三角形内角和练习题集

合集下载

三角形内角和定理练习题

三角形内角和定理练习题

三角形内角和定理练习题2.如图,在△ABC中,BE、CF分别是ang;ABC和ang;ACB 的角平分线,它们相交于点I,已知ang;A=56deg;,则ang;BIC= .3.如图,在△ABC中,ang;B=25deg;,延长BC至E,过点E作AC的垂线ED,垂足为O,且ang;E=40deg;,则ang;A= .4.如图,若AB=AC,BG=BH,AK=KG,则ang;BAC的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58deg;,则这个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,若ang;A=80deg;,ang;B=68deg;,ang;CFB=22deg;,则ang;CEA= .7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若ang;ABE=135deg;,ang;CDE=110deg;,则ang;DEF= .9.如图,在△ABC中,ang;B=ang;C,FDperp;BC,DEperp;AB,ang;AFD=158deg;,则ang;EDF等于( )A.64deg;B.65deg;C.67deg;D.68deg;10.如图,已知AB∥CD,BE平分ang;ABD,DE平分ang;BDC,则ang;E是( )A.锐角B.直角C.钝角D.无法确定12.如图,在△ABC中,ang;ABC和ang;ACB的外角平分线交于点D,设ang;BAC=ang;a,则ang;D等于( )A.180deg;-2ang;aB.180deg;- ang;aC.90deg;- ang;aD.90deg;-2ang;a13.如果三角形的一个外角等于与它相邻的内角,那么这个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形 D.任意三角形14.如图,ang;1=20deg;,ang;2=25deg;,ang;A=35deg;,则ang;BDC的度数等于( )A.60deg;B.70deg;C.80deg;D.无法确定15.如图,ang;A=32deg;,ang;B=45deg;,ang;C=38deg;,则ang;DFE等于( ) A.108deg; B.110deg; C.115deg; D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,ang;BAC=ang;BCA,ang;B=ang;D=ang;a,ang;CAD=ang;beta;,则ang;a与ang;beta;之间的关系是( )A.ang;a+ang;beta;=180deg;B.3ang;a+2ang;beta;=180deg;C.ang;a=2ang;beta;D.3ang;a+ang;beta;=180deg;17.如图,在△ABC中,ADperp;BC,ang;DAC=ang;B,判断△ABC是什么形状的三角形,并写出你的判断理由.18.在△ABC中,ang;B=ang;C,BD是AC边上的高,ang;ABD=20deg;,求ang;C的度数.19.如图,已知E是BC上一点,且ang;1=ang;2,ang;3=ang;4,且AB∥CD.求证:AFperp;DE.20.如图,在△ABC中,ang;B=ang;C,点D在BC上,ang;BAD=50deg;,AE=AD.求ang;EDC的度数.21.如图,点D是△ABC中ang;ACE的外角平分线与BA 延长线的交点. 求证:ang;BACgt;ang;B.更多精彩内容请点击:初中gt;初一gt;数学gt;初一数学试题。

三角形的内角和练习题

三角形的内角和练习题

三角形的内角和练习题三角形是几何学中的基本概念,它有着许多有趣和重要的特性。

其中一个重要的特性就是它的内角和,即三个内角的度数之和。

本文将为你提供一系列的练习题,帮助你巩固并深入理解三角形的内角和。

练习题一:三角形内角和的基础题1. 计算一个等边三角形的内角和。

解析:等边三角形的三个内角必定相等,设每个内角的度数为x,则有:x + x + x = 180°。

化简得到3x = 180°,解得x = 60°。

因此,等边三角形的内角和为180°。

2. 计算一个等腰直角三角形的内角和。

解析:等腰直角三角形的两个锐角必定相等,并且等于45°,直角为90°。

所以,内角和为45° + 45° + 90° = 180°。

练习题二:三角形内角和的进一步探索1. 设一个三角形的两个内角分别为30°和60°,求第三个内角。

解析:三角形的内角和为180°。

设第三个内角的度数为x,则有:30° + 60° + x = 180°。

化简得到90° + x = 180°,解得x = 90°。

因此,第三个内角的度数为90°。

2. 一个三角形的两个内角分别为75°和x°,其中x是一个锐角,求第三个内角。

解析:三角形的内角和为180°。

设第三个内角的度数为y,则有:75° + x° + y° = 180°。

化简得到x° + y° = 180° - 75°,即x° + y° = 105°。

根据题意,x°是一个锐角,所以y°是一个钝角,根据三角形的性质,钝角的度数大于90°,因此答案无解。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________ ,∠XBC+∠XCB=_________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y 个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠AD C,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形的内角和 练习题

