(1)主视图、左视图和俯视图如图所示,见解析;(2)这个组合几何体的表面积为38平方单位;(3)这样的几何体最多要14个.【分析】(1)根据主视图、左视图、俯视图的定义画出图形即可;(2)根据几何体的露在外面的面个数以及底面,即可得到表面积;(3)根据保持这个几何体的左视图和俯视图不变,几何体的第二排的高度都是2,第三排的高度都是3个,可得这样的几何体最多要:3+3+3+2+2+1=14个小立方体.【详解】解:(1)主视图、左视图和俯视图如图所示:(2)这个组合几何体的表面积为:6×2×3+2=38(平方单位)故答案为:38.(3)这样的几何体最多要3+3+3+2+2+1=14个小立方体.【点睛】此题主要考查了作图——三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.26.【解析】【分析】从正面看为两层,下面是三个小正方形,上面最左边一个小正方形;从左边看分两层,下面是三个小正方形,上面中间一个小正方形;从上面看分三行,最上面一行最左边一个小正方形,中间三个小正方形,第三行最左边一个小正方形.【详解】如图所示:【点睛】本题主要考查简单几何体三视图,解决本题的关键是要熟练掌握观察三视图的方法.。

相关文档
最新文档