三角形的内角和 练习题

三角形的内角和练习题1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。

A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。

A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。

三角形内角和练习题

三角形内角和练习题

三角形内角和练习题在几何学中,三角形是一个基本的图形,它由三条边和三个内角组成。

三角形的内角和是指三个内角的度数总和。

本文将提供一些关于三角形内角和的练习题,旨在帮助读者加深对此概念的理解和运用。

练习题一:计算三角形内角和1. 已知三角形ABC的三个内角分别为60度、70度和x度,求x的值。

解析:根据三角形内角和的性质,三个内角的和必须等于180度。

因此,我们可以列出等式:60 + 70 + x = 180。

解方程得到x的值。

2. 已知三角形DEF的三个内角分别为2x度、3x度和4x度,求x的值。

解析:同样地,根据三角形内角和的性质,三个内角的和必须等于180度。

我们可以列出等式:2x + 3x + 4x = 180。

解方程得到x的值。

练习题二:应用三角形内角和1. 已知三角形PQR的内角和为180度,且两个内角的度数比为3:5,求这两个内角的度数。

解析:设其中一个内角的度数为3x度,另一个内角的度数为5x度。

根据题意,我们可以列出方程:3x + 5x = 180。

解方程得到x的值,进而计算出两个内角的度数。

2. 已知三角形STU的内角和为180度,且其中一个内角的度数为3x度,另一个内角的度数为4x度。

求三角形STU的另一个内角的度数。

解析:根据题意,我们可以列出方程:3x + 4x + 另一个内角的度数= 180。

解方程得到另一个内角的度数。

练习题三:图形中的三角形内角和1. 如图所示,ABCD是一个四边形,角A和角B的度数已知,求角C和角D的度数。

解析:根据四边形的性质,四个内角的和为360度。

由此我们可以列出等式:角A + 角B + 角C + 角D = 360。

已知角A和角B的度数,可以通过解方程计算出角C和角D的度数。

[插入示意图]2. 如图所示,在平行四边形EFGH中,AB是平行于CD的一条线段,角A的度数已知,求角F的度数。

解析:由于AB与CD平行,根据平行线性质,角A和角F是对应角,它们的度数相等。

三角形内角和定理练习题(供参考)

三角形内角和定理练习题(供参考)

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,那么△ABC是三角形.2.如图,在△ABC中,BE、CF别离是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,那么∠BIC =.3.如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,那么∠A =.4.如图,假设AB=AC,BG=BH,AK=KG,那么∠BAC的度数为.5.假设等腰三角形一腰上的高和另一腰上的高的夹角为58°,那么那个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,假设∠A=80°,∠B=68°,∠CFB=22°,那么∠CEA =.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,假设∠ABE=135°,∠CDE=110°,那么∠DEF=.9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,那么∠EDF等于( )A.64°B.65°C.67°D.68°10.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,那么∠E是( )A.锐角B.直角C.钝角D.无法确信11.如图,已知在△ABC中,AD平额外角∠EAC,AD∥BC,那么△ABC的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,那么∠D等于( )A.180°-2∠αB.180°-∠αC.90°-∠αD.90°-2∠α13.若是三角形的一个外角等于与它相邻的内角,那么那个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.如图,∠1=20°,∠2=25°,∠A=35°,那么∠BDC的度数等于( )A.60°B.70°C.80°D.无法确信15.如图,∠A=32°,∠B=45°,∠C=38°,那么∠DFE等于( )A.108°B.110°C.115°D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,∠BAC=∠BCA,∠B=∠D=∠α,∠CAD=∠β,那么∠α与∠β之间的关系是( )A.∠α+∠β=180°B.3∠α+2∠β=180°C.∠α=2∠βD.3∠α+∠β=180°17.如图,在△ABC中,AD⊥BC,∠DAC=∠B,判定△ABC是什么形状的三角形,并写出你的判定理由.18.在△ABC中,∠B=∠C,BD是AC边上的高,∠ABD=20°,求∠C的度数.19.如图,已知E是BC上一点,且∠1=∠2,∠3=∠4,且AB∥CD.求证:AF⊥DE.20.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AE=AD.求∠EDC的度数.21.如图,点D是△ABC中∠ACE的外角平分线与BA延长线的交点.求证:∠BAC>∠B.类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,那么其最大内角的度数为()A.60° B.75° C.90° D.120°触类旁通:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,那么∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

四年级数学 三角形内角和专项练习 带答案

四年级数学  三角形内角和专项练习 带答案

三角形内角和典题探究一个1、三角形的两个内角和是850,你知道这是一个什么三角形吗?2、在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的31。

这个三角形各个角是多少度?这是一个什么三角形?3、同学们知道三角形的内角和是1800,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?4、如图,两个三角形都是等腰三角形,∠3是多少度?演练方阵A 档(巩固专练)1.由三条( )围成的图形叫三角形。

2.三角形按角可分为( )三角形、( )三角形、( )三角形。

3.三角形的内角和是( )。

4.等腰直角三角形中三个内角分别是( ),( )和( )。

5、判 断,(对的画“√”,错的画“X ”)(1).一个三角形有一个锐角,那么,这个三角形就一定是锐角三角形。

( )(2).直角三角形中只能有一个角是直角。

( )(3).等边三角形一定是锐角三角形。

( )(4).三角形共有一条高。

( )(5).一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。

( )(6).两个底角都是280的三角形,一定是钝角三角形。

( )6、选 择。

(1).一个等腰三角形,其中一个底角是750,顶角是( )A .750B .450C .300D .600(2).任意一个三角形都有( )高。

A .一条B .两条C 三条D .无数条(3).( )个角是锐角的三角形,叫锐角三角形。

A.三 B.二 C.—(4).三角形越大,内角和( )A.越大 B.不变 C.越小7、求下面三角形中/3的度数,并指出是什么三角形。

1.∠1=300,∠2=1080,∠3= ( ),它是( )三角形。

2.∠1=900,∠2=450,∠3=( ),它是( )三角形。

3.∠1=700,∠2=700,∠3=( )。

它是( )三角形。

4.∠1=900,∠2=300,∠3=( ),它是( )三角形。

8、一个三角形的两个内角和是1100,你知道这是一个什么三角形吗?9、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B大600,这个三角形各个角是多少度?你知道这是一个什么三角形?10、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?B档(提升精练)1、任意三角形的内角和是度;一个直角三角形的两个锐角的和是度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的角和练习
【例题分析】
例1. 在△ABC 中,已知∠A =
21∠B =3
1
∠C ,请你判断三角形的形状。

分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠C 是最大的角,因此只需求出∠C 的度数即可判断三角形的形状。

例2. 如图,已知DF ⊥AB 于点F ,且∠A =45°,∠D =30°,求∠ACB 的度数。

例3. 如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =54°,求∠DAC 的度数。

A
B C D
B D C
2 4
3 1
A
例4. 已知在△ABC 中,∠A =62°,BO 、CO 分别是∠ABC 、∠ACB 的平分线,且BO 、CO 相交于O ,求∠BOC 的度数。

〖拓展与延伸〗
(1)已知△AB 中C ,BO 、CO 分别是∠ABC 、∠ACB 的平分线,且BO 、CO 相交于点O ,试探索∠BOC 与∠A 之间是否有固定不变的数量关系。

(2)已知BO 、CO 分别是△ABC 的∠ABC 、∠ACB 的外角角平分线,BO 、CO 相交于O ,试探
B C
A
B C
A
索∠BOC与∠A之间是否有固定不变的数量关系。

E
(3)已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,它与BO的延长线交于点O,
试探索∠BOC与∠A的数量关系。

B C E
由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个角之间存在着一定的数量关系。

例5. 已知多边形的每一个角都等于135°,求这个多边形的边数。

例6. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠BDC =149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

分析:验证的关键是求出∠A 的度数,即把∠A 用已知的角∠B 、∠C 、∠BDC 联系起来,利用三角形关于角的性质就可以发现它们之间的关系
【随堂检测】
A B
D
E
C
A 组
1、在△ABC 中, ∠A =40°,∠B =∠C ,则∠C = 。

2、一个三角形三个角度数的比是2∶3∶4,那么这个三角形是 三角形。

3、在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = 。

4、如图,DE ∥BC ,∠ADE =60°,∠C =50°,则∠A = 。

5、多边形的每个角都是每个外角的4倍,则这个多边形的边数是 。

6、多边形的边数增加1,则角和增加 度,而外角和= 。

7、如果一个多边形的角和是它外角和的3倍,那么那么这个多边形是 边形。

8、直角三角形中,有一个锐角是另一个锐角的2倍,则这两个锐角的度数为 。

9、如图,在四边形ABCD 中,∠1、∠2分别是∠BCD 和∠BAD 的补角,且∠B +∠ADC =140°,则∠1+∠2= 。

10、一个多边形的外角中钝角的个数最多只能有 个。

11、如图,AD 平分∠BAC ,其中∠B =50°,∠ADC =80°,求∠BAC 、∠C 的度数。

B C
第4题图 第9题图
A
2
1
B
C
D
B D C。

相关文档
最新文档